文章编号: 0253-2697(2017)11-1230-14 DOI: 10.7623/syxb201711002

柴达木盆地西部地区渐新世沉积特征与油气成藏模式

黄成刚1.2 常海燕2 崔 俊3 李亚锋3 路艳平3 李 翔2 马新民2 吴梁宇1.2

(1. 中国石油天然气集团公司油藏描述重点实验室 甘肃兰州 730020; 2. 中国石油勘探开发研究院西北分院 甘肃兰州 730020;3. 中国石油青海油田公司勘探开发研究院 甘肃敦煌 736202)

摘要:对柴达木盆地西部地区渐新世下干柴沟组上段的沉积特征与成藏模式进行分析。系统地开展了岩石学和矿物学研究、古地 貌分析、碳氧同位素与微量元素地球化学研究、地震剖面精细解释与"蚂蚁追踪"裂缝预测、成藏模式研究以及高产控制因素分析, 提出英西地区渐新世下干柴沟组上段为一个"半开放—半封闭"的半深湖相咸化沉积环境,基质晶间孔储油、盐下应力聚集造缝、盐 层封盖造就了英西地区特殊的成藏模式。研究结果表明:①岩性以深灰色或灰黑色等暗色色调为主并混积盐类矿物,主要受控于 沉积环境;②下干柴沟组上段沉积前的古地貌为一个发育湖障壁岛的"西低东高"的局限湖泊;③碳、氧同位素数据点落于开放性湖 泊与封闭性湖泊之间;④Sr/Ba平均值为 2.01、均大于 1.Sr/Cu平均值为 109.04、远大于 5.U/Th平均值为 0.62、均小于 1.指示了 咸化、干旱和还原环境;⑤ΣREE 平均值为 87.67×10⁻⁶,分布范围为(39.41~162.67)×10⁻⁶,且存在 Eu 负异常;⑥盐下主力产层 的压力系数可高达 2.2,"自源-超压系统"导致应力聚集造缝的推论与"蚂蚁追踪"裂缝预测成果和岩心观察结果完全吻合。 关键词:半开放—半封闭;咸化湖;白云岩;超压造缝;成藏模式;英西地区;柴达木盆地

中图分类号:TE122.1 文献标识码: A

Oligocene sedimentary characteristics and hydrocarbon accumulation model in the western Qaidam Basin

Huang Chenggang^{1,2} Chang Haiyan² Cui Jun³ Li Yafeng³ Lu Yanping³ Li Xiang² Ma Xinmin² Wu Liangyu^{1,2}

(1. CNPC Key Laboratory of Reservoir Description, Gansu Lanzhou 730020, China; 2. Northwest Branch, PetroChina Research Institute of Petroleum Exploration and Development, Gansu Lanzhou 730020, China; 3. Research Institute of Exploration & Development, PetroChina Qinghai Oilfield Company, Gansu Dunhuang 736202, China)

Abstract: The sedimentary characteristics and hydrocarbon accumulation model in the upper member of Oligocene Xiaganchaigou Formation, Western Qaidam Basin are analyzed in this paper. Comprehensively based on the petrology and mineralogy research, paleo-geomorphology analysis, carbon-oxygen isotopes and microelement geochemistry research, seismic-profile fine interpretation and "ant-tracking" fracture prediction, hydrocarbon accumulation model research and high-yield controlling factor analysis, it is put forward that the upper member of Oligocene Xiaganchaigou Formation in Yingxi area is a saline sedimentary environment of "semi open-semi closed" semi-deep lake facies, and the special hydrocarbon accumulation model in Yingxi area is resulted from oil storage in the matrix intracrystalline pore, fracture forming by under-salt stress accumulation and salt formation seal-capping. Research results show that firstly, the lithology is dominant by dark colors including dark grey or ash black with the mixed sedimentation of saline minerals, mainly controlled by sedimentary environment. Secondly, the paleo-geomorphology prior to the sedimentation in the upper member of Xiaganchaigou Formation is a limited lake "lower in the west while higher in the east" with the development of lake barrier island. Thirdly, the data points of carbon-oxygen isotopes fall between an open lake and a closed lake. Fourthly, Sr/Ba values are all greater than 1 with an average of 2.01, the average value of Sr/Cu is 109.04, far greater than 5, and U/Th values are all less than 1 with an average of 0.62, indicating a saline, arid and reducing environment. Fifthly, the everage value of $\sum REEE$ is 87. 67 × 10⁻⁶ with the distribution range of (39. 41-162. 67) × 10⁻⁶, and Eu negative anomaly exists, Sixthly, the pressure coefficient of main under-salt producing formation can be up to 2. 2, and the deduction of "self-originating-over-pressured system" resulting in the fracture formed by stress accumulation is completely consistent with the res

Key words: semi open-semi closed, saline lake, dolomite, fracture formed by overpressure, hydrocarbon accumulation model, Yingxi area, Qaidam Basin

引用:黄成刚,常海燕,崔俊,李亚锋,路艳平,李翔,马新民,吴梁宇.柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J].石油 学报,2017,38(11):1230-1243.

第一作者及通信作者:黄成刚,男,1979年2月生,2001年获江汉石油学院石油地质勘察专业学士学位,2004年获成都理工大学矿物学、岩石学、矿床 学专业硕士学位,现为中国石油勘探开发研究院西北分院高级工程师,主要从事沉积储层方面研究工作。Email:12664018@qq.com

基金项目:国家重大科技专项"前陆冲断带及复杂构造区油气成藏规律、关键技术及目标评价"(2016ZX05003-006)和中国石油天然气集团公司重大 科技专项"柴达木盆地建设千万吨油气田综合配套技术研究"(2011E-03)资助。

Cite: HUANG Chenggang, CHANG Haiyan, CUI Jun, LI Yafeng, LU Yanping, LI Xiang, MA Xinmin, WU Liangyu. Oligocene sedimentary characteristics and hydrocarbon accumulation model in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2017, 38(11): 1230-1243.

自新生代以来,柴达木盆地西部(柴西)地区富油 气凹陷长期处于青藏高原隆升背景之下,持续分阶段 的隆升导致盆地的古海拔变高、湖盆封闭、气候干寒, 且盐源供给充足,形成了典型的高原咸化湖盆[1]。经 过数十年的油气勘探,可将柴达木盆地概括为3大勘 探领域:盆缘古隆起、斜坡带、盆内凹陷带。阿尔金山 前东坪大气田的发现证实了盆缘古隆起具有巨大的勘 探潜力[2-3],20世纪80年代在斜坡带的尕斯库勒地区 也发现了亿吨级储量规模的整装大油气藏[3]。随着勘 探的不断深入,这些传统的三角洲前缘相带、滩坝砂等 有利储集体已基本探明[4],"斜坡找油"和"构造高点找 圈闭"的勘探思路已取得了丰硕的勘探实效。为了进 一步在成熟探区扩大勘探成果,盆内凹陷带亦不失为 一个重要的新领域,但勘探家们在凹陷带进行勘探部 署时往往存在两大疑虑:①盆内凹陷带多发育烃源岩, 是否发育优质储层?②盆内凹陷带埋深往往较大,即 使发育储层也多属于致密储层范畴,油气开采成本较 高,是否存在较高的商业价值?近年来的勘探部署实 效和基础地质研究成果很好地诠释了上述问题。众所 周知,渐新统下干柴沟组上段为柴西地区富油气凹陷 的主力生油岩发育段^[5],最新的研究成果显示该套地 层亦发育湖相混积白云岩等相对优质的"甜点"储 层[6-9],与深灰色泥岩和碳酸盐岩呈薄互层状,其具有 优先捕获邻近生油岩所生产油气的天然优势,在这些 认识的引领下,勘探家们在盆内凹陷带发现了英西地 区"亿吨级"储量规模的大油气田^[6]。前人研究成果显 示,渐新世晚期柴西地区湖盆范围非常宽广,全区岩性 较为相近,只是各区块储集岩中的各种矿物在含量上存 在一定的差异性,在偌大的湖相沉积区为何独有英西地 区形成了自生自储型的亿吨级整装大油气田? 其沉积 特征及成藏模式相对于邻区,如跃进、干柴沟、咸水泉是 否具有一定的特殊性?这些都是目前研究亟待解决和 深入的关键问题。在消化前人研究成果的基础上,笔者 采集并实测了大量的岩心样品,总结了英西地区独特的 沉积特征与成藏模式,期望能对湖相碳酸盐岩油气勘探 和柴达木盆地下一步井位部署提供借鉴和指导作用。

1 沉积特征

众所周知,柴西地区渐新世为咸化湖相沉积^[6•], 渐新世早期湖水面积开始逐渐扩大,沉积中心主要分 布在七个泉一英西一扎哈泉等区域,其周缘大面积发 育辫状三角洲和扇三角洲沉积。渐新世晚期湖水面积

进一步扩大,并略向东迁移的趋势,此时几乎全盆地均 接受大面积沉积,沉积中心主要分布在英西地区和茫 崖地区。因此,英西地区在渐新世一直地处湖相沉积 中心区域,为半深湖相沉积,其湖泊周缘的辫状河三角 洲沉积普遍具有"窄相带、短物源"的特征,湖泊水下沉 积具有"范围大、分布广"的特征。前人已通过大型水 槽沉积模拟实验证实了该类型的沉积展布主要受控于 古湖水盐度[7],因在咸水中细粒物质可搬运得更远而 粗碎屑颗粒因阻力效应冲入湖泊的动能衰减更大。研 究区的河流—三角洲沉积体系与传统沉积模式无异, 依然受控于河流与湖泊的相对水动力强弱,而研究区 咸化湖泊水下细粒混合沉积则与传统淡水湖泊沉积存 在较大的差异性,多为细粒的陆源碎屑、泥质组分、碳 酸盐岩以及各种盐类矿物混积而成,既能成为生油岩, 又可作为储集层。将从沉积古地貌、岩石学特征、沉积 环境元素等3方面进行详细研究。

1.1 沉积古地貌

地震剖面解释成果显示^[6],研究区下于柴沟组上 段(34~28.5 Ma^[10-11])最厚沉积地层可超过 2 600 m, 假设未发生沉积间断和剥蚀作用,可推算出其沉积速 率高达 472.7 m/Ma,远高于文献报道的柴达木盆地其 他地区的高沉积速率峰值 210~320 m/Ma^[12],因此可 以推断英西地区在渐新世晚期为一快速沉积期,很难发 生沉积间断和暴露剥蚀作用,且结合岩石学特征和沉积 环境的分析,可以得出"下干柴沟组上段适合烃源岩的 发育并为还原环境"的结论。大量的岩石样品经氩离子 抛光后进行场发射扫描电镜分析,可观察到混积于碳酸 盐岩中的陆源碎屑长石未发生任何溶蚀现象^[6],也未见 "示顶底沉积构造"等典型大气水的淋滤溶蚀标志,结合 区域构造发展史可以认为研究区未发生暴露剥蚀作用。 因此,现今地层厚度基本可以代表原始沉积厚度。

