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Abstract. We study Mumford-Tate groups of families of Calabi-Yau manifolds in this notes, for
example, we have interest in the relations between the geometry of families of Calabi-Yau manifolds
and their Mumford-Tate groups.

At first, we show some relations between the global monodromy groups and Mumford-Tate
groups. We give an explicit proof that the identity component of monodromy group of a family of
Calabi-Yau manifolds belongs to the Mumford-Tate group of the characteristic VHS of the family.
Then, we show that a family of Calabi-Yau manifolds with big algebraic monodromy is rigid in
meaning of Shafarevich’s problem.

In the rest of this notes, analogue to Abelian varieties of CM-type, we introduce CM-type po-
larized rational Hodge structures and then Calabi-Yau manifolds of CM-type. Following Mumford
and Shimura’s work, we obtained that the subset of CM points is Zariski dense in the Shimura
variety which is a quotient of the classifying space of the given polarized rational Hodge structures.
Finally, we introduce the analogue André-Oort problems and present some questions which we are
working on.
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Notations. For any rational vector space V, we denote VR = V (R) = V ⊗Q R and

VC = V (C) = V ⊗Q C = VR ⊗R C.

Respectively, we define similar notations for any real vector space. We also denote VQ (resp.

VR, VC) to be a Q- (resp. R-, C-) vector space.

For any rational vector space V, using notion GL(V ) and SL(V ) to denote rational algebraic

groups of automorphisms. The set of Q-points of GL(V ) (resp. SL(V )) is denoted by GL(VQ)

(resp. SL(VQ)), also we denote GL(VR) and GL(VC) (resp. SL(VR) and SL(VC)) for the set of

R-points and the set of C-points of GL(V ) (resp. SL(V )). In that way, similar signs are denoted

for real vector spaces and for complex vector spaces.

In this notes, we only consider vector spaces of finite rank and we work over base fields of

characteristic zero, and all varieties in this notes are assumed to be defined over C.

1. Hodge Structures on Finite Dimension Vector Spaces

The scalar group and Hodge structures. Let Gm be the multiplicative group. The scalar
group

S = RC/RGm :=
∏

σ∈Gal(C/R)

Gσ
m

is invariant under the complex conjugate, thus S is a real algebraic group. Gm(C) = C∗ is a

complex Lie group and so S(R) = C∗. Actually, S = Spec R[X,Y,Z]
((X2+Y 2)Z−1)

is a torus over R.

Proposition 1.1 (cf. [7]). Here are useful properties of the scalar group :

1. There is an isomorphism ζ : S(C) = (C ⊗R C)∗
∼−−→ C∗ × C∗ given by ζ(a ⊗ b) = (ab, ab).

Actually, ζ is determined by ζ : S(R) = C∗ ↪→ C∗ × C∗ = S(C), z 7→ (z, z). Therefore, we

always regard SC = Gm ×Gm under fixing the morphism ζ : SC
∼=−−→ Gm ×Gm.

2. This is a tautological inclusion t : Gm −−→ S determined by the natural homomorphism

tR : R∗ = Gm(R)
↪→−−→ S(R) = C∗,

and tR gives rise to the diagonal map tC : C∗ = Gm(C) → S(C) = C∗ × C∗.
3. There is a canonical norm homomorphism N : S → Gm defined over C, which on complex

valued points is given by NC ◦ ζ−1(a, b) = ab, and on real valued points it is given by NR : C∗ →
R∗ , z 7→ zz. Let U1 = Ker(S N−−→ Gm), then U1(R) = {z ∈ C∗ | zz = 1}.

4. Let G be a real algebraic group. For any homomorphism h : S → G of real algebraic groups,

there exists an associated homomorphism µh : Gm → GC, which is determined by z 7→
hC(z, 1), ∀z ∈ Gm(C) = C∗. Moreover,

hC(z1, z2) = µh(z1)µh(z2)∀(z1, z2) ∈ C∗ × C∗,
and so h(z) = µh(z) · µh(z). Let wh = h ◦ t : Gm → G be a homomorphism. Then wh is

defined over R, we called it weight homomorphism. We have wh(r) = h(r)∀r ∈ Gm(R), and

h(
√−1) ≡ µh(−1) mod wh(Gm). C := h(

√−1) ∈ h(U1(R)) is called Weil-operator.
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Definition 1.2. A real (resp. rational) Hodge structure is a finite dimensional R-vector space VR
(resp. VQ) together with a decomposition

VC =
⊕

p,q∈Z
V p,q

such that Vp,q are complex subspaces satisfying V p,q = V q,p.

Let Y be a smooth compact Kähler manifold, then the Hodge decomposition

Hr(Y,C) '
⊕

p+q=r

Hq(Y, Ωp
Y )

gives rise to a rational Hodge structure on Hr(Y,Q). Actually, the Hodge decomposition of coho-
mology groups of any compact Kähler manifold is essentially an SL2-representation.

In [7], the intrinsic meaning of Hodge structures is exposed, that is, a Hodge structure on V is
equivalent to a representation of the scalar group S :

Definition 1.3 (cf. [7]). a) A real Hodge structure is a pair (V, h) consisting of a finite dimen-

sional R-vector space V and a homomorphism of real algebraic groups h : S→ GL(V )R.

b) A rational Hodge structure is a Q-vector space V with a representation h : S → GL(V )R
such that the weight homomorphism wh is defined over Q (and so wh : Gm(Q) → GL(VQ) is a

character of GL(VQ)).1

Remark. For a homomorphism of Q-algebraic groups h : S→ G, wh is a homomorphism defined

over R, of Q-algebraic groups. Thus, it is a question whether wh is defined over Q.

Definition 1.4. We say that a real (rational) Hodge structure (V, h) is of weight n if the weight

homomorphism wh satisfies the following condition :

wh(r)v = r−nv ∀ r ∈ R∗,∀v ∈ VR.

Remark. The definition is equivalent to say there is a decomposition VC = ⊕p+q=nV
p,q. If V p,q = 0

in the decomposition when pq < 0, we say V is pure of weight n.

