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Abstract. In this note we verify certain statement about the operator QK constructed
by Donaldson in [3] by using the full asymptotic expansion of Bergman kernel obtained
in [2] and [4].

In order to find explicit numerical approximation of Kähler-Einstein metric of projec-
tive manifolds, Donaldson introduced in [3] various operators with good properties to
approximate classical operators. See the discussions in Section 4.2 of [3] for more details
related to our discussion. In this note we verify certain statement of Donaldson about
the operator QK in Section 4.2 by using the full asymptotic expansion of Bergman kernel
derived in [2, Theorem 4.18] and [4, §3.4]. Such statement is needed for the convergence
of the approximation procedure.

Let (X, ω, J) be a compact Kähler manifold of dimC X = n, and let (L, hL) be a holo-
morphic Hermitian line bundle on X. Let ∇L be the holomorphic Hermitian connection
on (L, hL) with curvature RL. We assume that

√
−1

2π
RL = ω.(1)

Let gTX(·, ·) := ω(·, J ·) be the Riemannian metric on TX induced by ω, J . Let dvX

be the Riemannian volume form of (TX, gTX), then dvX = ωn/n!. Let dν be any volume
form on X. Let η be the positive function on X defined by

dvX = η dν.(2)

The L2–scalar product 〈 〉ν on C
∞(X, Lp), the space of smooth sections of Lp, is given

by

〈σ1, σ2〉ν :=

∫

X

〈σ1(x), σ2(x)〉Lp dν(x) .(3)

Let Pν,p(x, x′) (x, x′ ∈ X) be the smooth kernel of the orthogonal projection from
(C ∞(X, Lp), 〈 〉ν) onto H0(X, Lp), the space of the holomorphic sections of Lp on X,
with respect to dν(x′). Note that Pν,p(x, x′) ∈ Lp

x ⊗ Lp∗
x′ . Following [3, §4], set

Kp(x, x′) := |Pν,p(x, x′)|2
hLp

x ⊗hLp∗

x′
, Rp := (dim H0(X, Lp))/Vol(X, ν),(4)

here Vol(X, ν) :=
∫

X
dν. Set Vol(X, dvX) :=

∫

X
dvX .

Let QKp
be the integral operator associated to Kp which is defined for f ∈ C ∞(X),

(5) QKp
(f)(x) :=

1

Rp

∫

X

Kp(x, y)f(y)dν(y).
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Let ∆ be the (positive) Laplace operator on (X, gTX) acting on the functions on X.
We denote by | |L2 the L2-norm on the function on X with respect to dvX .

Theorem 1. There exists a constant C > 0 such that for any f ∈ C ∞(X), p ∈ N,
∣

∣

∣

∣

(

QKp
− Vol(X, ν)

Vol(X, dvX)
η exp

(

− ∆

4πp

))

f

∣

∣

∣

∣

L2

≤ C

p
|f |L2 ,

∣

∣

∣

∣

(∆

p
QKp

− Vol(X, ν)

Vol(X, dvX)

∆

p
η exp

(

− ∆

4πp

))

f

∣

∣

∣

∣

L2

≤ C

p
|f |L2 .

(6)

Moreover, (6) is uniform in that there is an integer s such that if all data hL, dν run

over a set which are bounded in C
s and that gTX, dvX are bounded from below, then the

constant C is independent of hL, dν.

Proof. We explain at first the full asymptotic expansion of Pν,p(x, x′) from [2, Theorem
4.18′] and [4, §3.4]. For more details on our approach we also refer the readers to the
recent book [5].

Let E = C be the trivial holomorphic line bundle on X. Let hE the metric on E
defined by |1|2hE = 1, here 1 is the canonical unity element of E. We identify canonically
Lp to Lp ⊗ E by Section 1.

As in [4, §3.4], let hE
ω be the metric on E defined by |1|2hE

ω
= η−1, here 1 is the canonical

unity element of E. Let 〈 〉ω be the Hermitian product on C ∞(X, Lp⊗E) = C ∞(X, Lp)
induced by hL, hE

ω , dvX as in (3). Then by (2),

(7) (C ∞(X, Lp ⊗ E), 〈 〉ω) = (C ∞(X, Lp), 〈 〉ν).
Observe that H0(X, Lp ⊗E) does not depend on gTX, hL or hE. If Pω,p(x, x′), (x, x′ ∈

X) denotes the smooth kernel of the orthogonal projection Pω,p from (C ∞(X, Lp ⊗
E), 〈 ·, ·〉ω) onto H0(X, Lp ⊗ E) = H0(X, Lp) with respect to dvX(x), from (2), as in
[4, (3.38)], we have

(8) Pν,p(x, x′) = η(x′) Pω,p(x, x′).

