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Abstract

Let k be a algebraically closed field. We give a necessary and sufficient condi-

tion for a basic Hopf algebra over k to be finite representation type. Explicitly, we

prove that a basic Hopf algebra over k is finite representation type if and only if it

is Nakayama. By this conclusion, we classify all basic Hopf algebras over k of finite

representation type.

2000 Mathematics Subject Classification: 16G60, 16W30, 16G10

1 Introduction

In this paper, let k be an algebraically closed field and all spaces are k-spaces.

In the representation theory of algebras, one remarkable conclusion, due to P.Gabriel,

states that for any basic algebra A over k, there exists a unique quiver ΓA such that

kΓA/I ∼= A as algebras, where JN ⊆ I ⊆ J2 (N ≥ 2) and J is the ideal generated by all

arrows. An advantage for this conclusion is that we can transform the study of A-modules

to that of representations of path algebra with relation (see [1]).

Our aim is to characterize finite-dimensional basic Hopf algebras of finite representation

type by using above method. As a special kind of basic algebras, there must be some

additional restrictions on the corresponding quiver on a basic Hopf algebra. Fortunately,

Green and Solberg proved that this corresponding quiver must be a so-called covering

quivers (see [6]). This fact is important for us.
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At first, we give the definition of covering quivers. As a byproduct, we discuss the

relationship between covering quivers and Hopf quivers which was defined in [3]. It turns

out that they are equivalent (see Proposition 2.1). Some results from [6], which are needed

in this paper, are introduced as preliminaries.

In section 3, we will give the main result, that is, a finite-dimensional basic Hopf

algebra over k is finite representation type if and only if it is Nakayama (Theorem 3.1). In

the view point of representation theory, Nakayama algebras is the best understood artin

algebras next to semisimple algebras and their Auslander-Reiten quivers are given clearly

(see [1]). Thus we one can see that we can draw Gabriel quivers and Auslander-Reiten

quivers of basic Hopf algebras of finite representation type directly.

By a conclusion in [2], we will show that a finite-dimensional basic Hopf algebra over k is

finite representation type if and only if it is monomial (see [2]). In [2], the authors described

the Auslander-Reiten quivers of monomial Hopf algebras. From this, we can deduce that

all finite-dimensional monomial Hopf algebras are finite representation type. Thus our

conclusion implies that they are precisely all basic Hopf algebra of finite representation

type.

The authors of [2] classified all monomial Hopf algebras when the characteristic of k

is zero. In [7], the first author of this paper and Y.Ye have given a description of the

structures of monomial Hopf algebras when the characteristic of k is not zero. By these

conclusions, we give a classification of basic Hopf algebra of finite representation type in

Section 4.

2 Preliminaries

This section will relay heavily on two beautiful papers [5][6] and the book [1].

Quivers considered here are always finite. Given a quiver Γ = (Γ0,Γ1) with Γ0 the set

of vertices and Γ1 the set of arrows, denote kΓ the path algebra of Γ. For α ∈ Γ1, let

s(α) and t(α) denote respectively the starting and ending vertex of α. An ideal I of kΓ is

admissible if JN ⊆ I ⊆ J2 for some positive integer N ≥ 2, where J is the ideal generated

by all arrows.

For any finite dimensional algebra Λ, we denote the Jacobson radical of Λ by JΛ. Λ

is said to be basic if Λ ∼= ⊕n
i=1Pi for some indecomposable projective Λ-modules Pi, then

Pi � Pj for i 6= j. It is known that a basic algebra Λ over an algebraically close field k is

elementary, i.e. Λ/JΛ
∼= k×k×· · ·×k. A remarkable conclusion in representation theory,

due to P.Gabriel, states that, for any elementary algebra Λ, there exists a unique finite

quiver Γ and an admissible ideal I of kΓ, such that Λ ∼= kΓ/I (see [1]).

Next, let us recall the definition of covering quivers(see [6]). Let G be a finite group and

let W = (w1, w2, . . . , wn) be a sequence of elements of G. We say W is a weight sequence

if, for each g ∈ G, the sequences W and (gw1g
−1, gw2g

−1, . . . , gwng−1) are same up to a
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permutation. In particular, W is closed under conjugation. Define a quiver, denoted by

ΓG(W ), as follows. The vertices of ΓG(W ) is the set {vg}g∈G and the arrows are given by

{(ai, g) : vg−1 → vwig−1 |i = 1, 2, . . . , n, g ∈ G}

We call this quiver the covering quiver (with respect to W ).