Examples 1.5. There are typical examples of Hodge structures:

a) Let (V1, h1) and (V2, h2) be two rational Hodge structures. The tensor product Hodge structure

is (V1 ⊗ V2, h1 ⊗ h2). The dual Hodge structure (V ∨
1 , h∨1 ) is defined by V ∨

1 = Hom(V1,Q),

1We show the equivalence of two definitions of the Hodge structure : Because h is a homomorphism of real
algebraic groups, the following two sets

{v ∈ VC | h(ζ−1(a, b))v = apbqv, ∀ (a, b) ∈ C∗ × C∗}
{v ∈ VC | h(z)v = zpzqv, ∀ z ∈ C∗ = S(R∗)}

coincide. Thus, using the following rule :

v ∈ V p,q
C ⇐⇒ h(z)v = zp · zqv, ∀z ∈ C∗ = S(R∗),

we pass from the one definition to the another : there is a weight gradation on VA (A = Q or R), i.e.,

VA =
⊕

Vn , Vn ⊗ C =
⊕

p+q=n

V p,q.

Here Vn = {v ∈ VA | wh(r)v = r−nv ∀r ∈ R∗} is the Hodge structure of weight n.
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i.e., (h∨1 (s)f)(v) := f(h1(s
−1)v), s ∈ S, f ∈ V ∨

1 , v ∈ V1. Similarly, Hom(V1, V2) and V ⊗n
1 ⊗

(V ∨
1 )⊗m ∀(n,m) ∈ Z2 are rational Hodge structures.

b) Hodge structures of Tate-Type. Let V = Q(1) = 2π
√−1Q. Define h : S→ GL(V )R by

h(z)v = (zz)−1v, ∀z ∈ C∗ = S(R) and ∀v ∈ VR.

Then, V has a rational Hodge structure of weight −2 with V = V −1,−1. Similarly, let Q(m) =

(2π
√−1)mQ. Then, Q(m) is a rational Hodge structure of weight −2m as the homomorphism

h : S→ GL(Q(m))R is given by

h(z)v = (zz)−mv ∀z ∈ C∗ = S(R),∀v ∈ R(m) := Q(m)⊗ R.

Therefore, SymmQ(1) = Q(m).

c) Let V be a rational vector space. Assume VR has a complex structure, i.e., there is a J ∈
End(VR) with J2 = IdVR . Then,

√−1 7→ J, 1 7→ IdR gives a homomorphism

h : C→ End(VR)

of R-algebras. The restriction h|C∗ : C∗ → GL(VR) gives rise to a homomorphism of algebraic

groups h : S → GL(V )R. The homomorphism h is defined over Q, and it determines a pure

rational Hodge structure on V of weight 1.

Classifying spaces of polarized Hodge structures. In this paper, we only consider pure
Hodge structures with some weight.

Let (V, h) be a rational Hodge structure. The Weil operator is

C = h(
√−1) ∈ h(U1(R)) ⊂ Hdg(R) ⊂ Aut(VR),

and so C(v) = ip−qv for all v ∈ V p,q, C2 acts on V as (−1)weght(V )IdV .

Definition 1.6. Let A be a ring equal to one of Q and R.

1. A morphism between A-Hodge structures (V, h) and (V ′, h′) is a linear transformation of A-

vector spaces which is S-equivariant after tensoring with R, i.e., there exists a g ∈ HomA(V, V ′)
with

gR(h(s)v) = h′(s)(gR(v)) for ∀s ∈ S(R) and ∀v ∈ VR.

2. A morphism of pure Hodge structures of type (p, q) is a morphism φ : H1 → H2 of A-Hodge

structures such that φ(Hr,s
1 ) ⊂ Hr+p,s+q

2 . Moreover, if φ is of type (l, l) we say the morphism φ

is of weight 2l.

3. A Hodge structure is called irreducible if its Hodge substructures are only 0 and itself.

Lemma 1.7 ([7]). Let A be a ring equal to one of Q and R.

a) Two A-Hodge structures (V, h), (V, h′) are equivalent if and only if ∃g ∈ GLA(V ) satisfies

gR(h(s)v) = h′(s)(gR(v)) for ∀s ∈ S(R) and v ∈ VR.

b) A morphism of pure Hodge structures of type (p, q) is a strict morphism, that is,

φ(Hr,s
1 ) = φ(H1) ∩Hr+p,s+q

2 .

For a weight-2l morphism,it should be φ(F p
1 ) = φ(H1) ∩ F p+l

2 .
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c) The category of pure Hodge structures is abelian, i.e., it is an additive category including the

kernel, the cokernel and the image of any morphisms between two pure Hodge structures.

Definition 1.8. Let V (resp. VR) be a pure rational (resp. real) Hodge structure of weight n and

let C be its Weil operator. Let ψ (resp. ψR) be a bilinear on V. If the bilinear form VR × VR → R
which is defined by

(v, w) 7−→ ψR(Cv, w)

is symmetric and positive-definite, then ψ (resp. ψ) is called a polarization of the rational (real)

Hodge structure V (resp. VR), and so the corresponding triple (V, h, ψ) (resp. (VR, h, ψR)) is called

a polarized rational (resp. real) Hodge structure of weight n. Moreover, if the triple (V, h, ψ) has

a Z-lattice VZ such that the restriction of ψ to VZ× VZ takes values in Z, then the tripe (VZ, h, ψ)

is a polarized Z-Hodge structure of weight n.

In this paper, for convenience we use one sign Q to denote ψ, ψR and ψC. We then have:

Lemma 1.9. Let (V, h) be a pure Hodge structure of weight n and ψ a biliner form on V. Then

(V, h, ψ) is polarized if and only if Q = ψC is (−1)n-symmetric, and satisfies the Hodge-Riemann

bilinear relations:

Q(V p,q, V r,s) = 0 unless r = n− p, s = n− q; (
√−1)p−qQ(x, x) > 0 ∀x ∈ V p,q.

Let V be a pure Hodge structure of weight n ≥ 0 and denote F p = ⊕r≥pV
r,n−r. Then we have

a Hodge filtration F • on VC, i.e., there is a decreasing filtration

VC = F 0 ⊃ F 1 ⊃ · · · ⊃ F p ⊃ F p+1 · · · ⊃ F n ⊃ 0

on VC such that

(1.9.1) VC = F p
⊕

F n−p+1.