For f ∈ C
∞(X), set

Kω,p(x, x′) = |Pω,p(x, x′)|2(hLp⊗hE
ω )x⊗(hLp∗⊗hE∗

ω )x′
,

(Kω,pf)(x) =

∫

X

Kω,p(x, y)f(y)dvX(y).
(9)

By the definition of the metric hE , hE
ω , if we denote by 1∗ the dual of the section 1 of

E, we know

(10) 1 = |1 ⊗ 1∗|2hE⊗hE∗(x, x′) = |1 ⊗ 1∗|2hE
ω⊗hE∗

ω
(x, x′)η(x)η−1(x′).

Recall that we identified (Lp, hLp

) to (Lp ⊗ E, hLp ⊗ hE) by Section 1. Thus from (4),
(8) and (10), we get

(11) Kp(x, x′) = |Pν,p(x, x′)|2(hLp⊗hE)x⊗(hLp∗⊗hE∗)x′
= η(x) η(x′) Kω,p(x, x′),

and from (2), (5) and (11),

(12) QKp
(f)(x) =

1

Rp

∫

X

Kω,p(x, y)η(x)f(y)dvX(y).
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Now for the kernel Pω,p(x, x′), we can apply the full asymptotic expansion [2, Theorem

4.18′]. In fact let ∂
Lp⊗E,∗ω

be the formal adjoint of the Dolbeault operator ∂
Lp⊗E

on the
Dolbeault complex Ω0,•(X, Lp⊗E) with the scalar product induced by gTX, hL, hE

ω , dvX

as in (3), and set

(13) Dp =
√

2(∂
Lp⊗E

+ ∂
Lp⊗E,∗ω

).

Then H0(X, Lp ⊗ E) = Ker Dp for p large enough, and Dp is a Dirac operator, as
gTX(·, ·) = ω(·, J ·) is a Kähler metric on TX.

Let ∇E be the holomorphic Hermitian connection on (E, hE
ω ). Let ∇TX be the Levi-

Civita connection on (TX, gTX). Let RE, RTX be the corresponding curvatures.
Let aX be the injectivity radius of (X, gTX). We fix ε ∈]0, aX/4[. We denote by

BX(x, ε) and BTxX(0, ε) the open balls in X and TxX with center x and radius ε. We
identify BTxX(0, ε) with BX(x, ε) by using the exponential map of (X, gTX).

We fix x0 ∈ X. For Z ∈ BTx0
X(0, ε) we identify (LZ , hL

Z), (EZ , hE
Z) and (Lp ⊗ E)Z

to (Lx0
, hL

x0
), (Ex0

, hE
x0

) and (Lp ⊗ E)x0
by parallel transport with respect to the con-

nections ∇L, ∇E and ∇Lp⊗E along the curve γZ : [0, 1] 3 u → expX
x0

(uZ). Then
under our identification, Pω,p(Z, Z ′) is a function on Z, Z ′ ∈ Tx0

X, |Z|, |Z ′| ≤ ε, we
denote it by Pω,p,x0

(Z, Z ′). Let π : TX ×X TX → X be the natural projection from
the fiberwise product of TX on X. Then we can view Pω,p,x0

(Z, Z ′) as a smooth func-
tion on TX ×X TX (which is defined for |Z|, |Z ′| ≤ ε) by identifying a section S ∈
C ∞(TX×X TX, π∗ End(E)) with the family (Sx)x∈X , where Sx = S|π−1(x), End(E) = C.

We choose {wi}n
i=1 an orthonormal basis of T

(1,0)
x0

X, then e2j−1 = 1√
2
(wj + wj) and

e2j =
√
−1√
2

(wj − wj) , j = 1, . . . , n forms an orthonormal basis of Tx0
X. We use the

coordinates on Tx0
X ' R2n where the identification is given by

(14) (Z1, · · · , Z2n) ∈ R
2n −→

∑

i

Ziei ∈ Tx0
X.

In what follows we also introduce the complex coordinates z = (z1, · · · , zn) on C
n '

R2n. By [2, (4.114)] (cf. [4, (1.91)]), set

P N(Z, Z ′) = exp
(

− π

2

∑

i

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

)

.(15)

Then P N is the classical Bergman kernel on Cn (cf. [4, Remark 1.14]) and

(16) |P N(Z, Z ′)|2 = e−π|Z−Z′|2.