综上所述,采用"厚度法"来恢复渐新世下干柴沟组 上段沉积前的古地貌具有可行性,具体方法是:将地震剖 面上的下干柴沟组上段顶面进行"拉平"处理(图 1),去掉 断层重复段,将厚度最大的一个或多个区域判断为当时 的沉积凹陷,由此勾勒出研究区厚度等值线图,将等值 线数据导入相关成图软件(如 Petrel),生成直观的 3D 古地貌图(图 2)。综合地质认识,整体上柴西地区渐新 世晚期接受了大面积的湖相沉积,当时的湖水面积较为 宽广,湖底存在地貌上的"凹凸不平",即下干柴沟组下 段沉积末期柴西地区并未发生完全"填平补齐"式沉积, 这种湖底样式受控于当时不同方向的物源供给。 从恢复出的下干柴沟组上段沉积前古地貌图可以 看出,英西地区为"半封闭一半开放"的局限湖泊沉积 环境,从北部物源区延伸出的湖障壁岛未完全将英西 湖与其东南部广阔水体隔开,英西以西地区广泛发育 的曲流河携带着丰富的矿物质不断注入英西湖泊中, 造成了英西地区为盆地中盐类矿物最为发育的地区。 Yuan 等^[13]和黄成刚等^[7]通过研究区下干柴沟组上段 碳酸盐岩的碳氧同位素,并与国外典型开放性湖泊(如 瑞士 Greifensee 湖、美国 Henderson 湖和以色列 Huleh 湖)和封闭性湖泊(如北美 Great 大盐湖、非洲 Turkana 湖和 Natron-Magadi 湖)进行比对,结果表明 研究区碳酸盐岩的碳氧同位素值投点落于开放性湖泊 和封闭性湖泊之间(图 3),由此验证了"半封闭一半开 放"的局限湖泊沉积环境推论的准确性。

Fig. 1 Interpretation results of seismic profiles of the upper member of Oligocene Xiaganchaigou Formation and its seismic profile after flattening of the top surface in the western Qaidam Basin

- 图 2 柴西地区渐新统下干柴沟组上段沉积前古地貌
- Fig. 2 Palaeogeomorphology of the western Qaidam Basin before depositional period of the upper member of Oligocene Xiaganchaigou Formation

- 图 3 柴西地区渐新统湖相碳酸盐岩碳氧同位素组成与沉积 环境分析(据文献[13,7,14-16]修改)
- Fig. 3 The carbon and oxygen isotope composition of lacustrine carbonate rocks and analysis of sedimentary environment of Oligocene in the western Qaidam Basin

1.2 岩石学特征

大量研究成果显示,柴西地区渐新统下干柴沟组 上段为咸化湖泊沉积^[6-9],主要储集岩以泥晶湖相碳酸 盐岩为主,岩石组分中混积了不同含量的泥质组分、细 粒陆源碎屑以及各种盐类矿物,但跃进、英西、干柴沟 以及咸水泉等4个区块在岩石学特征上又存在一定的 差异性:跃进地区主要储集岩以白云岩为主,含藻白云 岩,白云石含量普遍较高,含量为50%~60%,平均值 为54.6%,单层厚度为数十厘米;英西地区主要储集 岩以含泥或含粉砂的混积白云岩为主,白云石含量为 33.3%~50.0%,平均值为40.4%,单层厚度为数厘米 至数十厘米,白云岩条带多含油;干柴沟地区主要储集 岩以含粉砂的混积碳酸盐岩为主,白云石含量为15%~ 30%,平均值为22.8%,细粒的陆源碎屑含量较多,与 其北部的物源有关;咸水泉地区主要储集岩以含泥的 白云石条带为主,多与暗色泥岩(含部分泥灰岩)呈薄 互层状,单层厚度较薄,多为数厘米,白云石含量平均 值为20.0%,样品中泥质含量普遍较高,偶见较为纯 净的白云岩层,白云石含量最高可达61.3%。

通过对柴西地区跃进、英西、干柴沟和咸水泉4个 区块钻井岩心的X射线衍射全岩矿物含量分析(表1), 可以得出4个区块的碳酸盐平均含量分别为69.8%、 54.6%、45.0%、37.0%,其陆源碎屑平均含量分别为 11.8%、19.2%、27.8%、30.6%,其泥质平均含量分别 为6.8%、12.8%、18.7%、25.7%,其他自生矿物和盐类 矿物含量分别为11.7%、13.4%、8.6%、6.7%(图4)。 数据表明,跃进和英西地区碳酸盐含量最高(其中白云 石含量分别为54.6%和40.4%),陆源碎屑以咸水泉 和干柴沟地区最高,泥质含量以咸水泉地区最高,盐类 矿物以英西地区最高。这些岩石组分特征与其沉积环 境紧密相关:研究区东部发育长物源的曲流河,且河水 中携带着丰富的盐类矿物溶解物,如Ca²⁺、SO4²⁻、 Na⁺、Cl⁻、Mg²⁺、CO3⁻²、HCO3⁻和少量Ba²⁺、Sr²⁺等, 造成了英西地区盐类矿物极其发育,或聚集成具有一 定厚度的盐层,或以矿物颗粒形态赋存于碳酸盐岩 中^[17];北部发育短物源的扇三角洲,湖泊波浪作用可 以将细粒碎屑颗粒和泥质组分沉积于湖泊之中,造成了

表 1 柴西地区渐新统主要储集岩 X 射线衍射全岩矿物含量分析统计

Table 1	Statistics of the	e whole rock miner	al content analysis b	y XRD of	f main reservoirs o	f Oligocene in t	he western Qaidai	n Basin
---------	-------------------	--------------------	-----------------------	----------	---------------------	------------------	-------------------	---------

												矿	物含量	t/%								
地区	样品号	深度/m	定名	乙古	钾长	斜长	方解	白云	÷Ζ	菱铁	菱镁	乙卦	黄铁	赤铁	方沸	重晶	硬石	锐钛	钙芒	普通	铁白	泥质
				石央	石	石	石	石	又口	矿	矿	石益	矿	矿	石	石	膏	矿	硝	辉石	云石	含量
	YH101-5	2927.40	含灰藻白云岩	4. 9	0.6	3.2	19.5	0	13.3	6.7	0	0	0	6.5	3.2	0	0	0	0	0	39.0	3.1
	YH101-16	2 928. 85	含泥白云岩	13.3	1.1	4.9	6.4	0	0	0.6	0	0	4.0	2.3	2.3	0	0	0.5	0	0	51.8	12.8
	YH101-71	2943.05	含粉砂白云岩	7.7	0.6	3.0	5.7	0	0	0	0	0	0	4.9	2.1	0	0	0	1.1	0	64.3	10.6
	YH101-293	3 160. 40	含粉砂白云岩	7.3	0.4	2.4	6.6	0	0	7.4	0	0	4. 2	3.5	1.9	0	2.6	0	0	0	56.3	7.4
跃	YH101-670	3 208. 64	含灰砂质白云岩	8.1	0.3	4.4	6.7	0	0	5.1	0	0.4	3.9	4. 1	0	0	1.1	0	0	0	59.4	6.5
	YH106-2	3 281. 70	含粉砂白云岩	10.6	1.7	4.4	11.3	0	3. 7	6.1	2.6	0	0	5.0	1.4	0	3.1	0	0	0	44.3	5.8
进 Y	YH106-3	3 294. 20	白云岩	4.6	0.2	2.2	7.5	0	0	7.0	0	0	5.6	5.4	0	0	0.4	0	0	0	65.2	1.9
	YH106-11	3 366. 10	白云岩	4.0	0	1.8	16.7	0	0	0	0	0	5.6	4.5	0	0	9.9	0	0	0	56.6	0.9
	YH106-16	3 358. 40	日云岩	6.6	0.3	2.9	6.6	0	0	0	0	0.6	6.4	6.1	0.8	0	0.2	0	0	0	61.2	8.3
-	YH106-27	3 381. 90	含粉砂日云石	9.6	0.5	3.4	11.1	0	0	0.6	0	0	7.0	4.8	1.3	0	0	0	0	3.1	48.3	10.3
		半均	值 · · ·	7.7	0.6	3.3	9.8	0	1.7	3.4	0.3	0.1	3. 7	4. 7	1.3	0	1.7	0.1	0.1	0.3	54.6	6.8
	S3-1-3	4 366. 80	白云岩	9.7	0.7	5.1	10.0	20.2	0	17.5	0	0.6	2.9	0	0	0.4	0.6	0	3.1	0	20.1	9.1
	S3-1-7	4 369. 35	白云岩	13.8	0.7	8.2	4.5	0	0	13. 1	0	0.6	4.0	3.7	0	0	0	0.6	1.1	0	41.2	8.5
	S3-1-23	4 376. 63	白云岩	11.8	1.1	8.0	15.9	0	0	0	0	2.1	4.3	3.2	0	0	0	0	0.8	0	43.3	9.5
	S3-1-38	4 371. 15	粉砂质白云岩	11.7	1.7	12.6	6.9	0	0	0.2	0	0.4	3.0	0	0	0	2.9	0	1.2	0	39.2	20.2
英	S41-6-1-10	3 857. 35	含粉砂白云岩	5.7	0.7	7.8	9.5	0	0	3.5	0	1.2	2.9	3.6	0	0	10.7	0	1.3	0	42.4	10.7
	S41-6-1-11	3 857. 95	含粉砂白云岩	12.1	1.3	11.3	7.6	38.2	0	11.7	0	0.5	1.8	0	0	0	0.8	0	4.3	0	0	10.4
西	S41-6-1-12	3 858. 48	含粉砂盐质白云岩	4.2	0.5	6.7	2.2	37.4	0	5.9	0.2	0	3.8	0	0	0	16. 1	0	14.0	0	0	9.0
	S41-6-1-22	3 867. 12	含泥白云岩	6.1	1.1	5.2	5.9	0	0	0	0	0.5	4.5	3.7	0	0	3.6	2.3	0	3.0	51.3	12.8
	S38-1	2794.62	含粉砂泥质白云岩	14.8	0.9	6.5	8.4	16.2	0	0	0	0.6	2.4	0	0	0	4.1	0	2.8	0	17.5	25.8
	S38-11	3147.16	含灰白云岩	8.8	1.0	9.1	18.3	0	0	0	0	1.3	7.2	0	0	0	1.7	0	3.0	0	37.3	12.3
-		平均	值	9.9	1.0	8.1	8.9	11.2	0	5.2	0	0.8	3.7	1.4	0	0	4.1	0.3	3.2	0.3	29.2	12.8
	C6-1	1.916_00	含粉砂碳酸盐岩	15 1	1.0	7.0	13 1	0	6.6	6.3	0	0	0	4 2	0	0	3.9	0	0	0	26.1	16.7
	C6-2	2010.00	含泥粉砂质碳酸盐岩	21.9	1 1	8.9	12 6	0	4.6	0	0	0.4	3.6	2.2	1 7	0	1.0	0	0	2.5	16.7	22.8
	C6-3	2115 00	白 10 切 10 页 映 截 显 右	15 6	-0.8	6.0	0.3	0	3 3	6.8	0	0. 4	4.2	3.6	1.0	0	1.0	0	0	2. 5	28.3	20.0
	C0 5	2 115.00	百仞砂映取鱼石	22.4	0.0	0.0	15 4	0	7.0	0.0	0	0	7.2	2.7	1.0	0	2.0	0	0	0	15 4	20.0
Ŧ	C0-4	2214.00	己 化 初 砂 贝 碳 酸 盐 右	25.4	1.4	6.9	15.4	0	7.9	0. 2	0	0	5.0	2. 7	1.5	0	2.9	0	0	0	15.4	18.9
柴	06-5	2 260. 00	含泥粉砂灰碳酸盐石	19.1	0.8	6.4	15.9	0	1.9	0	0	0.5	2.4	2.2	1.0	0	5.7	0	0	0	28.4	17.7
沟	C6-6	2347.00	含泥粉砂质碳酸盐岩	17.1	2.7	9.2	14.9	0	4.0	6.8	0	0.5	3.2	2.3	0	0	3.0	0	0	0	17.6	18.7
	C6-7	2413.00	含泥粉砂质碳酸盐岩	18.2	1.2	7.3	17.7	0	0	10.4	0	0.8	2.1	0	0.5	0	3.7	0	0	0	23.7	14.4
	C6-8	3 667. 00	含泥粉砂质碳酸盐岩	16.7	0.6	8.0	12.2	0	0	10.1	0	0	4. 1	0	0	0	4.0	0	0	0	29. 0	15.3
_	C6-10	3 928. 00	含泥粉砂质碳酸盐岩	19.0	0.7	11.2	10.9	0	0	9.2	0	0.6	2.3	0	0.8	0	2.0	0	. 0	0	19. 9	23.4
		平均	值	18.5	1.1	7.9	13.6	0	3. 1	5.5	0	0.3	2.8	1.9	0.7	0	2.8	0	0	0.3	22.8	18.7
	X9-1	1 532. 95	含泥粉砂质白云岩	17.7	0.9	7.5	4.5	0	2.8	8.4	0	0	0	2.7	3.0	0	0.7	0	0	0	33.7	18.1
	X9-2	1 534. 40	含白云质粉砂质泥岩	23.7	1.7	6.3	7.3	0	2.6	1.0	0	0.4	0	0	3.5	0	4.0	0	0	0	12.3	37.2
	X9-3	1 536. 60	含白云质粉砂质泥岩	22.7	0.9	7.1	12.4	0	2.5	0	0	0	1.9	0.5	3.7	0	0	0	0	0	19.3	29.0
咸	X9-4	1 537. 27	白云岩	7.7	0.4	2.2	15.2	0	1.9	0	0	0	0	3.2	0	0	0	0	0	0	61.3	8.1
水	X9-5	1 538. 67	含灰粉砂质泥岩	18.3	1.1	7.2	20.6	0	1.9	1.1	0	0	2.4	0.6	5.1	0	1.0	0	0	0	0	40.7
泉	X9-6	1 539, 10	含灰粉砂质泥岩	21.6	1, 1	10	21.1	0	1.6	0.8	0	0	3.3	0	5.1	0	0	0	0	0	0	35.4
	X9-7	1 540 80	全泥粉砂岩	33.6	2 1	11 5	14 8	0	1.8	0	0	0	0	0	3.0	0	4 0	0	0	0	7 2	21 1
	X0-8	1541 20	今泥白云质松砂岩	26 4	6.0	6.0	11 /	0	2.0	0	0	0	0	1 2	2.9	0	 0. 8	0	0	0	26 5	15 0
_	A7-0	T 4/1. 20	古北日ム灰仞砂石	20.4	1.0	7.2	12.4	0	2.0	1 4	0	0.1	1.0	1.2	2.9	0	1.2	0	0	0	20. 5	25.7
		平均	臣	21. J	1.8	1.3	15.4	0	2.1	1.4	0	0.1	1. 0	1. 0	5.4	0	1. 3	U	0	U	20. U	25. /