Conversely, any decreasing filtration F • on VC satisfying 1.9.1 recovers a Hodge decomposition of
VC by setting V p,q = F p∩F q. Therefore, a Hodge filtration F • determines a pure Hodge structure
{V p,q} of weight n. Furthermore, we have :

Corollary 1.10. Assume that the Hodge structure V is polarized and is pure of weight n ≥ 0. Let

C be Weil operator. Then, the Hodge-Riemannian bilinear relations in (1.9) are equivalent to the

following conditions:

Q(F p, F n−p+1) = 0∀p with 0 ≤ p ≤ n; Q(Cv, v) > 0 ∀v ∈ VC.

Now, fix a finite dimension complex vector space VC = VR ⊗ C with a real structure and fix
Hodge numbers {hp,q}(p,q)∈Z2 such that

i. hp,q = hq,p ≥ 0, all hp,q are integers, and dimC VC =
∑

hp,q;
ii. hp,q = 0 if p + q 6= n, or if p + q = n but pq < 0.

Denote D̆ to be the set of all decreasing filtrations {F •} on VC with

hp := dimC F p =
∑
i≥p

hi,n−i.
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Example 1.11. Let z1, z2, · · · .zm be coordinates on VC and F •
0 a point in D̆ with F p

0 = {z ∈ VC |
z1 = · · · = zhp = 0}. Then, SL(VC) acts transitively on D̆ and the stationary subgroup P of {F •

0 }
consists of unimodular matrices satisfying the following conditions:

i. along main diagonal, there are square blocks of dimension h0 − h1, · · · , hn−1 − hn, hn;

ii. below these blocks there are zeros,and above them the elements are arbitrary.

Therefore, P contains a Borel subgroup in SL(VC) and then it is a parabolic subgroup. Thus,

D̆ ⊂ ∏k
p=0 Gr(hp, VC) and D̆ ' SL(VC)/P is a a complex projective manifold (cf.[4]).

Let D be a subset of D̆ consisting of all Hodge filtrations on VC with the fixed Hodge numbers
{hp,q}(p,q)∈Z2 . Then D is a Hausdroff open subset of D̆, it is the classifying space of pure Hodge
structure of weight n with the fixed Hodge numbers {hp,q}(p,q)∈Z2 .

Assume that VC has a rational structure with VC = VQ ⊗ C and there is a non-degenerate Q-

bilinear form on VQ such that it is (−1)n-symmetric when it is extend to VC. Let D be the set of
all equivalent classes defined over Q in D polarized by Q. We call D period domain. D is actually
the classifying space of all Q-Hodge structures Hodge structure pure of weight n polarized by Q
with the fixed Hodge numbers {hp,q}(p,q)∈Z2 .

Corollary 1.12. Let D̆ be the subset of Ď consisting of all points satisfying

Q(F p, F n−p+1) = 0∀ 0 ≤ p ≤ n.

Then, D̆ is a closed subvariety of D̆, hence it is a compact complex manifold. Moreover, D̆ is the

compact dual of D, and D is a Hausdroff open subset of D̆.

Let G be an Q-algebraic subgroup of GL(VQ) given by

G(R) = {γ ∈ GL(VR) | Q(γ(v), γ(w)) = Q(v, w) ∀ v, w ∈ VR}
for R be any ring between Q and C. Clearly, G is a semisimple Q-algebraic group. If V has a Z
structure such that Q is defined over Z then we have a lattice G(Z).

Lemma 1.13. G(C) acts transitively on D̆, so that D̆ is a complex homogenous space. Moreover,

G(R) is a semi-simple real Lie group and it acts on D transitively, thus D is also a complex

homogenous space.

Let h ∈ D̆ be a filtration. Denote

B := Gh(C) = {g ∈ G(C) | gF p
h = F p

h ∀ 0 ≤ p ≤ n}.
B is a parabolic subgroup of the complex Lie group G(C) and is the isotropy group of h. Therefore,
the Baily-Borel theorem says that G(C)/B has a structure of complex projective variety and the

identification G(C)/B
'−−→ D̆ is a complex analytic isomorphism, and so it is algebraic by the

GAGA principal. Similarly, G(R) acts on D transitively and the isotropy group of h in D is
K := Gh(R) = G(R) ∩ B. K is then a compact real subgroup of G(R), and D = G(C)/B is

a Hausdroff open subset of D̆, the embedding D ⊂ D̆ corresponds to the inclusion G(R)/K =

G(R)/(G(R) ∩B) ⊂ G(C)/B. But, in general D̆ and D are not symmetric spaces.

Example 1.14 (The period domain of rank 2 pure Hodge structures of weight 1). Let H =

H0,1 ⊕ H1,0 with h0,1 = h1,0 = 1. Then G(C) = SL(2,C), G(R) = SL(2,R), D̆ = P1 and

D = U ⊂ P1 is the upper half-plane.
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2. Mumford-Tate Groups

Mumford-Tate groups of Hodge structures.

Definition 2.1. Let (V, h) be a pure rational Hodge structure of weigh n.

1. The Mumford-Tate group MT(V, h) of (V, h) is the smallest Q-algebraic subgroup G of GL(V )

such that h factors through GR, i.e.,

h(S(R)) ⊂ G(R).

2. The Hodge-Tate group (or special Mumford-Tate group) Hdg(V, h) of (V, h) is the smallest

Q-algebraic subgroup G of GL(V ) defined over Q such that

h(U1(R)) ⊂ G(R).

Remark. MT(V, h) is the Q-algebraic group generated by {σ(h(S(R)))}σ∈Aut(R/Q), as well as

Hdg(V, h) is the Q-algebraic group generated by {σ(h(U1(R)))}σ∈Aut(R/Q).

It is obvious that h(U1(R)) is a connected compact subgroup of R∗, and so Hdg(V, h) is a
irreducible algebraic group. Let detR : GL(V )R → Gm be the determinant homomorphism. Then

det
R

(h(U1(R))) ≡ 1,

so that Hdg(V, h) is a Q-algebraic subgroup of SL(V ). The natural multiplication map

mult : Hdg(V, h)×Gm −−→ MT(V, h), (u,w) 7−→ u · w
is a surjective homomorphism because the image of R-points contains h(C∗). Thus there is a short
sequence of Q-algebraic groups :

1 −−→ Ker −−→ Hdg(V, h)×Gm
mult−−−→ MT(V, h) −−→ 1.