Example 2.1 (1): Let G =< g >, gn = 1 and W = (g), then the corresponding covering

quiver is (We call such quiver a basic cycle of length n)
•v1HHHHHj• vg

(a1, 1)

?• vg2

(a1, g
−1)

····• vgn−3
HHHY

• vgn−2

(a1, g
3)

6
• vgn−1

(a1, g
2)

´
´

´́3(a1, g)

(2): Let G = K4 = {1, a, b, ab}, the Klein four group, and W = (1). Then the

corresponding covering quiver is

•1 ª, •a ª, •b ª, •ab ª

At present, we digress to discuss the relationship between covering quivers and Hopf

quivers which defined in [3]. Let us recall it.

Let G be a finite group and C the set of conjugate classes. Denote the set of natural

numbers by N . A class function χ : C → N is called a ramification, and denoted by

χ =
∑

C∈C χCC. Given a ramification χ =
∑

C∈C χCC of G, then corresponding Hopf

quiver Γ(G,χ) has the set of vertices Γ0 = G, and for each x ∈ Γ0, c ∈ C ∈ C, one has χC

arrows from x to cx.

Given a covering quiver ΓG(W ), where W = (w1, w2, . . . , wn) is a weight sequence.

Since W is closed under conjugation, W , as a set, equals to the disjoint union of elements

in some conjugate classes. No loss of generality, assume W is the disjoint union of elements

in C1, C2, . . . , Cm. Define a ramification χ by χC = multiplicity of C in {C1, C2, . . . , Cm}.
Then, we can get that ΓG(W ) ∼= Γ(G,χ) as direct graphs.

Conversely, let Γ(G,χ) be a Hopf quiver with χ =
∑

C∈C χCC. Define W to be the

disjoint union of elements in χC copies of C. Since W is a finite set, we can give an order

on W such that W is sequence. Clearly, W is a weight sequence, ΓG(W ) is a covering

quiver and Γ(G,χ) ∼= ΓG(W ) as direct graphs.

Combining these remarks, we get the following consequence.

Proposition 2.1 A quiver is a covering quiver if and only if it is a Hopf quiver. ¤
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The following conclusions (see Theorem 2.3 in [6]) states the importance of covering quiv-

ers.

Lemma 2.2 Let H be a finite dimensional basic Hopf algebra over k. Then there exists

a finite group G and a weight sequence W = (w1, w2, . . . , . . . , wn) of G, such that H ∼=
kΓG(W )/I for an admissible ideal I. ¤

Next, let’s recall a wonderful E.Green’s conclusion, which plays a crucial role in the

proof of the main theorem (Theorem 3.1).

There is a natural left G-action on ΓG(W ). That is, g · vh = vhg−1 and g · (ai, h) =

(ai, gh) for vh ∈ ΓG(W )0, (ai, h) ∈ ΓG(W )1 and g ∈ G. Assume W = (w1, w2, . . . , . . . , wn)

is the weight sequence. Clearly, the orbit graph, ΓG(W )/ ∼ G, is the graph with one vertex

and n loops. Thus, kΓG(W )/ ∼ G is isomorphic to the free algebra in n non-commuting

variables via assigning to each loop a variable and then assigning each directed path its

associated word in the n variables, i.e.

kΓG(W )/ ∼ G ∼= k{x1, x2, . . . , xn}

Denote k{x1, x2, . . . , xn} by F . It is a G-graded algebra by giving xi degree wi (For

detail, see [6]). Since the following conclusion is important, we call it Green Theorem (see

Corollary 4.5 in [6]). Note that we freely use some terminologies in [6].

Lemma 2.3 (Green Theorem) Let kΓG(W ) be a Hopf algebra with Hopf structure given

by an allowable kG-bimodule structure. Let I be an admissible Hopf ideal in kΓG(W )

and F be the G-graded free algebra isomorphic to kΓG(W )/ ∼ G, which we view as an

identification. Finally let I be the ideal generated in F by the orbit classes of elements of

I. Then

(a) I is a homogenous ideal in the free algebra F and hence F/I is a finite dimensional

G-graded algebra.

(b) The category of G-graded F/I-modules (respectively, finite dimensional G-graded

F/I-modules ) is equivalent to the category of kΓG(W )/I-modules (resp. finite dimensional

kΓG(W )/I-modules). ¤

In fact, by the proof of this lemma in [6], when I satisfies the condition G · I ⊂ I,

Green Theorem is also true. Since, clearly, G · J2 ⊂ J2 (J denote the ideal generated by

all arrows ), we have the following corollary.