北部的干柴沟和咸水泉的陆源碎屑和泥质含量偏高;跃进地区为水体相对较浅的湖湾地区,藻类发育,这类微生物易克服白云石形成的动力学屏障^[18-19],突破在 Mg²⁺表面形成的"水化壳"(Hydration shell)^[20],从而有利于白云石化作用,造成了跃进地区白云石含量相对最高。

随着勘探程度的不断深入,前人在各勘探阶段的 大量研究成果曾勾勒出不同版本的柴西地区沉积相 图^[2-3,5-9,17,20],但对渐新统下干柴沟组上段地层作为整 个柴西富油气凹陷最重要的烃源岩发育层段^[21-22]却有 共识,109个暗色泥岩和碳酸盐岩的有机碳分析结果 显示,其平均值为0.77%,分布范围为0.3%~2.5%, 虽然多数样品有机质丰度不高,但生烃模拟实验显示 咸化条件下其烃类转化率较高^[5,23-24],具有较强的生 烃能力,为柴西地区各个区块油气藏的形成奠定了坚 实的油源基础。

从岩石的整体色调上看,下干柴沟组上段岩性以 深灰色或灰黑色的暗色色调为主,未见滨、浅湖沉积中 常见的红色、棕红色、褐色等氧化或弱氧化色调,虽然 地层中偶尔可见细粒的陆源碎屑条带,但不能以此作 为湖水较浅的绝对依据,因湖相碳酸盐岩地层中陆源 碎屑含量的多少主要受控于携带碎屑颗粒的河流入湖 时动能的衰减指数,在咸水中细粒碎屑物质可搬运得 更远而粗碎屑颗粒因阻力效应冲入湖泊的动能衰减更 大[7]。也有学者曾提出质疑,盐类矿物的发育是否意 味着湖盆晚期的湖水蒸发干涸?答案是否定的,因为 盐类矿物是否沉淀主要取决于湖水中各种盐类矿物是 否达到了其过饱和度而不取决于湖水的深浅,即注入 湖泊的河流所携带的矿物质丰度起决定性作用,半深 湖一深湖相中亦可发生少量盐类矿物(如硬石膏)的沉 淀,2017年实际钻探(S49-1井下干柴沟组上段地层) 成果显示,地层中可见石膏(经数十个晶体的能谱予以 确认)与黑色含灰泥岩共生(图 5),证实了盐类矿物的 沉淀不需要蒸发干涸或暴露,深水环境下依然可以发 生盐类矿物沉淀。

Fig. 5 The symbiosis of black containing calcite mudstone with gypsum of the upper member of Xiaganchaigou Formation reservoirs of deep water deposits from Well S49-1 in the western Qaidam Basin

1.3 沉积环境元素

英西地区下干柴沟组上段湖相碳酸盐岩的 ICP-MS方法测定的微量元素分析数据详见表 2, Mn/Sr 比值[25-26]可以用于判别现今地层岩石中的元素组成是 否遭受了成岩破坏,可用于挑选高保存度样品,研究样 品的 Mn/Sr 比值平均为 0.57,均远小于界限值 3,反 映了测试样品没有或仅受到极弱成岩作用的影响[8], 其元素组成可反映沉积时原始地球化学信息。且通过 计算可得其 Ce 异常值与 Eu 异常值相关系数仅为 0.02,Ce 异常值与 ΣREE 相关系数仅为 0.06,均无明 显相关性,亦反映了测试样品所受成岩作用影响极为 有限,可代表沉积期的流体地球化学特征[8]。从研 究区白云岩微量元素平均上部地壳(UCC)^[27]标准化 (图 6)可以看出, Sr、Mo、Cs 和 Bi 显著富集, Nb、Sn、 Ta含量明显低于平均上部地壳(UCC)值。高含量的 Sr 元素组成,为咸化湖盆沉积的产物,扫描电镜的背散 色图像中明显可见呈现高亮度特征的天青石(SrSO₄) 矿物。

Sr/Ba 比值通常被用来判断湖水的沉积环境^[28], 其原理是,在淡水湖泊中,硫酸根离子含量少,Sr和 Ba 不易沉淀,当湖水逐渐咸化,矿化度增加,BaSO4 首先 沉淀,随着咸化程度的逐渐加深,SrSO4也发生沉淀,

	表 2	柴西地区渐新统下干柴沟组上段湖相白云岩微量元素地球化学分析结果
Table 2	Analysis	s of trace element geochemistry results of the lacustrine dolomite of the upper member of

Oligocene Xiaganchaigou Formation in the western Qaidam Basin

样品	深度/	프 바							含	量/10	- 6						
编号	m	石性	Li	Be	Sc	Ti	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	Rb	Sr
S1-2-8	2758.19	含粉砂白云岩	30. 21	1.07	4.21	1 605. 41	45.50	38. 91	567.34	16.12	19.57	20. 29	36.50	7.64	0.51	52.68	1 187. 82
S1-2-11	2758.52	含泥白云岩	39.35	1.37	3.58	1 780. 34	53.62	40.40	498.44	9.67	21.07	25.45	56.51	9.31	0.63	65.54	3 410. 48
S203-1	1 502. 70	含粉砂白云岩	67.58	1.65	8.52	2 321. 40	66.88	60.37	617.73	16.06	27.69	23.98	32.39	13.72	0.95	96. 92	675.05
S203-3	4486.40	含粉砂白云岩	46.43	1.52	8.71	2 4 4 4. 8 4	81.43	61.64	461.54	30.12	31.11	26. 98	162.31	16.59	1.09	100.82	1 722. 24
S203-6	4 495. 35	含粉砂白云岩	35.10	1.08	3.38	906.30	31.85	34.88	480.89	11.82	13.88	14.05	3.01	5.68	0.33	37.07	3 031. 38
S203-7	4496.90	含粉砂白云岩	95.55	1.91	9.63	3 338. 82	101.53	73.91	522.84	24.80	38.46	41.83	43.87	19.46	1.37	150.63	243.76
S203-8	4 500. 00	粉砂质白云岩	60.53	1.97	5.62	2 442. 57	73.31	54.68	637.75	24.60	28.96	29.80	51.95	13.17	0.90	102.99	460.87
S23-1	4 034. 90	含钙芒硝白云岩	52.37	1.65	6.74	2 187. 10	61.49	62.66	527.02	11.34	25.44	24.37	62.08	11.59	0.79	90.44	841.17
S23-3	4 173. 00	含灰白云岩	15.80	0.68	4.82	1 084. 24	26.84	29.31	332.18	6.31	12.05	10.78	22.41	4.57	0.32	30.95	1 841. 98
S25-1	4 177. 50	含灰白云岩	13.45	0.59	2.45	581.88	31.74	38.41	414.28	8.92	10.27	6.15	50.04	3.76	0. 23	18.26	1771.26
S25-4	4 216. 80	含膏白云岩	26.59	1.26	6.02	1 240. 04	33.08	29.11	432.20	15.56	12.03	12.30	30.89	6.30	0.43	32.63	1 666. 25
S25-6	4 221. 50	白云岩	13.61	1.01	2.43	601.92	25.15	37.48	414.33	4.93	7.52	5.35	9.44	3.65	0.21	25.62	2 188. 01
S30-1	4 081.00	含粉砂白云岩	15.92	0.79	6.75	1 498. 20	35.93	38.06	477.86	11.04	15.90	11.35	31.35	6.85	0.39	36.66	990.21
S32X-6	4 094. 22	含灰白云岩	24.85	0.70	0.85	1 0 2 4. 7 3	23.67	36.48	482.66	4.33	11.60	11.48	12.05	4.39	0.45	29.04	1 061. 46
S32X-7	4 097. 74	含灰白云岩	30.87	0.95	2.09	1 103. 61	30.07	31.02	420.56	8.38	14.12	12.45	19.28	5.56	0.58	32.70	2 629. 72
S32X-8	4 100. 98	含泥粉砂质日云岩	49.20	1.64	5.26	1616.63	52.93	44.72	679.77	7.92	20.11	20.55	30.85	9.88	1.12	66.52	1 539. 85
S32X-9	4 102. 33	含粉砂泥质日云岩	35.86	1.62	9.16	2 607. 42	83.84	60.90	690.83	15.22	33. 53	39.51	118.01	14.05	1.75	82.83	546.94
S32X-10	4 112. 53	含云粉砂质灰石 金松动车出	36.86	1.30	8.91	1 923. 25	54.68	44.17	671.74	18.81	23.11	24.61	45.21	10.67	1.00	66.10	1 410. 86
S32X-11	4117.04	古 衍 砂 火 石	38.13	1.45	10.28	2 292. 16	80. 92	58.15	507.31	13.48	31. /3	24.11	51.67	14.95	1.26	91.18	1 /55. /6
532A-12	4 121. 50	百 衍 砂 日 云 右	20.14	1.04	4.30	1 529. 52	36.99	48.21	494.68	10.07	17.02	14. 55	25.57	6.17	0.58	41.67	1 0 9 2 75
532A-13	4127.93	さ 灰日ム石	41. 59	1.81	7.62	277.19	79.91	80.49	001.2/	12.53	- 6 - 6	25.11	61.72	14. 29	1.09	95.78	1982.75
作品 编号	环度/ m	岩性	v	7r	NI	h Mo	Cd	Sn		里/10	Ba	Нf	Та	Ph	Bi	Th	II
S1 2 9	2758 10	令松砂白三皇	10.64	58 04	5 5 (02 2 22	0.06	1 21	4 32) 45	0.21	1 01	0.42	12 07	0.23	4.00	2.64
S1-2-0	2750.19	さ初ジロム石 今泥白三皇	12.05	75 00) 5.0	17 2.33	0.00	1.51	4.32	- +5 	2 72	2 22	0.42	15.97	0.25	4.99 5.80	2.04
S202 1	1 502 70	百化日ム石	17.05	03.00) 74	16 2 10	0.06	2 15	10.25	27	2.75	2.35	0.45	19.14	0.23	3.09 7 77	3. 07
S203-1	1 302. 70	さ初ジロム石	17.05	93.05	, ,,4	0 3.19	0.00	2.15	10.23	1.00	5. 52 2. 27	2.70	0.50	20. (4	0.29	0.27	5.70
5203-5	4 480. 40	古初世日ム石	7.05	20.00	5 7. z	09 5.94 07 1.00	0.03	2.33	10.01	. 109	2. 27	2.85	0. 57	20. 64	0.35	9.57	4. 19
5203-6	4 495. 35	百初砂日云石	7.95	38.80	3.2	1.99	0.03	0.85	4. /5	o 78	9.29	1.15	0. 25	9.69	0.15	3.63	2. 51
5203-7	4 496. 90	古 材 砂 日 云 右 い ひ 氏 点 二 出	23.88	128.90) 10. 5	5.82	0.06	3. 31	14.97		6. 62	3.90	0.85	24.84	0.47	15.27	6.57
S203-8	4 500. 00	<i>粉砂</i> 应 日 云 石	18.39	97.89	9 8.0	03 2.01	0.08	2.24	8.95	5 39	2.26	2.93	0.63	26.66	0.37	8.66	3. 34
S23-1	4 034. 90	含钙芒硝日云石 A 七 4 二 山	15.03	86. 31	7.1	16 1.04	0.10	1. 78	7.44	51	2.31	2.59	0.56	30. 28	0.29	7.36	2.83
S23-3	4173.00	含灰日云石	7.48	/1.61	1 3.2	58 2.58	0.06	0.85	2.45	121	3.69	1.83	0.25	7.59	0.11	3.62	1.65
S25-1	4177.50	含灰日云岩	6.40	24.89) 1.6	58 2.13	0.03	0.60	1.48	3 107	7.57	0.68	0.14	3.15	0.08	1.56	1.53
S25-4	4 216. 80	含骨日云岩	11.17	64.95	5.0)1 7.51	0.08	1.20	4.58	3 140	4.60	1.94	0.37	8.65	0.12	4.44	3.99
S25-6	4 221. 50	白云岩	9.41	19.19	2.2	20 0.76	0.02	0.49	1.42	2 1 3 3	3.58	0.56	0.23	5.25	0.08	2.19	1.56
S30-1	4 081.00	含粉砂白云岩	9.62	61.78	3 4.3	33 1.53	0.07	0.99	2.97	44	5.26	1.81	0.35	13. 19	0.15	4.62	2.95
S32X-6	4 094. 22	含灰白云岩	7.36	30. 52	2 4.0	07 2.25	0.03	0.91	2.82	2 59	9.97	0.87	0.33	7.27	0.10	2.04	1.73
S32X-7	4 097. 74	含灰白云岩	7.66	41.13	3 3.3	35 2.13	0.05	0.91	3.04	59	0.07	1.17	0.28	9.21	0.14	3.41	1.72
S32X-8	4 100. 98	含泥粉砂质白云岩	14.59	67.92	2 5.0	5. 16	0.05	3.29	6.54	78	2.59	2.03	0.40	10.13	0.19	6.20	4.41
S32X-9	4 102. 33	含粉砂泥质白云岩	20.53	115.35	5 8.0	6. 87	0.21	2.58	8.69	53	9. 78	3.45	0.66	25.15	0.40	9.92	9.56
S32X-10	4 112. 53	含云粉砂质灰岩	16.52	95.06	5.9	5. 26	0.06	1.47	7.21	. 76	2.36	2.76	0.50	15.23	0. 23	7.72	4.50
S32X-11	4 117. 04	含粉砂灰岩	17.09	90.42	2 6.5	6. 28	0.06	2.24	9.86	5 82	1.41	2.63	0.52	17.00	0.30	7.64	4.93
S32X-12	4 121. 50	含粉砂白云岩	10.10	89.66	5.1	2 3.10	0.06	1.00	3.31	22	7.55	2.58	0.40	12.53	0.19	5.17	2.84
S32X-13	4 127. 93	含灰白云岩	16.27	85.46	6.5	6. 31	0.07	2.10	9.35	5 113	4.32	2.56	0.50	16. 67	0.29	7.58	4.46