Since Hdg(V, h) ⊂ SL(V ), the group Ker is finite and so mult is an isogeny of algebraic groups.
Altogether, we have :

Lemma 2.2. There are known properties of Mumford-Tate group:

a) MT(V, h) and Hdg(V, h) are both connected algebraic group defined over Q, and MT(V, h) is

reductive if and only if Hdg(V, h) is reductive. Moreover, Hdg(V, h) is a normal subgroup of

MT(V, h) such that

dimQMT(V, h) = dimQHdg(V, h) + 1.

Assume that the weight of (V, h) is not zero. Then MT(V, h) contains the homothety group

Gm, and so

MT(V, h) = GmHdg(V, h),

dimQMT(V, h) ∩ SL(V ) = dimQHdg(V, h).

Therefore, Hdg(V, h) is the identity component of MT(V, h) ∩ SL(V ). In particular, the index

[MT(V, h)(C) ∩ SL(VC) : Hdg(V, h)(C)] < ∞.
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b) Let W be a Q-subspace of V. W is Hdg(V, h)-invariant if and if WR is U1(R)-invariant. In

particular,

V Hdg(V,h) = V
U1(R)
R ∩ V.

Let σ be an endomorphism of V. Then σ commutes with Hdg(V, h) if and only if σ commutes

with h(U1(R)), and then σ preserves the Hodge decomposition.

Altogether, we have a Q-algebra

EndHdg(V,h)(V ) = {γ ∈ GLQ(V ) | γ commutes with Hdg(V, h)},
and for any V p,q

C 6= 0 there is a nontrivial homomorphism

EndHdg(V,h)(V )⊗ C −−→ EndCV
p,q
C .

Remark. Let V be a rational Hodge structure of weight n, ψ : V × V → Q a bilinear form. It is

obvious any R-bilinear form ψR : VR × VR → R is U1(R)-invariant (and so ψC is U1(R)-invariant)

if and only if

ψ′ = (2πi)−nψR : VR × VR → R(−n)

is S-invariant, and so ψ is Hdg(V, h)-invariant and ψ′ = (2πi)−nψR is MT(V, h)-invariant.

Proposition 2.3 (cf. [10]). Let (V, h,Q) be a polarized pure rational Hodge structure of weigh n.

Then the Hodge-Tate group Hdg(V, h) is reductive, so is the Mumford-Tate group MT(V, h).

Proof. Let A(V ) be Aut0(V, Q), C = h(
√−1) be the Weil operator of h. Since Q is (−1)n-

symmetry, then

A(V ) = Sp(V, Q) or A(V ) = SO(V, Q),

and so Hdg(V, h) ⊂ A(V ). Let σ ∈ Inn(Hdg(V, h)R) defined by σ(g) = C−1gC for any g ∈
Hdg(V, h)R. σ is an involution of Hdg(V, h)R as C2 = (−1)nIdVR . Let Hσ be an algebraic group

defined by

Hσ(R) = {g ∈ Hdg(V, h)(R) | σ(g) = g}, for any ring Q ⊂ R ⊂ C.

Then Hσ is a real algebraic group and

Hdg(V, h)C ' Hσ ⊗R C.

Since Q(·, C·) is a positive-definite form on VR with

Q(u,Cw) = Q(h(u), C(h(w))),

Hσ(R) is a compact real Lie group, and so Hdg(V, h) is reductive. Here σ is in fact the Cartan

involution of Hdg(V, h). ¤

The following results characters Mumford-Tate groups and Hodge-Tate groups :

Theorem 2.4. Let (V, h,Q) be polarized rational Hodge structure. The Mumford-Tate group

MT(V, h) is the largest Q-algebraic subgroup of GL(V ) fixing all Hodge tensors, i.e., tensors of

Hodge type (0, 0) in ⊕

(n1,n2)∈N2

V ⊗n1 ⊗ (V ∨)⊗n2 .
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Theorem 2.5. Let (V, h,Q) be a polarized pure rational Hodge structure of weight r. Then

Hdg(V, h) is the largest Q-algebraic subgroup of GL(V ) fixing all tensors

η ∈ V ⊗n1 ⊗ (V ∨)⊗n2

of Hodge type (1
2
r(n1 − n2),

1
2
r(n1 − n2)) for all (n1, n2) ∈ N2.

In particular, if V is pure of weight 1, Hdg(V, h) is then the largest Q-algebraic subgroup of

GL(V ) fixing all Hodge tensors

η ∈ (V ⊗2n)n,n ∀n ∈ N.

In order to prove 2.4 and 2.5, we first introduce some knowledge of representation: Let G be
any reductive algebraic group defined over a field k of characteristic zero, and (Vα)α∈Γ (here Γ
is an index set) be the family of finite-dimensional k-representations of G, i.e., we have injective
homomorphisms G ↪→ GL(Vα) for ∀α ∈ Γ, and so

G ↪→
∏

GL(Vα)

is injective too. For any (m,n) ∈ NΓ×NΓ (here m ∈ NΓ means only finite of columns are nonzero),
we denote

Tm,n :=
⊗
α∈Γ

V ⊗m(α)
α ⊗ (V ∨

α )⊗n(α),

which is again a representation of G. For any subgroup H of G, denote

TH := {t | t ∈ Tm,n for some (m,n) ∈ NΓ × NΓ and t is fixed by H},
H ′ := {h ∈ G | h(t) = t ∀ t ∈ TH},

It is obvious that H ⊂ H ′. On the other hand, we have :

Lemma 2.6 (Chevalley’s theorem cf. [10]). Let G be a reductive algebraic group over a field of

characteristic zero. Then, we have :

a) Any finite-dimensional representation of G is contained in a finite direct sum of representations

Tm.n.

b) Any subgroup H of G is the stabilizer of line D in some finite-dimensional representation of

G.

c) Let Xk(G) = Homk(G,Gm) be the set of all characters of G. Assume that H is reductive or

Xk(G) → Xk(H) is surjective. Then H = H ′.

Proof of the theorems 2.4 and 2.5. For 2.4 : Let Tm,n = V ⊗m⊗ (V ∨)⊗n for any (m,n) ∈ N2. Then

t ∈ Tm,n is of (0, 0) type if and only if t is fixed by h(C∗), i.e., t is fixed by MT(V, h). Let P be

the largest algebraic subgroup of GL(V ) fixing all tensors of Hodge type (0, 0) in

V ⊗m ⊗ (V ∨)⊗n for some (m,n) ∈ N2.