By [2, Proposition 4.1], for any l, m ∈ N, ε > 0, there exists Cl,m,ε > 0 such that for
p ≥ 1, x, x′ ∈ X,

|Pω,p(x, x′)|C m(X×X) ≤ Cl,m,ε p−l if d(x, x′) ≥ ε.(17)

Here the C m-norm is induced by ∇L, ∇E , ∇TX and hL, hE , gTX.
By [2, Theorem 4.18′], there exist Jr(Z, Z ′) polynomials in Z, Z ′, such that for any

k, m, m′ ∈ N, there exist N ∈ N, C > 0, C0 > 0 such that for α, α′ ∈ Nn, |α| + |α′| ≤ m,
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Z, Z ′ ∈ Tx0
X, |Z|, |Z ′| ≤ ε, x0 ∈ X, p ≥ 1,

(18)

∣

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′

(

1

pn
Pω,p,x0

(Z, Z ′) −
k
∑

r=0

(JrP
N)(

√
pZ,

√
pZ ′)p−r/2

)
∣

∣

∣

∣

∣

C m′ (X)

≤ Cp−(k+1−m)/2(1 + |√pZ| + |√pZ ′|)N exp(−C0
√

p|Z − Z ′|) + O(p−∞).

Here C m′

(X) is the C m′

norm for the parameter x0 ∈ X. The term O(p−∞) means
that for any l, l1 ∈ N, there exists Cl,l1 > 0 such that its C l1-norm is dominated by
Cl,l1p

−l. (In fact, by [2, Theorems 4.6 and 4.17, (4.117)] (cf. [4, Theorem 1.18, (1.31)]),
the polynomials Jr(Z, Z ′) have the same parity as r and deg Jr(Z, Z ′) ≤ 3r, whose
coefficients are polynomials in RTX , RE and their derivatives of order 6 r − 1).

Now we claim that in (18),

(19) J0 = 1, J1(Z, Z ′) = 0.

In fact, let dvTx0
X be the Riemannian volume form on (Tx0

X, gTx0
X), and κ be the

function defined by

(20) dvX(Z) = κ(x0, Z)dvTx0
X(Z).

Then (also cf. [4, (1.31)])

(21) κ(x0, Z) = 1 +
1

6

〈

RTX
x0

(Z, ei)Z, ei

〉

x0

+ O(|Z|3).

As we only work on C ∞(X, Lp ⊗E), by [2, (4.115)], we get the first equation in (19).
Recall that in the normal coordinate, after the rescaling Z → Z/t with t = 1√

p
, we get

an operator Lt from the restriction of D2
p on C ∞(X, Lp ⊗ E) which has the following

formal expansion (cf. [2, (1.104)], [4, Theorem 1.4]),

(22) Lt = L +

∞
∑

r=1

Qrt
r.

Now, from [2, Theorem 5.1] (or [4, (1.87), (1.97)]),

L =

n
∑

j=1

(−2 ∂
∂zi

+ πzi)(2
∂

∂zi
+ πzi), Q1 = 0.(23)

(In fact, P N(Z, Z ′) is the smooth kernel of the orthogonal projection from L2(R) onto
Ker(L )). Thus from [2, (4.107)] (cf. [4, (1.111)]), (21) and (23) we get the second
equation of (19).

Note that |Pω,p,x0
(Z, Z ′)|2 = Pω,p,x0

(Z, Z ′)Pω,p,x0
(Z, Z ′), thus from (9), (18) and (19),

there exist J ′
r(Z, Z ′) polynomials in Z, Z ′ such that

(24)

∣

∣

∣

∣

∣

1

p2n+1
∆Z

(

Kω,p,x0
(Z, Z ′) −

(

1 +

k
∑

r=2

p−r/2J ′
r(
√

pZ,
√

pZ ′)
)

e−πp|Z−Z′|2
)

∣

∣

∣

∣

∣

≤ Cp−(k+1)/2(1 + |√pZ| + |√pZ ′|)N exp(−C0
√

p|Z − Z ′|) + O(p−∞).

For a function f ∈ C ∞(X), we denote it as f(x0, Z) a family (with parameter x0) of
function on Z in the normal coordinate near x0. Now, for any polynomial Qx0

(Z ′), we
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define the operator

(Qpf)(x0) = pn

∫

|Z′|≤ε

Qx0
(
√

pZ ′)e−πp|Z′|2f(x0, Z
′)dvX(x0, Z

′).(25)

Then we observe that there exists C1 > 0 such that for any p ∈ N, f ∈ C ∞(X), we have

|Qpf |L2 ≤ C1|f |L2.(26)

In fact,

(27) |Qpf |2L2 ≤
∫

X

dvX(x0)
{

pn
(

∫

|Z′|≤ε

|Qx0
(
√

pZ ′)|e−πp|Z′|2dvX(x0, Z
′)
)

× pn
(

∫

|Z′|≤ε

|Qx0
(
√

pZ ′)|e−πp|Z′|2|f(x0, Z
′)|2dvX(x0, Z

′)
)}

≤ C ′
∫

X

dvX(x0)p
n

∫

|Z′|≤ε

|Qx0
(
√

pZ ′)|e−πp|Z′|2|f(x0, Z
′)|2dvX(x0, Z

′)

≤ C1|f |2L2.