Fig. 6 The average standardized upper crust discrete race element's spider web of the lacustrine dolomites of the upper member of Oligocene Xiaganchaigou Formation in the western Qaidam Basin

因此沉积物中 Sr/Ba 比值越大代表咸化度越高。研究 区 21 个样品的 Sr 含量的最小值为 243.76×10⁻⁶,最 大值为3410.48×10⁻⁶,平均值为1502.94×10⁻⁶;Ba 含量的最小值为 227.55×10⁻⁶,最大值为 1404.60× 10⁻⁶,平均值为764.86×10⁻⁶;Sr/Ba平均值为2.01, 大于1,可判断为咸水湖沉积。也有学者通过对 Sr/Ba 比值与 B 元素和 Cl 元素这两个盐度指示元素进行相 关关系分析,却得出了无相关性的结论,而 Sr/Ba 比值 与碳酸盐含量之间却存在良好的正相关关系[29],由此 得出沉积物中碳酸盐会影响 Sr/Ba 比值,使其不能正 确反映该沉积环境的原始 Sr/Ba 比和古盐度,因为 Sr 容易进入碳酸盐中取代少量 Ca^[30],主要受控于其在碳 酸盐中的分配系数。因此非以硫酸盐状态存在的少量 Sr 会使得古盐度判断存在一定的误差^[31]。研究区样品 中,通过其 ICP-MS 测试出的 Sr/Ba 比值与 X 射线衍 射测试出的碳酸盐含量进行相关关系分析(图 7),可 以得出两者相关性较弱(相关系数仅为 0.19),即碳酸 盐对 Sr/Ba 比值的影响较弱,因此基本可以认定,研究 区通过 Sr/Ba 比值判断咸水湖沉积环境是准确的。

Sr/Cu比值对古气候具有较高的敏感度,通常认为 Sr/Cu比值大于5指示于旱气候^[32],而研究样品Sr/Cu 比值为5.83~408.92,平均值为109.04,远大于界限值 5,为干旱气候,与岩石学特征中盐类矿物较为发育所反 映出的蒸发环境相一致。U/Th比值能反映沉积环境 的富氧性和缺氧性,一般认为其比值大于1则为富氧环 境,比值小于1则为缺氧环境^[32],研究样品U/Th比值 为0.38~0.98,平均值为0.62,均低于界限值1,为缺氧 还原环境,与前文中"高沉积速率推算结论"、"有机碳测 试结论"和"下干柴沟组上段为全区主力烃源岩层段的 地质背景"等各结论所反映出的还原环境相匹配。 aCe 的分布范围为 0.98~1.02,平均值为 1.01,基本无异 常,暗示了沉积时期处于还原环境中^[32-33]。

图 7 柴西地区渐新统下干柴沟组上段主要储集岩中碳酸盐 含量与 Sr/Ba 比值相关性

Fig. 7 Correlation between the carbonate content and Sr/Ba ratio of the reservoirs of the upper member of Oligocene Xiaganchaigou Formation in the western Qaidam Basin

ICP-MS方法测定的稀土元素分析数据(表 3)显示, 柴西地区湖相白云岩样品稀土总量平均值为 87.67× 10^{-6} ,数值分布范围为(39.41~162.67)× 10^{-6} ,介于球粒 陨石 SREE 值(2.56× 10^{-6})^[34]和平均上地壳 SREE 值 (146.37× 10^{-6})^[27]之间。一般来说,碳酸盐岩中稀土元素 总量在沉积岩中较低,一般低于 $100 \times 10^{-6[35]}$,有的仅 (20~30)× $10^{-6[36]}$,热液白云岩同样也具有低稀土元素 含量的特点[^{37-38]},少数稀土元素总量极低(如 39.41× 10^{-6})的样品可能存在局部热液流体作用痕迹,部分样 品稀土元素总量较高(如 162.67× 10^{6}),可能与混积的

表 3 柴西地区渐新统下干柴沟组上段湖相白云岩稀土元素组成

Table 3 Analysis of REE results list of the Eocene lacustrine dolomite of the upper member of Oligocene Xiaganchaigou