Then P = MT(V, h)′. Since MT(V, h) is reductive, by Chevalley’s theorem P = MT(V, h).

The assertions in 2.5 can be proved by similar methods in proving 2.4. ¤
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Mumford-Tate groups of variations of Hodge structures. At first, we shall define the
Mumford-Tate group for any polarized variation of rational Hodge structures by the results of 2.4
and 2.5.

Let (V,∇, Q) be a polarized variation of pure rational Hodge structures of weight n over a
connected complex manifold M. Let s0 be a base point of M and V = Vs0 . The VHS (V,∇)
corresponds to a representation

ρ : π1(M, s0) −−→ Aut(V, Q).

For each s ∈ M, there is a Hodge structure (V, hs) and Mumford-Tate group

MTs = MT(V, hs) ⊂ GL(V ).

Lemma 2.7 (cf.[9]). Let (V,∇, Q) be a polarized variation of pure rational Hodge structures of

weight n over a connected complex manifold (M, s0) and V = Vs0 . Then there exists a nowhere

dense (complex topology) set
∑

of M such that:

a) For any s ∈ U := M \∑
, MTs is constant group in GL(V ). We denote this constant group to

be MT(V), call it the Mumford-Tate group of V.

b) On the other hand, for each s ∈ ∑
,

MTs ( MT(V).

Sketch of the proof. In 2.4, we have shown that η is a Hodge tensor of (V, h) if and only if η is

fixed by MT(V, h). Thus, by the theorem 2.4, we obtain :

MTs 6= MTs′ ⇐⇒ TMTs 6= TMTs′ ,

i.e., they have different spaces of fixed tensors and here ”=” is in the meaning of parallel transform

under ∇.

Given η ∈ Tm,n for some (m.n), then

Bη = {s ∈ M(C) | η is Hodge tensor of MTs}
has scheme structure and to be subvariety of M.

Let
∑

be the sum of all such Bη where Bη 6= M, then
∑

will be at most the union of countable

subvarieties of M because V is rational vector space.

(b) is obvious. ¤

Remark. Similarly, we can define the Hodge-Tate group Hdg(V) for any VHS (V,∇). The largest

set U of (a) is nowhere dense in M and is called the Hodge generic locus, and
∑

= M \ U is

called Hodge exceptional locus.

Now, we choose s0 in the Hodge generic locus. Then the variation of polarized Q-Hodge struc-
tures (V, Q) corresponds to a representation

ρ : π1(M, s0) −−→ Aut(V, Q)

where (V, h) = (Vs0 , hs0). The algebraic monodromy group GMon is defined to be the Zariski closure
of image of ρ in A(V ) := Aut(V, Q). Thus by Deligne’s complete reducibility (cf. [7]) GMon is a
reductive Q-algebraic subgroup of A(V ). The connected algebraic monodromy group GMon

0 is the
identity component of GMon, it is also a reductive Q-algebraic group.
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Lemma 2.8. Let (V,∇, Q) is a polarized Q-VHS with a representation

ρ : π1(M, s0) −−→ Aut(V, Q).

Suppose that V ' VZ⊗Q for an integral variation of Hodge structures VZ. Then there is a subgroup

G of monodromy group Γ := ρ(π1(M, s0)) such that it has a finite index in MT(V)(Q), the set of

Q-points of Mumford-Tate group of V.

Proof. Choose s0 in the Hodge generic locus of VHS V and let V = Vs0 . Let (n1, n2) be any pair

in N2 and denote the Q-space

W (n1,n2) := (V n1 ⊗ (V ∨)n2)0,0.

Then, we have an induced VHS W(n1,n2) with W (n1,n2) = W(n1,n2)
s0 , and the corresponding repre-

sentation

ρ : π1(M, s0) −−→ Aut(W (n1,n2), Q)

is induced from ρ : π1(M, s0) → Aut(V, Q) (It is why we still use ρ to represent two representa-

tions). Actually, we have a commutative diagram

π1(M, s0)
ρ−−−−−−−−→ Aut(W (n1,n2), Q)

J
Ĵ

ρ
­
­Á

Aut(V, Q)

.

It is obvious that W(n1,n2) also has a Z-structure induced from VZ , thus the representation

factors though

π1(M, s0)
ρ−−−−−−−−−−−−−→ Aut(W (n1,n2), Q)

J
Ĵ

ρZ ­
­Á

Aut(W
(n1,n2)
Z , Q)

.

where W
(n1,n2)
Z = (V n1

Z ⊗ (V ∨
Z )n2)0,0. The polarization on W (n1,n2) is induced from the polarization

on V and is again a definite quadratic form and π1(M, s0) preserves it. Thus ρ(π1(M, s0)) is a finite

subgroup in Aut(W (n1,n2), Q) as O(W
(n1,n2)
Z ) is a finite group, that is equivalent to say π1(M.s0)

acts on W (n1,n2) through a finite quotient.

Denote G(n1,n2) be the largest Q-subgroup of GL(V ) which acts trivially on W (n1,n2), then

ρ−1(G(n1,n2)(Q)) is subgroup of π1(M, s0) of finite index. We then have

MT(V, h) =
⋂

all (n1,n2)∈N2

G(n1,n2),

In fact MT(V, h) is the intersection of only finitely many G(n1,n2)’s as all Gn2,n2 are noetherian

spaces. Therefore, ρ−1(MT(V, h)(Q)) is a subgroup of π1(M, s0) with a finite index. ¤

Remark. The lemma 2.8 is cited in [9], here we give a detailed proof .

Theorem 2.9. Let (V,∇, Q) be a polarized Q-VHS with a representation

ρ : π1(M, s0) −−→ Aut(V, Q).
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Suppose that V ' VZ ⊗ Q for an integral variation of Hodge structures VZ. Then, GMon
0 is a

Q-algebraic subgroup of MT(V). Moreover,

GMon
0 ⊂ Hdg(V).

Proof. Here we use the same notations in 2.8. Then, by 2.7 and 2.8 we obtain that there is a

subgroup G of the geometric monodromy group Γ such that it has a finite index in MT(V)(Q).

Then,

GMon
0 (Q) ⊂ G.

¤

Remarks. In [24], there are more general results. We note that if a VHS V comes from relative

cohomology groups of any geometry family over M, V has a natural Z-variation of Hodge structure

VZ on M and a representation

ρ : π1(M, s0) → Aut(VZ,s0 , Q).