Corollary 2.4 With notations above. The category of G-graded F/J2-modules (respec-

tively, finite dimensional G-graded F/J2-modules ) is equivalent to the category of kΓG(W )/J2-

modules (resp. finite dimensional kΓG(W )/J2-modules). ¤
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3 Main Result

Recall that an algebra is called Nakayama if each indecomposable projective left and right

module has a unique composition series. The main result of this paper is the following

theorem.

Theorem 3.1 Let H be a finite dimensional basic Hopf algebra over k. Then H is finite

representation type if and only if it is Nakayama.

The sufficiency follows immediately since it is known that every Nakayama algebra is

finite representation type ( [1], p. 197). In order to prove the necessity, we need some

preparations.

Lemma 3.2 Let G be a group. If k{x, y} has a G-graded structure and x, y are ho-

mogeneous elements, then Λ = k{x, y}/(x, y)2 has infinite isoclasses of indecomposable

G-graded modules.

Proof: Clearly, Λ = k{x, y}/(x, y)2 = k[x, y]/(x, y)2. Then Λ is a local algebra so that Λ

is an indecomposable Λ-module, and is the only indecomposable projective Λ-module up

to isomorphism. Let JΛ denote the Jacobson radical of Λ. Then J2
Λ = 0 and JΛ

∼= S ⊕ S

where S = Λ/JΛ is the unique simple Λ-module up to isomorphism.

By assumption, we know x, y are homogeneous elements. Thus, JΛ = (x)/(x, y)2 ⊕
(y)/(x, y)2 is a G-graded submodule of Λ. We claim that every finite dimensional Λ-

module is a G-graded module. In fact, for any Λ-module C, there exists a positive integer

n such that nΛ is the projective cover of C since Λ is the only indecomposable projective Λ-

module. That’s to say, there is an epimorphism π : nΛ ³ C such that nΛ/JΛnΛ ∼= C/JΛC.

Thus, clearly, Ker(π) ⊂ JΛnΛ. Since J2
Λ = 0, JΛnΛ is semisimple. More explicitly, it is

a direct sum of some copies of (x)/(x, y)2 and (y)/(x, y)2. Therefore, Kerπ is also a

direct sum of some copies of (x)/(x, y)2 and (y)/(x, y)2. This means Kerπ is a G-graded

submodule of nΛ and so C ∼= nΛ/Kerπ is also G-graded.

By the Example in page 110 in [1], we know Λ has infinite isoclasses indecomposable

Λ-modules. Thus, by the claim above, we get the desire conclusion. ¤

Corollary 3.3 Let k{x1, x2, . . . , xn} is a G-graded algebra with homogeneous elements

x1, x2, . . . , xn. If n ≥ 2, k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2 has infinite isoclasses of inde-

composable G-graded modules.

Proof: Note that there is a natural epimorphisms as G-graded algebras

k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2
π³ k{x1, x2}/(x1, x2)2

Thus, through the algebra morphism π above, we have every G-graded k{x1, x2}/(x1, x2)2-

module is a G-graded k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2-module. Therefore, Lemma 3.2
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implies this corollary. ¤

Proof of Theorem 3.1: We only need to prove the necessity now. Let H be a basic

Hopf algebra of finite representation type. By Lemma 2.2, there exist a finite group G and

a weight sequence W = (w1, w2, . . . , wn) such that H ∼= kΓG(W )/I for an admissible ideal

I. We claim n ≤ 1. Otherwise, let n ≥ 2. Recall that kΓG(W )/ ∼ G ∼= k{x1, x2, . . . , xn},
which is a G-graded algebra by giving xi degree wi, and I ′ denote the ideal generated

in k{x1, x2, . . . , xn} by the orbit classes of elements of I ′. Just like before, let J denote

the ideal generated by all arrows. Then it is easy to see that k{x1, x2, . . . , xn}/J2 =

k{x1, x2, . . . , xn}/(x1, x2, . . . , xn)2. Thus by Corollary 3.3, k{x1, x2, . . . , xn}/J2 has infi-

nite isoclasses of G-graded modules. By corollary 2.4, kΓG(W )/J2 is infinite representation

type. Since I ⊂ J2, there is a natural epimorphism as algebras kΓG(W )/I ³ kΓG(W )/J2.

Therefore, H ∼= kΓG(W )/I is infinite representation type too. It is a contradiction. This

implies n ≤ 1.

When n = 0, there is no any arrow in ΓG(W ). This means H is semisimple and of

course Nakayama.

When n = 1, ΓG(W ) is composed of disjoint union of basic cycles (see Example 2.1).