Formation in the western Qaidam Basin

样品	资 亩 /	14 Jul-						含 量/1	0 - 6							
编号	休度/m	石性	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm		
S1-2-8	2758.19	含粉砂白云岩	15.61	32.07	7 3.61	14. 25	2.57	0.51	2.21	0.36	1.95	0.38	1.07	0.17		
S1-2-11	2 758. 52	含泥白云岩	18.78	38.05	5 4.42	16.88	3.03	0.67	2.79	0.47	2.46	0.48	1.37	0.21		
S203-1	4 502. 70	含粉砂白云岩	23. 29	47.45	5 5.51	20.84	3.72	0.78	3.35	0.57	2.94	0.57	1.63	0.26		
S203-3	4 486. 40	含粉砂白云岩	25.32	50. 55	5.95	22.47	3.87	0.81	3.30	0.56	2.91	0.57	1.64	0.26		
S203-6	4 495. 35	含粉砂白云岩	10. 52	21.50	2.39	9.51	1.71	0.36	1.48	0.24	1.29	0.25	0.72	0.11		
S203-7	4 496. 90	含粉砂白云岩	33.72	68.49	7.68	30.65	5.24	1.05	4.82	0.80	4.29	0.82	2.36	0.38		
S203-8	4 500.00	粉砂质白云岩	27.03	53.70	6.30	23.00	4.15	0.86	3.80	0.65	3.42	0.67	1.94	0.29		
S23-1	4 034. 90	含钙芒硝白云岩	21.72	42.68	5 .01	18.75	3.34	0.70	3.03	0.52	2.72	0.54	1.55	0.24		
S23-3	4 173.00	含灰白云岩	9.65	19.17	2. 25	8.74	1.56	0.37	1.41	0.24	1.25	0.25	0.69	0.11		
S25-1	4 177.50	含灰白云岩	8.01	16. 19	1.90	7.36	1.45	0.36	1.36	0.23	1.12	0.21	0.58	0.09		
S25-4	4 216. 80	含膏白云岩	13.91	27.27	3. 22	12.56	2.38	0.53	2.13	0.35	1.88	0.37	1.04	0.16		
S25-6	4 221. 50	白云岩	11.33	21.37	2.44	9.97	2.01	0.48	1.94	0.33	1.63	0.31	0.82	0.13		
S30-1	$4\ 081.\ 00$	含粉砂白云岩	12.66	24.81	3.06	11. 29	2.05	0.42	1.79	0.29	1.61	0.32	0.89	0.14		
S32X-6	4 094. 22	含灰白云岩	12.25	23.06	5 2.62	10.46	1.72	0.36	1.47	0.23	1.27	0.25	0.68	0.11		
S32X-7	4 097.74	含灰白云岩	10.36	20. 28	3 2.40	8.39	1.64	0.34	1.44	0.23	1.25	0.24	0.69	0.11		
S32X-8	4 100. 98	含泥粉砂质白云岩	19. 22	38.26	4. 52	17.81	3.26	0.68	2.89	0.47	2.53	0.50	1.37	0. 22		
S32X-9	4 102.33	含粉砂泥质白云岩	29.16	57.79	6. 73	26.29	4.81	0.99	4.35	0.73	3.81	0.74	2.13	0.33		
S32X-10	4 112. 53	含白云质粉砂质灰岩	20.88	42.79	4.83	19.23	3.47	0.80	3.26	0.55	2.87	0.56	1.60	0.25		
S32X-11	4 117.04	含粉砂灰岩	24.89	49.21	5.62	21.98	3.92	0.79	3.31	0.53	2.89	0.57	1.61	0.26		
S32X-12	4 121. 50	含粉砂白云岩	14.13	27.96	3.32	12.95	2.28	0.47	2.08	0.35	1.82	0.36	1.03	0.16		
S32X-13	4 127.93	含灰白云岩	22.78	43.80	5. 29	21.24	3.59	0.81	3.27	0.56	2.88	0.57	1.64	0.26		
投口			含量/10 ⁻⁶													
样品		11.14						含 量/1	0 - 6							
样品 编号	深度/m	岩性	Yb	Lu	∑REE	LREE	HREE	含量/1 LREE/ HREE	0 ⁻⁶ (La/Yb)) _N (La	u/Sm) _N	(Gd/Yb)) _N δEu	δCe		
样品 编号 S1-2-8	深度/m 2758.19	岩性 含粉砂白云岩	Yb 1.06	Lu 0. 17	∑REE 75. 83	LREE 68. 63	HREE 7. 37	含量/10 LREE/ HREE 9.31	0 ⁻⁶ (La/Yb) 10.60) _N (La	u/Sm) _N 3. 92	(Gd/Yb) 1. 73) _N δEu 0. 65	∂Се 1. 05		
样品 编号 S1-2-8 S1-2-11	深度/m 2758.19 2758.52	岩性 含粉砂白云岩 含泥白云岩	Yb 1.06 1.32	Lu 0. 17 0. 21	∑REE 75. 83 90. 93	LREE 68. 63 81. 83	HREE 7. 37 9. 31	含量/10 LREE/ HREE 9.31 8.79	0 ⁻⁶ (La/Yb) 10.60 10.19) _N (La	u/Sm) _N 3. 92 4. 00	(Gd/Yb) 1. 73 1. 75	 δEu 0.65 0.70 	δCe 1. 05 1. 02		
样品 编号 S1-2-8 S1-2-11 S203-1	深度/m 2758.19 2758.52 4502.70	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩	Yb 1. 06 1. 32 1. 60	Lu 0. 17 0. 21 0. 25	∑REE 75. 83 90. 93 112. 52	LREE 68. 63 81. 83 101. 61	HREE 7. 37 9. 31 11. 17	含量/10 LREE/ HREE 9.31 8.79 9.10	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44) _N (La	a/Sm) _N 3. 92 4. 00 4. 04	(Gd/Yb) 1. 73 1. 75 1. 73	 O_N δEu 0. 65 0. 70 0. 67 	δCe 1. 05 1. 02 1. 03		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3	深度/m 2758.19 2758.52 4502.70 4486.40	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩 含粉砂白云岩	Yb 1. 06 1. 32 1. 60 1. 62	Lu 0. 17 0. 21 0. 25 0. 25	∑REE 75. 83 90. 93 112. 52 119. 83	LREE 68. 63 81. 83 101. 61 108. 97	HREE 7. 37 9. 31 11. 17 11. 12	含量/10 LREE/ HREE 9.31 8.79 9.10 9.79	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68	 D_N δEu 0.65 0.70 0.67 0.70 	 δCe 1. 05 1. 02 1. 03 1. 01 		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6	深度/m 2758.19 2758.52 4502.70 4486.40 4495.35	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71	Lu 0. 17 0. 21 0. 25 0. 25 0. 11	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79	LREE 68. 63 81. 83 101. 61 108. 97 45. 99	HREE 7. 37 9. 31 11. 17 11. 12 4. 92	含量/10 LREE/ HREE 9.31 8.79 9.10 9.79 9.35	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 	δCe 1.05 1.02 1.03 1.01 1.05		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21	含量/10 LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68	 D_N δEu 0.65 0.70 0.67 0.70 0.69 0.64 	 δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 粉砂白云岩 粉砂白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91	含量/11 LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57) _N (La	4/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 	 δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 1. 01 		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 粉砂白云岩 粉砂白云岩 粉砂白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29 0. 24	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33	含量/14 LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68	 D_N δEu 0.65 0.70 0.67 0.70 0.69 0.64 0.66 0.67 	δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 1. 01 1. 00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00	岩性 含粉砂白云岩 含泥白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含粉砂白云岩 含板直云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11	∑ REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73	含量/10 LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 67 0. 76 	δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 1. 01 1. 00 1. 01		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50	岩性 含粉砂白云岩 含粉泥砂白云岩 含粉砂砂白云岩 含粉砂砂白云岩 含粉砂砂白云岩 含粉砂砂白云岩 粉砂质白云岩 含灰白云岩 含灰白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09	Σ REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.35	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 2. 05	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 67 0. 76 0. 79 	δCe 1.05 1.02 1.03 1.01 1.05 1.04 1.01 1.00 1.01 1.02		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80	岩性 含粉砂白云岩 含粉砂白云岩 含粉砂砂白云岩岩 含粉砂砂白云岩岩 含粉砂砂白云岩岩 含粉砂质白云岩 含粉砂质白云岩 含灰白云岩 含膏白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.35 8.41	(La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80) _N (La	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 67 0. 76 0. 79 0. 72 	δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 1. 01 1. 00 1. 01 1. 02 1. 00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-6	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50	岩性 含粉砂白云岩 含粉砂白云岩 含粉砂砂白白云岩岩 含粉砂砂白云云岩岩 含粉砂砂白云云岩 含粉砂质白云云岩 含灰白白云岩 含灰白白云岩 含膏白云岩 白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.35 8.41 7.88	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 67 0. 76 0. 76 0. 79 0. 72 0. 75 	δCe 1.05 1.02 1.03 1.01 1.05 1.04 1.01 1.00 1.01 1.02 1.00 1.00 1.00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S25-6 S30-1	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00	岩性 含粉砂白云岩 含粉砂白云岩 含粉砂砂白白云岩岩 含粉砂砂白白云云岩岩 含粉砂砂白白云云岩岩 含灰白白云岩岩 含灰白白云岩 含膏白云岩 含粉砂白云岩 含粉砂白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14	∑REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.35 8.41 7.88 8.94	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22) _N (La 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67	 D_N δEu 0. 65 0. 70 0. 67 0. 69 0. 64 0. 66 0. 67 0. 76 0. 76 0. 72 0. 75 0. 66 	δCe 1.05 1.02 1.03 1.01 1.05 1.04 1.01 1.00 1.01 1.02 1.00 1.01 0.02 0.03		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S25-6 S30-1 S32X-6	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22	岩性 含粉砂白云岩 含粉砂白云岩 含粉砂砂砂白白云岩 含粉砂砂砂白白云云岩 含粉砂砂质白白云云岩 含灰顶自白云岩岩 含灰顶自白云岩岩 含砂白云岩岩 含粉白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10	$\sum REE$ 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22 55. 11	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.35 8.41 7.88 8.94 10.62	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 76 0. 76 0. 72 0. 75 0. 66 0. 68 	δCe 1.05 1.02 1.03 1.01 1.05 1.04 1.01 1.00 1.01 1.00 1.01 0.01 0.01 0.02 1.00 0.03 1.00 1.00 1.00 1.00 1.00 0.98 1.00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S25-6 S30-1 S32X-6 S32X-7	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22 4 097. 74	岩性 含粉砂白云岩 含粉砂砂白云岩 含粉粉砂砂砂白白云岩 含粉粉砂砂砂白白白云云云云 含香白白白白白云云云岩 含灰灰白云岩 含水灰白云岩 含灰 含灰 含灰 白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65 0. 70	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10 0. 11	∑REE 75.83 90.93 112.52 119.83 50.79 162.67 127.65 102.29 46.36 39.41 66.83 53.51 60.22 55.11 48.09	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46 43. 42	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75 4. 78	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.82 8.35 8.41 7.88 8.94 10.62 9.09	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46 10. 68) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60 4. 08	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86 1. 71	 D_N δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 76 0. 76 0. 72 0. 75 0. 66 0. 68 0. 68 0. 68 	δCe 1.05 1.02 1.03 1.01 1.05 1.04 1.01 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-6 S30-1 S32X-6 S32X-7 S32X-8	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22 4 097. 74 4 100. 98	岩性 含粉砂白云岩 含粉砂砂白云岩 含粉粉砂砂砂合白云岩 含粉粉砂砂砂白白云云岩 含粉粉砂砂砂白白云云岩 含粉砂砂砂砂白云云岩 含白砂白白白云岩 含白砂白白云岩 含肉砂灰白云岩 含泥粉砂质白云岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65 0. 70 1. 36	Lu 0. 17 0. 21 0. 25 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10 0. 11 0. 22	∑ REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22 55. 11 48. 09 93. 05	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46 43. 42 83. 73	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75 4. 78 9. 54	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.82 8.35 8.41 7.88 8.94 10.62 9.09 8.78	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46 10. 68 10. 16) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60 4. 08 3. 81	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86 1. 71 1. 76	 D_N δEu 0. 65 0. 70 0. 67 0. 69 0. 64 0. 66 0. 67 0. 76 0. 76 0. 79 0. 72 0. 75 0. 66 0. 68 0. 68 0. 68 	δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 1. 01 1. 00 1. 01 1. 02 1. 00 1. 00 0. 98 1. 00 1. 01 1. 01 1. 05 1. 01 1. 01 1. 05 1. 04 1. 01 1. 00 1. 01 1. 00 1. 01 1. 00 1. 01 1. 00 1. 01 1. 00 1. 00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S25-6 S30-1 S32X-6 S32X-7 S32X-8 S32X-9	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22 4 097. 74 4 100. 98 4 102. 33	岩性 含粉砂白云岩 含粉砂白白云岩 含粉粉砂砂砂白白云岩岩 含粉粉砂砂砂白白云岩岩 含粉砂砂砂白白云岩岩 含水灰白白云岩 含香液灰白白云岩 含水砂白云云岩 含泥砂砂白云岩岩 含泥砂砂白云岩岩 含泥砂砂白云岩岩 含泥砂砂白云岩岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65 0. 70 1. 36 2. 03	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10 0. 11 0. 22 0. 32	$\sum REE$ 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22 55. 11 48. 09 93. 05 139. 88	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46 43. 42 83. 73 125. 78	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75 4. 78 9. 54 14. 43	含量/10 LREE/ HREE 9,31 8,79 9,10 9,79 9,35 9,06 8,91 8,92 8,82 8,35 8,41 7,88 8,94 10,62 9,09 8,78 8,71	(La/Yb) (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46 10. 68 10. 16 10. 32) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60 4. 08 3. 81 3. 91	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86 1. 71 1. 76 1. 77	D _N δEu 0.65 0.70 0.67 0.69 0.64 0.66 0.70 0.70 0.64 0.66 0.75 0.66 0.68 0.68 0.68 0.66	δCe 1. 05 1. 02 1. 03 1. 01 1. 05 1. 04 1. 01 1. 00 1. 01 1. 02 1. 00 1. 00 0. 98 1. 00 1. 00 1. 00 1. 00 1. 01 1. 01 1. 01 1. 02 1. 00 1. 01 1. 02 1. 00 1. 01 1. 02 1. 01 1. 01 1. 05 1. 04 1. 01 1. 05 1. 04 1. 01 1. 00 1. 00		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S25-4 S25-6 S30-1 S32X-6 S32X-7 S32X-8 S32X-9 S32X-10	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22 4 097. 74 4 100. 98 4 102. 33 4 112. 53	岩性 含粉砂白云岩 含粉砂砂白云岩 含粉粉砂砂砂白白云岩 含粉粉砂砂砂白白云云岩岩 含粉砂砂砂质硝白云岩岩 含水灰有白云岩 含水灰白白云岩 含粉灰灰白云岩 含粉砂泥质白云岩 含粉砂泥质白云岩 含粉砂泥质砂质	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65 0. 70 1. 36 2. 03 1. 55	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10 0. 11 0. 22 0. 32 0. 25	Σ REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22 55. 11 48. 09 93. 05 139. 88 102. 63	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46 43. 42 83. 73 125. 78 92. 00	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75 4. 78 9. 54 14. 43 10. 88	含量/10 LREE/ HREE 9,31 8,79 9,10 9,79 9,35 9,06 8,91 8,92 8,82 8,35 8,41 7,88 8,94 10,62 9,09 8,78 8,71 8,45	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46 10. 68 10. 16 10. 32 9. 65) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60 4. 08 3. 81 3. 91 3. 88	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86 1. 71 1. 76 1. 77 1. 74	 δN δEu 0. 65 0. 70 0. 67 0. 70 0. 69 0. 64 0. 66 0. 79 0. 72 0. 75 0. 66 0. 68 0. 68 0. 68 0. 68 0. 66 0. 73 	$\begin{array}{c} \delta Ce \\ 1.\ 05 \\ 1.\ 02 \\ 1.\ 03 \\ 1.\ 01 \\ 1.\ 05 \\ 1.\ 04 \\ 1.\ 01 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 04 \end{array}$		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S25-6 S30-1 S32X-6 S32X-7 S32X-8 S32X-7 S32X-8 S32X-10 S32X-11	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 173. 00 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22 4 097. 74 4 100. 98 4 102. 33 4 112. 53 4 117. 04	岩性 含粉砂白云岩 含粉砂砂砂白云岩岩 含粉砂砂砂白白云岩岩 含粉砂砂砂砂白白云云岩岩 含水灰的白白云岩岩 含水灰育白云岩 含水灰白白云岩 含粉砂白云岩岩 之彩砂泥和砂白云岩岩 含粉砂泥面白云岩岩 含粉砂泥面白云岩岩 含粉砂泥面白云岩岩 含粉砂泥面白云岩岩	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65 0. 70 1. 36 2. 03 1. 55 1. 62	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10 0. 11 0. 22 0. 32 0. 25 0. 26	Σ REE 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22 55. 11 48. 09 93. 05 139. 88 102. 63 117. 18	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46 43. 42 83. 73 125. 78 92. 00 106. 41	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75 4. 78 9. 54 14. 43 10. 88 11. 03	含量/10 LREE/ HREE 9,31 8,79 9,10 9,79 9,35 9,06 8,91 8,92 8,82 8,82 8,35 8,41 7,88 8,94 10,62 9,09 8,78 8,71 8,45 9,64	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46 10. 68 10. 16 10. 32 9. 65 11. 04) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60 4. 08 3. 81 3. 81 3. 88 4. 10	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86 1. 71 1. 76 1. 77 1. 74 1. 69	 δN δEu 0. 65 0. 70 0. 67 0. 69 0. 64 0. 66 0. 70 0. 70 0. 66 0. 68 0. 68 0. 66 0. 73 0. 67 	$\begin{array}{c} \delta Ce \\ 1.\ 05 \\ 1.\ 02 \\ 1.\ 03 \\ 1.\ 01 \\ 1.\ 05 \\ 1.\ 04 \\ 1.\ 01 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 04 \\ 1.\ 02 \end{array}$		
样品 编号 S1-2-8 S1-2-11 S203-1 S203-3 S203-6 S203-7 S203-8 S23-1 S23-3 S25-1 S25-4 S25-4 S32X-1 S32X-6 S32X-7 S32X-8 S32X-9 S32X-10 S32X-11 S32X-12	深度/m 2 758. 19 2 758. 52 4 502. 70 4 486. 40 4 495. 35 4 496. 90 4 500. 00 4 034. 90 4 177. 50 4 216. 80 4 221. 50 4 081. 00 4 094. 22 4 097. 74 4 100. 98 4 102. 33 4 112. 53 4 117. 04 4 121. 50	岩性 含粉砂白云岩 含粉砂砂砂白白云岩岩 含粉粉砂砂白白白云云岩岩 含粉砂砂质硝白云云岩岩 含灰灰白白云岩岩 含水灰白云云岩 含粉砂泥粉砂泥岩 含粉砂泥粉砂泥粉砂泥 含粉砂泥粉砂泥 含粉砂瓦白云岩 含粉砂瓦香粉砂泥	Yb 1. 06 1. 32 1. 60 1. 62 0. 71 2. 37 1. 83 1. 49 0. 68 0. 55 1. 02 0. 77 0. 89 0. 65 0. 70 1. 36 2. 03 1. 55 1. 62 1. 02	Lu 0. 17 0. 21 0. 25 0. 11 0. 37 0. 29 0. 24 0. 11 0. 09 0. 16 0. 12 0. 14 0. 10 0. 11 0. 22 0. 32 0. 25 0. 26 0. 16	$\sum REE$ 75. 83 90. 93 112. 52 119. 83 50. 79 162. 67 127. 65 102. 29 46. 36 39. 41 66. 83 53. 51 60. 22 55. 11 48. 09 93. 05 139. 88 102. 63 117. 18 67. 94	LREE 68. 63 81. 83 101. 61 108. 97 45. 99 146. 84 115. 03 92. 19 41. 74 35. 27 59. 87 47. 60 54. 29 50. 46 43. 42 83. 73 125. 78 92. 00 106. 41 61. 11	HREE 7. 37 9. 31 11. 17 11. 12 4. 92 16. 21 12. 91 10. 33 4. 73 4. 22 7. 12 6. 04 6. 07 4. 75 4. 78 9. 54 14. 43 10. 88 11. 03 6. 99	含量/1/ LREE/ HREE 9.31 8.79 9.10 9.79 9.35 9.06 8.91 8.92 8.82 8.35 8.41 7.88 8.94 10.62 9.09 8.78 8.71 8.45 9.64 8.75	0 ⁻⁶ (La/Yb) 10. 60 10. 19 10. 44 11. 19 10. 60 10. 21 10. 57 10. 44 10. 17 10. 45 9. 80 10. 55 10. 22 13. 46 10. 68 10. 16 10. 32 9. 65 11. 04 9. 92) _N (La 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A/Sm) _N 3. 92 4. 00 4. 04 4. 23 3. 97 4. 15 4. 21 4. 20 3. 99 3. 55 3. 77 3. 64 3. 99 4. 60 4. 08 3. 81 3. 91 3. 88 4. 10 4. 01	(Gd/Yb) 1. 73 1. 75 1. 73 1. 68 1. 72 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 2. 05 1. 73 2. 08 1. 67 1. 86 1. 71 1. 76 1. 77 1. 73 2. 08 1. 67 1. 86 1. 71 1. 67 1. 67 1. 73 2. 08 1. 67 1. 86 1. 71 3. 68 1. 71 1. 73 2. 08 1. 71 1. 86 1. 71 1. 86 1. 71 1. 86 1. 71 1. 86 1. 71 1. 86 1. 71 1. 67 1. 86 1. 71 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 1. 68 1. 71 1. 86 1. 71 1. 76 1. 76 1. 76 1. 74 1. 69 1. 68	D _N δEu 0.65 0.70 0.67 0.67 0.69 0.64 0.66 0.67 0.76 0.76 0.75 0.66 0.68 0.68 0.68 0.66 0.73 0.67	$\begin{array}{c} \delta Ce \\ 1.\ 05 \\ 1.\ 02 \\ 1.\ 03 \\ 1.\ 01 \\ 1.\ 05 \\ 1.\ 04 \\ 1.\ 01 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 04 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 02 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 01 \\ 1.\ 00 \\ 1.\ 00 \\ 1.\ 01 \\ 1.\ 00 \\ 1.\ 0.\ 00 \\ 1.\ 0.\ 00 \\ 1.\ 0.\ 00 \\ 1.\ 0.\ 00 \\ 0.\ 0.\ 00 \\ 0.\ 0.\ 00 \\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ $		