To end this subsection, we introduce some natural questions.

Question 2.10. Let (V,∇, Q) be a polarized variation of pure rational Hodge structures of weight

n over a connected complex manifold (M, s0) and V = Vs0 . We always have :

(2.10.1) GMon
0 ⊂ Hdg(V) ⊂ A(V ).

Thus, we have questions as follows :

(1) For which VHS V, GMon
0 = Hdg(V) ?

(2) For which VHS V, Hdg(V) = A(V ) ?

Example 2.11. Here are examples for the above questions:

(1) Let V be a polarized weight one VHS from a family of Abelian varieties over a curve.

Viehweg and Zuo recently showed : If the Arakelov–Yau inequality of that family attains

the bound, then GMon
0 = Hdg(V) (cf. [24]).

(2) For a non-isotrivial Lefschetz pencil of odd-dimensional varieties with at least one singular

fiber, there is an absolutely irreducible VHS (V, Q) corresponding to the vanishing cycles

space. By the Kazhdan–Margulis theorem, one has (cf. [8])

Hdg(V) = A(V ) = Sp(V, Q).

If one of ” ⊂ ” becomes ” = ” in the question 2.10, what type should the base manifold be?
Moreover, can the base manifold move freely in a moduli space, i.e., can the corresponding family
deform freely?

Big monodromies and rigid families of Calabi-Yau manifolds. Let us recall a result about
rigidity for the analogue Shafarevich conjecture for families of Calabi-Yau manifolds:

Theorem 2.12 ([30, 31]). Any non-isotrivial Lefschetz pencil of Calabi-Yau manifolds of odd

dimension is rigid.
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As exposed in [30, 31], the proof of the theorem 2.12 depends heavily on the special properties
of Lefschetz pencils : the local system of vanishing cycles is absolute irreducible under the action
of fundamental group π1(P1\S) where S is the set of singular values, i.e., the local system of
vanishing cycles has a big monodromy (Kazdan-Magulis theorem).

Initiated by this result, we have a little generalization.

Definition 2.13. Let V be a local system of Q-vector space on a quasi-projective manifold T

with monodromy representation

ρ : π1(Y, y0) → GL(V ), V := Vy0 .

Let Gmon be the algebraic monodromy group. Assume that V carries a non-degenerate bilinear

form Q which is symmetric or anti-symmetric and which is preserved by the monodromy group.

The monodromy is called big if the connected algebraic monodromy group Gmon
0 acts irreducibly

on VC.

It is clear that suppose V be a local system on a irreducible smooth variety T with big mon-
odromy and π : Y ′ → Y be étale covering,then π∗V is also of big monodromy.

Theorem 2.14. Let f : X → M be a non-isotrivial smooth family of n-dimensional Calabi-Yau

manifolds over a quasi-projective manifold M and let Rn
primf∗Q carry the nature polarized VHS.

Suppose that there is a sub Q-VHS V of Rn
primf∗Q such that V has big monodromy and the first

Hodge piece of Rn
primf∗Q belongs to the local system VC. Then the family f : X → M must be

rigid.

For a smooth family f : X → M, there is a natural polarized variation of Hodge Structure on
M, i.e., a holomorphic vector bundle (Rn

primf∗(C),∇) where ∇ is the Gauss-Manin connection.

We then obtain a unique Higgs bundle (E, ∂, θ) from the VHS Rn
primf∗(C) (cf. [21]). Here (E, ∂)

is holomorphic bundle under the holomorphic structure ∂ and θ is so called Higgs field such that
∂(θ) = 0 and θ ∧ θ = 0. Analyzing the Higgs bundles over any product varieties and using the
generalized Donaldson-Uhlenbeck-Yau-Simpson correspondence (cf. [29, 31]), we obtain :

Lemma (Faltings, Jost-Yau, Peters cf. [29, 31]). Let f : X → M be a non-isotrivial smooth

polarized family of n-folds, if the family f is not rigid, then there is a non-zero flat section

σ ∈ End(Rn
primf∗(C))−1,1.

Moreover, the Zariski tangent space of the deformation space of f is into End(Rn
primf∗(C))−1,1.

Proof of 2.14. Assume that the assertion is not true, we have the nontrivial extension family

X ⊂−−−→ X

f

y
yg

M × {0} ⊂−−−→ M × T 0

.

where T 0 is a smooth quasi-projective curve.

We obtain a unique Higgs bundle (E, θ) from the VHS Rn
primf∗(C), then by the above lemma

we obtain a splitting of the Higgs bundle (cf. [31]) :

(E, θ) = Ker(σ)
⊕

(Ker(σ))⊥.
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Therefore, along M we always have E0,n ∈ Ker(σ). Because of the non-triviality of the deformation

of f, the map σ : En,0|M → En−1,1|M must be injective at some point s0 of M, and so at s0

En,0 * Ker(σ) and E0,n ⊂ Ker(σ).

On the other hand, the representation ρ : π1(M, s0) → Aut(VC,s0) is irreducible, so En,0 and E0,n

are all in VC. It is a contradiction.

¤
Recently, Viehweg–Zuo obtained a characterization of certain Shimura curves in a moduli stack

of Abelian varieties, and obtained some rigid Shimura curves in a moduli stack of even-dimensional
polarized Calabi–Yau manifolds. It seems these results open a way for us to study the relation
between Mumford–Tate groups of families and their rigidity.

3. Calabi-Yau Varieties with Complex Multiplication

CM-type points in moduli spaces of polarized Abelian varieties. Let VR be a finite
dimensional vector space over R. The following sets are natural one to one correspondent:

a) the complex structure on V ∨
R ;

b) the complex structure on VR;
c) the homomorphism of R-algebra h : C∗ → GL(VR).

Let (V, h) be a pure rational Q-Hodge structure of weight one. Its dual V ∨ is also a rational
Q-Hodge structure and as a rational vector space it has at least one integer lattice. Let Λ be an
integer lattices of V ∨. If the rank of V is 2g, we obtain a complex torus

A = V ∨
R /Λ

of dimensional g with a complex structure induced from the Weil operator C = h(
√−1) on V.

There is a canonical isomorphism (cf. [14]) :

(3.0.1) H i(A× · · · × A,Q) ∼= ∧i(V ⊕ · · · ⊕ V ).