Observe that in the normal coordinate, at Z = 0, ∆Z = −∑2n
j=1

∂2

∂Z2

j

. Thus

(28) (∆Ze−πp|Z−Z′|2)|Z=0 = 4πp(n − πp|Z ′|2)e−πp|Z′|2.

Thus from (16), (18), (19), (24) and (26), we get

∣

∣

∣

∣

p−nKω,pf − pn

∫

|Z′|≤ε

e−πp|Z′|2f(x0, Z
′)dvX(x0, Z

′)

∣

∣

∣

∣

L2

≤ C

p
|f |L2 ,

∣

∣

∣

∣

p−n−1∆Kω,pf − 4πpn

∫

|Z′|≤ε

(n − πp|Z ′|2)e−πp|Z′|2f(x0, Z
′)dvX(x0, Z

′)

∣

∣

∣

∣

L2

≤ C

p
|f |L2 .

(29)

Set

Kη,ω,p(x, y) = 〈dη(x), dxKω,p(x, y)〉gT∗X ,

(Kη,ω,pf)(x) =

∫

X

Kη,ω,p(x, y)f(y)dvX(y).
(30)

Then from (18), (19) and (26), we get

∣

∣

∣

∣

∣

p−n−1Kη,ω,pf − 2πpn

∫

|Z′|≤ε

2n
∑

i=1

(
∂

∂Zi
η)(x0, 0)Z ′

ie
−πp|Z′|2f(x0, Z

′)dvX(x0, Z
′)

∣

∣

∣

∣

∣

L2

≤ C

p
|f |L2 .

(31)

Let e−u∆(x, x′) be the smooth kernel of the heat operator e−u∆ with respect to dvX(x′).
Let d(x, y) be the Riemannian distance from x to y on (X, gTX). By the heat kernel
expansion in [1, Theorems 2.23, 2.26], there exist Φi(x, y) smooth functions on X × X
such that when u → 0, we have the following asymptotic expansion

∣

∣

∣

∣

∣

∂l

∂ul

(

e−u∆(x, y) − (4πu)−n

k
∑

i=0

uiΦi(x, y)e−
1

4u
d(x,y)2

)

∣

∣

∣

∣

∣

C m(X×X)

= O(uk−n−l−m
2

+1),(32)
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and

Φ0(x, y) = 1.(33)

If we still use the normal coordinate, then by (32), there exist φi,x0
(Z ′) := Φi(0, Z

′)
such that uniformly for x0 ∈ X, Z ′ ∈ Tx0

X, |Z ′| ≤ ε, we have the following asymptotic
expansion when u → 0,

∣

∣

∣

∣

∣

∂l

∂ul

(

e−u∆(0, Z ′) − (4πu)−n
(

1 +

k
∑

i=1

uiφi,x0
(Z ′)

)

e−
1

4u
|Z′|2
)

∣

∣

∣

∣

∣

= O(uk−n−l+1),(34)

and

(35)
∣

∣

∣
〈dη(x0), dx0

e−u∆〉gT∗X (0, Z ′)

− (4πu)−n
2n
∑

i=1

(
∂

∂Zi
η)(x0, 0)

Z ′
i

2u

(

1 +
k
∑

i=1

uiφi,x0
(Z ′)

))

e−
1

4u
|Z′|2

− (4πu)−n
k
∑

i=1

ui〈dη(x0), (dx0
Φi)(0, Z

′)〉e− 1

4u
|Z′|2
∣

∣

∣
= O(uk−n+ 1

2 ).

Observe that

1

p
∆ exp

(

− ∆

4πp

)

= −1

p
( ∂

∂u
e−u∆)|u= 1

4πp
.(36)

Now from (26), (29)–(36), we get
∣

∣

∣

∣

(

p−nKω,p − exp
(

− ∆

4πp

))

f

∣

∣

∣

∣

L2

≤ C

p
|f |L2 ,

∣

∣

∣

∣

1

p

(

p−n∆Kω,p − ∆ exp
(

− ∆

4πp

))

f

∣

∣

∣

∣

L2

≤ C

p
|f |L2 .

(37)

and
∣

∣

∣

∣

1

p

(

p−nKη,ω,p − 〈dη, d exp(− ∆

4πp
)〉
)

f

∣

∣

∣

∣

L2

≤ C

p
|f |L2 .(38)

Note that

(39) (∆ηKω,p)(x, y) = (∆η)(x)Kω,p(x, y) + η(x)∆xKω,p(x, y)

− 2〈dη(x), dxKω,p(x, x′)〉gT∗X ,

and Rp = Vol(X,dvX )
Vol(X,ν)

pn + O(pn−1). From (12), (37)-(39), we get (6).

To get the last part of Theorem 1, as we noticed in [2, §4.5], the constants in (18)
will be uniformly bounded under our condition, thus we can take C in (6), (37)and (38)
independent of hL, dν. �
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