注:稀土元素球粒陨石标准化数据引自文献[34];δEu=(Eu)_N/SQRT(Sm×Gd)_N;δCe=(Ce)_N/SQRT(La×Pr)_N;N一球粒陨石标准化后的值。

以细粒黏土矿物为代表的陆源物质有关,这类物质往 往富集稀土元素^[39],在一定程度上会提升整个岩石 的稀土元素总量。稀土元素配分模式图显示其存在 低一中等程度的 Eu 负异常(图 8),一般认为这与上 地壳物质的介入紧密相关^[40],即在一定程度上受到 了湖相白云岩中混积的泥质组分影响,绝大多数样 品的 Eu 负异常的存在及 Eu 正异常的缺失指示了幔 源流体并未大规模参与白云石的沉淀^[35],前人大量研究 成果也证实了研究区为准同生交代成因类型^[6-11,13-14],而 非热液白云岩。LREE/HREE、(La/Yb)_N、(La/Sm)_N和 (Gd/Yb)_N的平均值分别为 8.98、10.51、4.01 和 1.75, 反映了湖相白云岩中轻重稀土具有一定的分异现象, 且轻稀土的分馏程度比重稀土要高,稀土配分曲线均 呈右倾型,重稀土曲线平缓,这种配分模式特征反映了 岩石中含多种矿物组分和具有多种物质来源的混积成 因特征。

Fig. 8 REE distribution patterns of the lacustrine dolomites of upper member of Oligocene Xiaganchaigou Formation in the western Qaidam Basin

2 沉积模式

前文已从沉积古地貌、岩石学特征、沉积环境元素 3个方面基本证实了英西地区渐新统晚期以咸化半深 湖相沉积为主,英西以西地区广泛发育河流和三角洲 沉积,河流侵蚀地表含盐地层后使得河流水体溶解了 丰富的矿物质,源源不断地注入到英西湖中,半开放一 半封闭的沉积环境使得英西湖的盐度远高于其东南部 的广阔水体(图9),英西地区与干柴沟地区之间的湖 障壁岛的存在(图10),对英西地区"半开放一半封闭" 的沉积环境的形成至关重要,其阻止了湖水中盐类矿 物的东扩,使之大量保存于英西地区。

英西湖内部呈现出"西低东高"的地貌特征(图 2),可 将其划分为"西英西湖"和"东英西湖",渐新统晚期末, 蒸发作用逐渐变强,水体变浅,"东英西湖"可谓一个天 然的"晒盐场"(图 10),"西英西湖"的盐度较"东英西 湖"略淡,主要受控于北部阿尔金山淡水持续供给的影 响(图 9)。现今钻探结果显示,英西地区下干柴沟组 上段地层中常可见数米厚的石盐(NaCl)层,这些厚盐

Fig. 9 Sedimentary pattern of Late Oligocene in the western Qaidam Basin

Fig. 10 Sedimentary section of Late Oligocene in the western Qaidam Basin

层主要分布于当时的"东英西湖"区域,因此S38 井区下 干柴沟组上段的中上部普遍可见单层厚度达 4.00~ 5.15 m 的石盐(NaCl)层,为后期油气藏的形成和 保存提供了良好的封盖作用。虽然英西地区后期 遭受了强构造运动,但大部分油气资源依然被牢牢 封堵于这些具有塑性的优质岩盐盖层之下。不仅如 此,较高的咸度条件也使得英西地区有机质的烃类 转化率有较大幅度的提高^[5,16-17],为研究区"满凹含 油"和"井井见油"的油气富集格局奠定了坚实的油 源基础。

3 油气成藏模式与高产主控因素

3.1 成藏模式

优质的白云岩储集岩中晶间孔的广泛发育和普遍储油特征^[6]为英西地区"满凹含油"的主要控制因素,现有勘探成果显示,整个英西地区的几乎每口钻探到目的层下干柴沟组上段的井都能或多或少地产出一定量的油气,但不同构造、区域和细分小层中,油气产量高低存在着较大的差异性,尤其是"盐间油层组"和"盐下油层组"(油田生产部门将下干柴沟组上段自上而下分别划分为I、II、II、II、V、V、V其6个油层组,其中1、II、II为盐间油层组,N、V、V为盐下油层组)。