A result of Lefschetz (cf. [14]) says that (V, h) is polarized if and only the induced complex torus
A is an Abelian variety. On the other hand, for any Abelian variety A, the cohomology group
H1(A,Q) is a natural polarized pure Q-VHS of weight one. Altogether, we have :

Proposition 3.1. The contra-covariant functor

A 7−→ (H1(A,Q), h, Q)

defines an equivalence from the category of Abelian varieties over C up to isogeny to the category

of polarized pure Q-Hodge structures of weight one.

Moreover, let (V ∨, h, Q) be a polarized pure Q-VHS of weight one and Λ be an integer lattice
of V ∨

R
∼= R2g. Then, Q(Λ, Λ) ⊂ Z and we can choose suitable generators of Λ as a basis of VR such

that :

i. Under this basis, the matrix (
0 L
L 0

)

represents the bilinear form Q where L = diag(e1, · · · , eg);
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ii. all ei are positive integers with e1|e2| · · · |en, and they are independent of the choosing of the
generators of Λ.

We also say such L is a polarization, in fact it determines an ample line Lon the complex torus
A = V ∨

R /Λ so that (A,L) is a polarized Abelian variety. The integer (e1 · · · eg)
2 is called the

degree of L, or the degree of Q under Λ. Let Q′be another polarization of V ∨
R , we have a respective

polarized Abelian variety (A′,L′). We say Q ∼ Q′ if (A,L) ∼= (A′,L′).
Definition 3.2. Denote the contra-covariant functor in 3.1 to be ι. For any Abelian variety A,

The Hodge-Tate group of A is defined by

Hdg(A) := Hdg(V, h)

where (V, h,Q) = ι(A) is the corresponding polarized pure Q-Hodge structure of weight one.

Let X be a Abelian variety. Any endomorphism of X can be naturally realized as an endomor-
phism of V defined over Q where (V, h,Q) = ι(X). Thus,

End0(X) := End(X)⊗Q = {g ∈ Hom(V, V )Q | gR commutes with h(U1(R))},
and so we have :

(3.2.1) End0(X) = {g ∈ Hom(V, V )Q | gg′ = g′g ,∀g′ ∈ Hdg(X) } = EndHdg(V,h)(V ).

Definition 3.3. Let Y be a compact Kähler manifold. Its Hodge ring is defined as :

H∗
0 (Y ) = H∗(Y,Q)

⋂ dimC Y∑
p=0

Hp,p(Y ).

By 2.5 and 3.0.1, we have :

Corollary 3.4. Let X be an Abelian variety. Then, we have a natural representation of Hdg(X)

on H∗(Xk,Q) which is defined over Q. Moreover, for any positive integer k the Hodge ring H∗
0 (Xk)

of Xk is a ring consisting of all Hdg(X)-invariant elements in H∗(X,Q).

Let X be an Abelian variety of dimension g, and denote D := End0(X) = End(X)⊗ZQ. Assume
that X is simple. We then have :

End(X)
↪→−−→ M2g(Z).

Moreover, D is a division algebra defined over Q with a Rosati-involution ′,i.e., for any 0 6= x ∈ D
TraceD/Q(xx′) > 0. Then, D is a finite-dimensional simple algebra over Q. Let K be the central
of D, it is a subfield of D. By Albert’s classification theorem of simple central algebra (cf. [14]),
we have :

(3.4.1) d2 = [D : K], e = [K : Q], and ed|2g
Definition 3.5 (Abelian varieties with complex multiplication (CM-type)). Let X be an abelian

variety. Then X is isogenous to Xn1
1 × . . .×Xnk

k such that each Xi is simple and

n1g1 + · · ·+ nkgk = g.

a) In case that X is simple, using the notations above we say X is of CM type only if

ed = 2g.
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b) In case that X is not simple, we say X is of CM type only if each isogenous component Xi of

X is of CM type.

Proposition 3.6 (cf. [14]). Let X be an Abelian variety of CM-type.

a) If X is simple, then K is equal to D and d = 1. Moreover, K must be a totally imaginary

quadratic extension of a totally real field K0 of degree g over Q, i.e.,

End0(X) ∼= K0(
√−m) for some positive integer m.

b) If X is not simple, then

End0(X) ∼= Mn1(K0
1(
√−m1))⊕ · · · ⊕Mnk

(K0
k(
√−mk))

where each K0
i is a totally real field of degree gi over Q and each mi ∈ K0

i is a positive integer.

End0(X) is a semi-simple algebra over Q. Denote

R = (Idn1 ⊗K0
1(
√−m1))⊕ · · · ⊕ (Idnk

⊗K0
k(
√−mk)).

Then R is a semi-simple and commutative Q-subalgebra of End0(X) with [R : Q] = 2g.

Altogether, we have:

Corollary 3.7. An Abelian variety X is of CM-type if and only if there is a semi-simple commu-

tative Q-subalgebra R of End0(X) such that [R : Q] > 2g (hence [R : Q] = 2g).

Moreover, there is a deep relation between complex multiplication and Hodge-Tate groups :

Theorem 3.8 (Mumford cf. [10],[16]). Let X be an Abelian variety. Then, X is of CM-type if

and only if its Hodge-Tate group Hdg(X) is a torus algebraic group, i.e., some power of Gm.

Sketch of the proof. The proof follows as :

1. Suppose that X is of CM type. Then, by 3.7 there is a commutative semi-simple Q-subalgebra

R′ in End0(X) with [R′ : Q] = 2g. By the Zorn-lemma, we assume R′ is maximal. Due to the

formula in 3.2.1, we have

End0(X) = EndHdg(V,h)(V ),

where (V, h,Q) = ι(X). We claim that Hdg(X) is in a subset of R′ consisting of all units of R′.
Otherwise, we would have a commutative Q-subalgebraR′′ of End0(X) such that [R′′ : Q] > 2g.

Therefore, the reductive Hdg(X) Q-algebraic group is connected and commutative, it must be

a torus algebraic group.

2. Conversely, suppose Hdg(X) is torus Q-algebraic group. Then, Hdg(X) can be diagonaliable

as an algebraic subgroup of GL(V ), and so Hdg(X) is in the center of Hom(V, V ). On the other

hand, by 3.2.1

End0(X) = EndHdg(V ) = Hom(V, V )Q.