It is well known that an indecomposable elementary algebra is Nakayama if and only if its

quiver is a basic cycle or a linear quiver Am (see [4]). Thus H is Nakayama too. ¤

Example 3.1 Let q be a n-th primitive root of unity. Recall that the Taft algebra Tn2(q)

is an Hopf algebra generated by elements g and x, with relations

gn = 1, xn = 0, xg = qgx

with comultiplication ∆, counit ε, and antipode S given by

∆(g) = g ⊗ g, ∆(x) = 1⊗ x + x⊗ g

ε(g) = 1, ε(x) = 0

S(g) = g−1, S(x) = −xg−1

It is a basic Hopf algebra (This fact can be gotten from two known results, Tn2(q) ∼= Tn2(q)∗

and Tn2(q) is a point Hopf algebra ). We claim that it is Nakayama (This conclusion can

also be deduced from [2] ).

Denote Tn2(q) by A. Then JA = span{gixj |i = 0, 1, . . . , n− 1, j = 1, 2, . . . , n− 1}, the

linear span of {gixj}0≤i≤n−1, 1≤j≤n−1 and thus J2
A = span{gixj |i = 0, 1, . . . , n − 1, j =

2, 3, . . . , n− 1}. Denote A/J2
A by Λ and the socle of A/J2

A by SocΛ. Then it is easy to see

that SocΛ = JA/J2
A = span{gjx + J2

A|j = 0, 1, . . . , n− 1}. Define a linear isomorphism

f : Λ/JΛ → SocΛ by (gi + J2
A) + JΛ 7→ gix + J2

A
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for i = 0, 1, . . . , n−1. Clearly, f is also a Λ-module map. Thus Λ/JΛ
∼= SocΛ as Λ-modules

which implies Λ is a self-injective algebra (see exercise 12 in p. 135 in [1]). Therefore Λ is

Nakayama by Proposition 2.16 in p.119 in [1]. It is known an algebra B is Nakayama if

and only if B/J2
B is Nakayama. Since Λ = A/J2

A, A = Tn2(q) is Nakayama. So it is finite

representation type.

Remark 3.4 In the view point of representation theory, Nakayama algebras is the best

understood artin algebras next to semisimple algebras. Many properties of its representa-

tion are known. For example, we can draw its Auslander-Reiten quivers directly(see [1]).

When a Nakayama algebra is elementary, its Gabriel quiver is either a basic cycle or a

linear quiver Am. Thus the Gabriel and Auslander-Reiten quivers of basic Hopf algebras

of finite representation type are clear.

4 Classification

In this section we will classify all finite dimensional basic Hopf algebras of finite represen-

tation type. When H is semisimple, we have H = H/JH
∼= k × k × · · · × k. That’s to say

H is commutative. A classical result states that H is a finite dimensional commutative

Hopf algebra over a algebraically closed field k if and only if H ∼= (kG)∗ for a finite group.

So, our main task is to classify them in non-semisimple case.

Recall an algebra is called monomial if there exists a quiver Γ and an admissible ideal

I generated by some paths such that A ∼= kΓ/I. A coalgerba C is called comonomial if

C∗ is a monomial algerba. A finite dimensional Hopf algebra is called monomial (resp.

comonomial) Hopf algebra if it is monomial (resp. comonomial) as algebra (resp. coal-

gebra). So, it is obviously that a finite dimensional Hopf algebra H is a monomial Hopf

algebra if and only if H∗ is a comonomial Hopf algebra. One of key observations we need

in our study is the following lemma which was proved in [2] (see Corollary 2.4 in [2]).

Lemma 4.1 A non-semisimple Hopf algebra is a monomial Hopf algebra if and only if it

is elementary and Nakayama. ¤

Therefore, combining Theorem 3.1, we have the following corollary.

Corollary 4.2 Let H be a non-semisimple Hopf algebra over a algebraically closed field k.

Then H is a basic Hopf algebra of finite representation type if and only if it is a monomial

Hopf algebra. ¤

So, in order to classify basic Hopf algebras of finite representation type, it is sufficient

to classify monomial Hopf algebras. In [2], the authors classified all comonomial Hopf

algebras when characteristic of k is 0 (see Theorem 5.9 in [2]). Let us recall it.
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Lemma 4.3 Let k be a algebraically closed field with characteristic 0. There is a one to

one correspondence between sets

{the isocalsses of non-semisimple comonomial Hopf k-algebras}

and

{the isoclasses of group data over k} ¤

In the above lemma, a group data (for detail, see [2]) over k is defined to be sequence

α = (G, g, χ, µ) consists of

(1) a finite group G, with an element g in its center,

(2) a one-dimensional k-representation χ of G,

(3) an element µ ∈ k such that µ = 0 if o(g) = o(χ(g)), and if µ 6= 0 then χo(χ(g)) = 1.