前人大量研究成果显示,英西地区下干柴沟组上 段油气藏为"自生自储型"油气藏,下干柴沟组上段 不仅为全区最重要的烃源岩发育层段^[1+15],而且发 育优质的白云岩储集层^[6,8],两者呈互层状。现有勘 探成果表明下干柴沟组上段自生自储的原生油气藏 的规模远大于上覆次生油气藏,主要受控于其上部 的 I、II、III油层组广泛发育封盖条件极好的盐层(石 盐 NaCl),这些盐层具有很高的毛细管突破压力和很 强的塑性特征,且这些性能几乎不受成岩演化的影 响,即使在受到极强烈的构造挤压破碎后依然会迅 速弥合,仍可保持盖层的封闭性[41],且英西地区下干 柴沟组上段的盐下油层组 IV、V、VI 埋深普遍较大,多 分布在3700~5000m,实验模拟结果显示盐层塑性随 着埋深增大而更强,对油气的封堵效果更好^[42]。发育 干盐下的自生自储的碳酸盐岩油气藏,极易形成如库 车前陆盆地的"自源-超压系统"[42],超压导致应力聚 集同时产生大量微裂缝,这一推论在过 S205 井的主测 线地震解释剖面中得到了印证(图 11)。实测地层压 力数据也显示存在异常高压,如 S38 井平均压力系 数约为 1.7,主力产油层(N油层组 3804.62 m)的压 力系数高达 2.2。过 S205 地震剖面解释成果显示, 盐下地层的裂缝和微裂缝十分发育,油气可通过这 些裂缝快速递补到采油井井口,从而使之获得持续高 产。油气田生产数据显示,截至目前,已钻探出3口日 产量超过千吨的高产工业油流井,均在盐下地层(如 图 11中的 S205 井, W油层组 3380.00~3598.66m)获 得高产。

综上所述,英西地区下干柴沟组上段具有"源-储-盖"三者的完美组合特征: 烃源岩生油后就近运移至与 之呈互层状的白云岩优质储层中,这类优质储层基质 晶间微孔极其发育但渗透性较差(因白云石晶间孔的 孔径小而数量多),而优质盖层(岩盐)下覆地层的"自 源-超压系统"造成应力聚集产生了大量微裂缝,具有 良好的油气疏导作用。

3.2 高产主控因素

已有研究成果表明^[6-7,43],英西地区下干柴沟组上 段储集层以白云石晶间孔为主,根据其化学成因机理 可推算出研究区纯白云石的理论孔隙度值为 13.36%,并通过X射线衍射全岩矿物含量分析出的

图 11 柴西地区渐新统下干柴沟组上段油气成藏模式(过 S205 井主测线)

Fig. 11 Hydrocarbon accumulation pattern of reservoir of the upper member of Xiaganchaigou Formation in the western Qaidam Basin

岩石中白云石含量进一步确定出整块岩石的孔隙度 值,发现其与实测氦孔隙度值极为吻合,并利用场发 射扫描电镜实测白云石晶体的边长大小和理论收缩 率值再次验证了该理论孔隙度值的科学性。白云石 晶间孔的二次电子成像与背散射电子成像的同视域 对比和荧光显微镜观察等这两种方法均验证了这些 晶间微孔中储集着石油。

数百个岩心样品的常规物性分析结果显示,多数 样品的孔隙度分布在5%~10%,绝大多数样品的渗 透率小于0.1mD,按照中华人民共和国石油天然气行 业标准SY/T 6285-2011油气储层评价方法^[44]中的碳 酸盐岩储层孔隙度、渗透率类型划分标准,绝大多数样 品可被划归为"低孔一特低渗"级别^[7]。英西地区普遍 较低的物性特征怎么会造就如此高产的工业油流井? 因此有理由推测裂缝或微裂缝在研究区是广泛发育 的^[45],2017年新钻的4口开发井S38-2井、S38-4井、 S41-2井和S49-1井的岩心观察结果显示,微裂缝广泛 发育,其中部分为层间缝,部分为垂直或斜交于岩层的 裂缝。宏观上,裂缝对油气运移的控制作用可以分为 以下两种情况^[46]:①侧向运移,油源区的油通过层间 缝或近似该方向进行横向运移,当采油井井口附近的 原油被抽取后,变为暂时的低势区,附近高势区的原 油可以快速递补到采油井井口,使之持续高产。② 纵向运移,断层可使油气从一个深度的地层向另一 个深度的地层中运移,由高势区向低势区运移,尤其 是英西地区湖相碳酸盐岩、钙质泥岩和薄石膏层常 呈层状分布,在这些层与层之间隔断明显的地层中发 育穿层裂缝显得尤为重要^[47-48]。

通过对英西地区过 S205 井联络测线进行地震剖 面精细解释和"蚂蚁追踪"裂缝预测,可以发现盐下油 层组裂缝非常发育,而盐间油层组裂缝不发育(图 12), S1-2 井的主力产层位于盐间油层组,初期日产油量超 过 600 t/d,半个月后日产量快速降低至不足 1 t/d,而 S205 井的主力产层位于盐下油层组,初期日产油超过 600 t/d,半个月后日产量升至千吨以上,现今仍能维持 200~300 t/d。可见盐间油层组在裂缝不发育的背景 下,依靠渗透性极低的白云石晶间孔进行油气运移是 相当缓慢的,而盐下油层组在裂缝非常发育的条件下 可以持续高产。并且,这些持续高产的油井还受益于 盐下油层组中的异常超压。

4 结 论

(1) 柴西地区渐新统下干柴沟组上段主要发育泥 晶湖相碳酸盐岩,但不同区块的岩石学特征存在一定的 差异性:跃进和英西地区碳酸盐含量最高,尤其是优质 白云岩储层较为发育,陆源碎屑以咸水泉和干柴沟地区 最高,泥质含量以咸水泉地区最高,盐类矿物以英西地 区最高,这些岩石组分特征主要受控于其沉积环境。

(2)沉积期湖障壁岛的发育、英西湖"西低东高"的古地貌特征、富含盐类物质的西部物源和富含淡水的北部物源共同控制了"东英西湖"和"西英西湖"在盐类矿物组成和含量上的差异性。

(3) 基质晶间孔的广泛发育并储油、盐下"自源-超压系统"导致应力聚集造缝、厚层石盐的优质封盖作 用造就了英西地区特殊的成藏模式和"满凹含油"、"井 井见油"的油气富集格局。"蚂蚁追踪"裂缝预测成果 和岩心观察成果均证实了英西盐下油层组的裂缝十分 发育,且存在异常超压,为油气高产主控因素。

参考文献

[1] 黄成刚,袁剑英,曹正林,等.咸化湖盆储集层中咸水流体与岩石 矿物相互作用实验模拟研究[J].矿物岩石地球化学通报,2015, 34(2):343-348.

HUANG Chenggang, YUAN Jianying, CAO Zhenglin, et al. Simulate experiment study about the saline fluid-rock interaction in the clastic reservoir of the saline Lacustrine Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 343-348.

[2] 吴丽荣,黄成刚,袁剑英,等.咸化湖盆高效基岩气藏储层中基质孔

隙的发现及意义[J]. 地球科学与环境学报,2015,37(4):54-62. WU Lirong, HUANG Chenggang, YUAN Jianying, et al. Discovery of matrix pore of high efficiency bedrock gas reservoir in saline basin and its significance[J]. Journal of Earth Sciences and Environment,2015,37(4):54-62.

 [3] 石亚军,曹正林,张小军,等.大型高原内陆咸化湖盆油气特殊成 藏条件分析及勘探意义:以柴达木盆地柴西地区为例[J].石油 与天然气地质,2011,32(4):577-583.
 SHI Yajun,CAO Zhenglin,ZHANG Xiaojun, et al. Special reservoir formation conditions and their exploration significance of the large saline lacustrine basin of inland plateau-taking the western

Qadam Basin for example[J]. Qil & Gas Geology, 2011, 32(4): 577-583.

[4] 肖传桃,肖胜,叶飞,等.柴达木盆地昆北一阿拉尔地区坡折带及 其对岩性油气藏的控制[J].天然气地球科学,2015,26(11): 2085-2092.

XIAO Chuantao, XIAO Sheng, YE Fei, et al. Slope-break zone and its controls on lithologic reservoir of Kunbei-Alaer area, Qaidam Basin [J]. Natural Gas Geoscience, 2015, 26(11);2085-2092.

- [5] 付锁堂,张道伟,薛建勤,等. 柴达木盆地致密油形成的地质条件 及勘探潜力分析[J]. 沉积学报,2013,31(4):672-682. FU Suotang, ZHANG Daowei, XUE Jianqin, et al. Exploration potential and geological conditions of tight oil in the Qaidam Basin[J]. Acta Sedimentologica Sinica,2013,31(4):672-682.
- [6] 黄成刚,王建功,吴丽荣,等.古近系湖相碳酸盐岩储集特征与含 油性分析:以柴达木盆地英西地区为例[J].中国矿业大学学报, 2017,46(5):1102-1115.

HUANG Chenggang, WANG Jiangong, WU Lirong, et al. Characteristics of Paleogene lacustrine carbonate reservoirs and oilbearing property analysis: a case study of the Yingxi area of western Qaidam Basin[J]. Journal of China University of Mining & Technology, 2017, 46(5):1102-1115.

[7] 黄成刚,关新,倪祥龙,等.柴达木盆地英西地区 E32 咸化湖盆白云

岩储集层特征及发育主控因素[J]. 天然气地球科学,2017,28(2): 219-231.

HUANG Chenggang, GUAN Xin, NI Xianglong, et al. The characteristics and major factors controlling on the E_3^2 dolomite reservoirs in saline lacustrine basin in the Yingxi area of Qaidam Basin[J]. Natural Gas Geoscience, 2017, 28(2): 219-231.

- [8] 黄成刚,袁剑英,田光荣,等.柴西地区始新统湖相白云岩储层地 球化学特征及形成机理[J],地学前缘,2016,23(3):230-242.
 HUANG Chenggang,YUAN Jianying,TIAN Guangrong, et al. The geochemical characteristics and formation mechanism of the Eocene lacustrine dolomite reservoirs in the Western Qaidam[J]. Earth Science Frontiers,2016,23(3):230-242.
- [9] 袁剑英,黄成刚,夏青松,等.咸化湖盆碳酸盐岩储层特征及孔隙 形成机理:以柴西地区始新统下干柴沟组为例[J].地质论评, 2016,62(1):111-126.

YUAN Jianying, HUANG Chenggang, XIA Qingsong, et al. The characteristics of carbonate reservoir, and formation mechanism of pores in the saline lacustrine basin: a case study of the lower Eocene ganchaigou formation in western Qaidam Basin[J]. Geological Review, 2016, 62(1):111-126.

- [10] YIN An, DANG Yuqi, ZHANG Min, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range[M] // SEARS J W, HARMS T A, EVENCHICK C A. Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price. New York: Geological Society of America, 2007, 433:369-390.
- [11] SUN Zhimin, YANG Zhenyu, PEI Junling, et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam basin, China; implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 2005, 237(3/4);635-646. DOI:10.1016/j.epsl. 2005.07.007.
- [12] 韦一,张克信,季军良,等. 青藏高原柴达木盆地新生代沉积充填 速率演化及其对构造隆升的响应[J]. 地质通报,2013,32(1): 105-110.

WEI Yi, ZHANG Kexin, JI Junliang, et al. Cenozoic sedimentation rate evolution of Qaidam Basin in the Tibetan Plateau and its response to the uplift of the plateau[J]. Geological Bulletin of China,2013,32(1):105-110.

- [13] YUAN Jianying, HUANG Chenggang, ZHAO Fan, et al. Carbon and oxygen isotopic compositions, and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, Western China[J]. Journal of Petroleum Science and Engineering, 2015, 135:596-607. DOI:10.1016/j. petrol. 2015. 10.024.
- [14] TALBOT M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chemical Geology: Isotope Geoscience section, 1990, 80(4):261-279.
- [15] TALBOT M R, KELTS K. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates, from organic carbonrich lacustrine sediments [M] // KATZ B J. Lacustrine Basin Exploration: Case Studies and Modern Analogs. Tulsa: AAPG, 1990:99-112.
- [16] 刘传联,赵泉鸿,汪品先. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J]. 地球化学,2001,30(4):363-367.
 LIU Chuanlian, ZHAO Quanhong, WANG Pinxian. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producing paleolakes[J]. Geochimica,2001, 30(4):363-367.

- [17] HUANG Chenggang, YUAN Xiaoyu, SONG Chunhui, et al. Characteristics, origin, and role of salt minerals in the process of hydrocarbon accumulation in the saline lacustrine basin of the Yingxi Area, Qaidam, China[J]. Carbonates and Evaporites, 2017, 32:1-16.
- [18] 黄成刚,袁剑英,吴梁宇,等. 湖相白云岩成因模式及研究方法探讨[J]. 岩性油气藏,2016,28(2):7-15.
 HUANG Chenggang, YUAN Jianying, WU Liangyu, et al. Origin and research methods of lacustrine dolomite[J]. Lithologic Reservoirs,2016,28(2):7-15.
- [19] 由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64.
 YOU Xuelian, SUN Shu, ZHU Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011,18(4):52-64.
- [20] 黄成刚,崔俊,关新,等.柴达木盆地英西地区 S3-1 井渐新统下干 柴沟组储集空间类型[J].地球科学与环境学报,2017,39(2): 255-266.

HUANG Chenggang, CUI Jun, GUAN Xin, et al. Reservoir space types of oligocene Xiaganchaigou Formation from well S3-1 in Yingxi Area of Qaidam Basin, China[J]. Journal of Earth Sciences and Environment, 2017, 39(2):255-266.

- [21] 袁剑英,黄成刚,曹正林,等. 咸化湖盆白云岩碳氧同位素特征及 古环境意义 ——以柴西地区始新统下干柴沟组为例[J]. 地球化 学,2017,44(3):254-266. YUAN jianying,HUANG Chenggang,CAO Zhenglin,et al. The Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite and Palaeoenvironmental significance: a Case Study of the Lower Eocene Ganchaigou Formation in Western Qaidam Ba-
- sin[J]. Gochemistry, 2017, 44(3):254-266.
 [22] 付锁堂,马达德,郭召杰,等. 柴达木走滑叠合盆地及其控油气作用[J]. 石油勘探与开发, 2015, 42(6):712-722.
 FU Suotang, MA Dade, GUO Zhaojie, et al. Strike-slip super-imposed Qaidam Basin and its control on oil and gas accumulation, NW China[J]. Petroleum Exploration and Development, 2015, 42(6):712-722.
- [23] 施辉,刘震,连良达,等. 高原咸化湖盆岩性油气藏富集规律:以柴达木盆地西南区为例[J]. 天然气地球科学,2013,24(4):701-711. SHI Hui,LIU Zhen,LIAN Liangda,et al. Enrichment regularity of lithologic reservoirs in Plateau saline lacustrine basin: taking the Southwestern Qaidam Basin for example[J]. Natural Gas Geoscience,2013,24(4):701-711.
- [24] CAO Z, WEI Z, LIN C, et al. The kinetics of oil generation in a saline basin; a case study of the source rock of tertiary in Zhahaquan Depression, Qaidam Basin, China[J]. Petroleum Science and Technology, 2014, 32 (21); 2648-2657. DOI: 10. 1080/ 10916466. 2014. 913623.

 [25] 文华国,郑荣才,QING Hairuo,等. 青藏高原北缘酒泉盆地青西 凹陷白垩系湖相热水沉积原生白云岩[J]. 中国科学,地球科学, 2014,44(4):591-604.
 WEN Huaguo,ZHENG Rongcai,QING Hairuo, et al. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag,Jiuquan Basin on the northern Tibetan Plateau[J]. Science China Earth Sciences,2013,56(12):2080-2093.

[26] 周传明,张俊明,李国祥,等. 云南永善肖滩早寒武世早期碳氧同 位素记录[J]. 地质科学,1997,32(2):201-211.
ZHOU Chuanming, ZHANG Junming, LI Guoxiang, et al. Carbon and oxygen isotopic record of the early Cambrian from the Xiaotan Section, Yunnan, South China [J]. Scientia Geologica Sinica,1997,32(2):201-211.

- [27] TAYLOR R, MCLENAN S M. The continental crust; its composition and evolution[M]. London; Blackwell, 1985; 57-72.
- [28] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技 术出版社,1993:18-31.
 DENG Hongwen,QIAN Kai, Sedimentary geochemistry and en-

vironmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993:18-31.

- [29] 叶爱娟,朱扬明.柴达木盆地第三系咸水湖相生油岩古沉积环境 地球化学特征[J].海洋与湖沼,2006,37(5):472-480.
 YE Aijuan, ZHU Yangming. Geochemical and sedimentary features of tertiary saline lacustrine source rocks in Qaidm Basin
 [J]. Oceanologia et Limnologia Sinica,2006,37(5):472-480.
- [30] 孙镇城,杨藩,张枝焕,等.中国新生代咸化湖泊沉积环境与油气 生成[M].北京:石油工业出版社,1997:125-142.
 SUN Zhencheng, YANG Fan, ZHANG Zhihuan, et al. Sedimentary environments and hydrocarbon generation of cenozoic salified lakes in China[M]. Beijing; Petroleum Industry Press, 1997: 125-142.
- [31] 冯洪真,俞剑华,方一亭,等. 五峰期上扬子海古盐度分析[J]. 地 层学杂志,1993,17(3):179-185.
 FENG Hongzhen, YU Jianhua, FANG Yiting, et al. Analysis of paleosalinity during the Wufeng age in Upper Yangtze Sea[J]. Journal of Stratigraphy,1993,17(3):179-185.

[32] 李兴远,周永章,安燕飞,等. 钦一杭成矿带南段丰村铅锌矿区下 园垌矿段围岩微量元素的地球化学特征及其意义[J]. 地学前 缘,2015,22(2):131-143.

LI Xingyuan,ZHOU Yongzhang, AN Yanfei, et al. Geochemical characteristics of trace elements and their implications for the Xiayuandong ore section of Fengcun lead-zinc deposits in Qingzhou-Hangzhou metallogenic belt[J]. Earth Science Frontiers, 2015, 22(2):131-143.

- [33] 赵振华. 铕(Eu)地球化学特征的控制因素[J]. 南京大学学报:地 球科学版,1993,5(3):271-280.
 ZHAO Zhenhua. Geochemical characteristics of the control factor of the Eu[J]. Journal of Nanjing University: Natural Sciences, 1993,5(3):271-280.
- [34] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989,42(1):313-345.
- [35] 李乐,姚光庆.讨论:青藏高原北缘酒泉盆地青西凹陷白垩系湖 相热水沉积原生白云岩[J].中国科学:地球科学,2016,46(3): 406-410.

LI Le, YAO Guangqing, Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau; Discussion[J]. Science China Earth Sciences, 2013, 59(4); 866-870.

- [36] 王中刚.稀土元素地球化学[M].北京:科学出版社,1989.
 WANG Zhonggang. Geochemistry of rare earth element[M].
 Beijing:Science Press,1989.
- [37] KUČERA J, CEMPÍREK J, DOLNÍČEK Z, et al. Rare earth elements and yttrium geochemistry of dolomite from post-Variscan vein-type mineralization of the Nizký Jesenik and Upper Silesian Basins, Czech Republic[J]. Journal of Geochemical Exploration, 2009, 103(2/3):69-79.
- [38] TANG Haoshu, CHEN Yanjing, SANTOSH M, et al. REE geochemistry of carbonates from the Guanmenshan Formation, Liaohe Group, NE Sino-Korean Craton: implications for seawater compositional change during the Great Oxidation Event[J]. Pre-

cambrian Research, 2013, 227: 316-336.

- [39] HENDERSON P. Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 52-71.
- [40] GAO S, WEDEPOHL K H. The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources[J]. Earth and Planetary Science Letters, 1995, 133(1/2):81-94.
- [41] 卓勤功,赵孟军,李勇,等. 膏盐岩盖层封闭性动态演化特征与油气 成藏:以库车前陆盆地冲断带为例[J]. 石油学报,2014,35(5): 847-856.

ZHUO Qingong, ZHAO Mengjun, LI Yong, et al. Dynamic sealing evolution and hydrocarbon accumulation of evaporite cap rocks; an example from Kuqa foreland basin thrust belt[J]. Acta Petrolei Sinica, 2014, 35(5): 847-856.

- [42] 赵孟军,鲁雪松,卓勤功,等. 库车前陆盆地油气成藏特征与分布 规律[J]. 石油学报,2015,36(4):395-404.
 ZHAO Mengjun,LU Xuesong,ZHUO Qingong,et al. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin[J]. Acta Petrolei Sinica,2015,36(4):395-404.
- [43] 黄成刚,倪祥龙,马新民,等.致密湖相碳酸盐岩油气富集模式及 稳产、高产主控因素——以柴达木盆地英西地区为例[J].西北 大学学报自然科学版,2017,47(5):724-738.
 HUANG Chenggang,NI Xianglong,MA Xinming, et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs; a case study of the Yingxi area in Qaidam Basin[J]. Journal of northwestern university,2017,47(5):724-738.
- [44] 国家能源局. SY/T 6285-2011 油气储层评价方法[S]. 北京:石油工业出版社,2011.
 National Energy Administration. SY/T 6285-2011 Evaluating methods of oil and gas reservoirs[S]. Beijing:Petroleum Industry Press.2011.
- [45] 高树生,胡志明,刘华勋,等.不同岩性储层的微观孔隙特征[J]. 石油学报,2016,37(2):248-256.
 GAO Shusheng, HU Zhiming, LIU Huaxun, et al. Microscopic pore characteristics of different lithological reservoirs[J]. Acta Petrolei Sinica,2016,37(2):248-256.
- [46] 杜江民,张小莉,王青春,等. 柴达木盆地英西地区 E₃² 储层裂缝 发育特征[J]. 兰州大学学报:自然科学版,2017,53(4):452-458.
 DU Jiangmin, ZHANG Xiaoli, WANG Qingchun, et al. Characteristics of the fractures of E₃² reservoir in Yingxi Area, Qaidam Basin[J]. Journal of Lanzhou University: Natural Sciences, 2017, 53(4):452-458.
- [47] 王珂,张惠良,张荣虎,等. 超深层致密砂岩储层构造裂缝特征及 影响因素:以塔里木盆地克深 2 气田为例[J]. 石油学报, 2016, 37(6):715-727.

WANG Ke, ZHANG Huiliang, ZHANG Ronghu, et al. Characteristics and influencing factors of ultra-deep tight sandstone reservoir structural fracture: a case study of Keshen-2 gas field, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(6): 715-727.

[48] 王濡岳,丁文龙,龚大建,等. 渝东南一黔北地区下寒武统牛蹄塘 组页岩裂缝发育特征与主控因素[J]. 石油学报,2016,37(7): 832-845.

WANG Ruyue, DING Wenlong, GONG Dajian, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area[J]. Acta Petrolei Sinica, 2016, 37(7):832-845.

(收稿日期 2017-05-26 改回日期 2017-10-17 编辑 宋 宁)