Remark 4.4 For a group datum α = (G, g, χ, µ) over k, the corresponding comonomial

Hopf algebra A(α) was defined in [2], which is generated as an algebra by x and all h ∈ G

with relations

xd = µ(1− gd), xh = χ(h)hx, ∀ h ∈ G

where d = o(χ(g)). Its comultiplication ∆, counit ε, and antipode S defined by

∆(x) = g ⊗ x + x⊗ 1, ε(x) = 0,

∆(h) = h⊗ h, ε(h) = 1 ∀ h ∈ G,

S(x) = −g−1x, S(h) = h−1, ∀ h ∈ G.

For any quiver Γ, we define Cd(Γ) := ⊕d−1
i=1 kΓ(i) for d ≥ 2, where Γ(i) is the set of all

paths of length i in Γ. We denote the basic cycle of length n (Example 2.1) by Zn and

denote Cd(Zn) by Cd(n). In [7], we get the following conclusion (see Theorem 4.2 in [7]).

Lemma 4.5 Let H be a non-semisimple comonomial Hopf algebra over k of characteristic

p. Then there exist a d0-th primitive root of unity q ∈ k with d0|n, r ≥ 0 and d = prd0 ≥ 2

such that

H ∼= Cd(n)⊕ · · · ⊕ Cd(n)

as coalgebras and

H ∼= Cd(n)#σk(G/N)

as Hopf algebras, where G = G(H), the set of group-like elements of H, and N =

G(Cd(n)), the set of group-like elements of Cd(n). ¤

Summarizing above conclusions, we have the following classification theorem of finite-

dimensional basic Hopf algebras of finite representation type.
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Theorem 4.6 (A) Let H be a finite-dimensional basic Hopf algebra of finite representa-

tion type. Then

(A.1) If H is semisimple, then H ∼= (kG)∗ for some finite group G;

(A.2) If H is not semisimple and the characteristic of k is zero, then H∗ ∼= A(α) for

some group datum α = (G, g, χ, µ) where A(α) was defined in above Remark;

(A.3) If H is not semisimple and the characteristic of k is p, then there exist a d0-th

primitive root of unity q ∈ k with d0|n, r ≥ 0 and d = prd0 ≥ 2 such that

H∗ ∼= Cd(n)⊕ · · · ⊕ Cd(n)

as coalgebras and

H∗ ∼= Cd(n)#σk(G/N)

as Hopf algebras, where G = G(H) and N = G(Cd(n)).

(B) Let H be a finite dimensional Hopf algebra. If

(B.1) H ∼= (kG)∗ for some finite group G or

(B.2) H∗ ∼= A(α) for some group datum α = (G, g, χ, µ) where A(α) was defined in

above Remark or

(B.3) H∗ ∼= Cd(n)⊕ · · · ⊕ Cd(n) as coalgebras,

then H is a basic Hopf algebra of finite representation type.

Proof: (A.1) is explained in the first paragraph of this section. By using Lemma 4.3

and Lemma 4.5, (A.2) and (A.3) can be gotten directly as long as we note that H∗ is a

comonomial Hopf algebra now.

Since (kG)∗ is semisimple and clearly basic, (B.1) implies H is a basic Hopf algebra of

finite representation type.

By Lemma 4.3 and Remark 4.4, A(α) is a comonomial Hopf algerba and thus (B.2)

implies H is a monomial Hopf algebra. Therefore, by Corollary 4.2, H is a basic Hopf

algebra of finite representation type.

It is known that Cd(n) is a comonomial coalgebra (see [2]). From this fact we know

that (B.3) implies H∗ is a comonomial Hopf algebra and thus H is a monomial Hopf

algebra. That is, H is a basic Hopf algebra of finite representation type. ¤

Remark 4.7 (1) In order to not cause confusion, we introduced the concept of comono-

mial Hopf algebras. Note that, in [2] and [7], comonomial Hopf algebra in this paper was

called monomial Hopf algebra.

(2) Part (A) of Theorem 4.6 gives the structures of finite dimensional basic Hopf

algebras of finite representation type. In certain sense, Part (B) of Theorem 4.6 is the

converse of Part (A) since Part (B) implies that the structures given in Part (A) are

precisely all finite dimensional basic Hopf algebras of finite representation type.
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