Let R be a diagonal subalgebra of Hom(V, V ) (which depends on the bases that digitalize the

Hdg(X)). Then, we have :

[R : Q] = dimQ V = 2 dimCX.

¤
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Let X be an Abelian variety and (V, h,Q) := ι(X). There is a period domain D containing
(V, h,Q). As we just present the result that D is a complex manifold and classify each point
corresponds to a polarized pure rational Hodge structure (V, h′, Q) of weight one. Let f : X → M
be any non-isotrivial smooth family of polarized Abelian varieties over a smooth varieties M. We
have a natural pure Q-VHS of weight one V = R1f∗(QX ) polarized by Q and V has a Z-structure
such that V = VZ ⊗ Q. Let V = Vs0 for some s0 ∈ M, the local system V corresponds to a
representation

ρf : π1(M, s0) → Aut(V, Q).

Let Γf := ρf (π1(M, s0)), then Γf ⊂ Aut(VZ, Q). By the global Torelli theorem, the period map

Φ : M −−→ D/Γf

is a holomorphic immersion from M to the analytic space D/Γf .

Definition 3.9. Let A be an complex Abelian variety with genus g. For any positive integer n,

denote A[n] = ker(n· : A −−→ A). Then, we have finite isomorphisms

A[n]
∼=−−→ (Z/nZ)2g,

and we call any such isomorphism to be a level n-structure of A.

Let S be noetherian scheme over C. An Abelian scheme over S is a group scheme g : X → S
such that g is smooth and proper. The following theorem is due to Mumford :

Theorem 3.10 ([17]). For any positive integer g, d, n, let Ag,n,d be a moduli functor

{ Scheme of finite type over C} −−→ {Sets}
defined by

Y 7−→ { Abelian scheme over Y, with a level

n-structure and a d2-degree polarization }/ ∼= .

Then, the functor Ag,n,d has a coarse moduli Ag,n,d which is a quasi-projective scheme over C.

Moreover, if n ≥ 3 the moduli functor F is fine, i.e., it is represented by Ag,n,d, and so we have a

universal family π : X → Ag,n,d.

Corollary 3.11 ([17]). Notions as in 3.10, we have :

Ag,n,d

∼=−−→
∐

L with deg(L)=d

Dn,L

where Dn,L ←→ { Abelian variety polarized by L with a level n-structure}.
Remark. Each Dn,L is a Siegel moduli space, moreover it is a Shimura variety.

Lemma 3.12. Notions as in 3.10 and the paragraph above, let n ≥ 3 and Γ = ρ(π1(Ag,n,d)). Then,

by global Torelli theorem Ag,n,d is a ramified covering over D/Γ. Here D/Γ has a unique algebraic

structure to be a quasi-projective variety by Baily–Borel’s theorem.

Therefore, there is a beautiful result:

Theorem 3.13 (Shimura-Mumford-Deligne). Notions as in 3.10 and 3.11, we have that the set

of CM points of D/Γ is Zariski dense. Then, the set of CM points of Ag,n,d is Zariski dense in

Ag,n,d, and so the set of CM points of Dn,L is Zariski dense in Dn,L where L = diag(e1, · · · , eg) is

a fixing polarization.
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The idea of the proof of 3.13 is actually implied in [10] and [16]. We generalize this result and
obtain the theorem 3.17.

Remark. Generally, one can consider the moduli problem with more structure (for example, type

of endomorphism End0(X)), and so any CM point is a zero dimensional Shimura variety. It is

clear that in every period domain there exists a CM-type point.

The generalized Shimura-Mumford-Deligne theorem for polarized VHSs.

Definition 3.14. A polarized rational Hodge structure (V, h) is of CM type if the Hodge-Tate

group Hdg(V, h) is commutative.

Remark. This definition is motivated by the Hodge theoretic proof of Hodge-Tate groups for

Abelian varieties : an Abelian variety X is of CM-type if and only if Hdg(H1(X,Q), h) is an

algebraic torus.

Let D be a Hermitian symmetric domain of type G(R)/K∞ where G is a connected semisimple
algebraic group defined over Q and K∞ is the maximal compact R-subgroup of G(R) (certainly,
G(R)/K∞ = G(R)0/K0

∞). Choose a Z-structure GZ on G, let Γ be a arithmetic lattice, i.e., a
subgroup of G(Q) ∩G(R)0 and commensurable to GZ(Z).

Proposition 3.15. The Baily–Borel theorem says that Γ\D has a unique algebraic structure of

quasi-projective variety over C. Moreover, we have:

a) Γ\D is smooth if Γ is a torsion-free lattice.

b) Γ\D is a projective variety if and only if Hom(G,Gm) = 0.

Remark. The condition that Hom(G,Gm) = 0 is equivalent to that Γ\D is of finite volume and

G(Q) contains no unipotent element other than the identity (cf. [12]).

Assume that G has no simple compact factor Gi over Q (so that Gi(R) is compact in the
Hausdroff topology) and Γ contains a congruence group. Then Γ\D is a connected Shimura
variety.

Proposition 3.16 (Deligne cf. [12]). Any irreducible Hermitian symmetric domain can be re-

garded as a connected component of a period domain of a suitable polarized VHS.

We have a generalization of Shimura-Mumford-Deligne’ density theorem:

Theorem 3.17 (Density of CM points). Let D is a period domain of some polarized of pure weight.

Assume D has type as G(R)/K where G is a connected semisimple algebraic group defined over

Q and K is the maximal compact R-subgroup of G(R).

Then, for any subgroup

Γ ⊂ G(Q) ∩G(R)0

which is commensurable to GZ(Z), the set of CM points in the algebraic variety Γ\D is Zariski

dense in Γ\D.

Remark. Borcea checked the case for any polarized Hodge structure of type Calabi-Yau threefold-

like, i.e., any polarized pure Hodge structure of weight 3 with h1,0 = 1 (cf. [3]). Here we generalize

the Shimura-Mumford-Deligne’ theorem to any polarized pure VHS.
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Thus, by Deligne’s result 3.16 and the density theorem 3.17, we have:

Corollary 3.18. Any connected Shimura variety has a Zariski dense set of CM points.

We are going to prove the density theorem. At first, we have:

Lemma 3.19. Let H be a connected linear algebraic group defined over Q. Assume that H is

reductive. Then, every H(R)-conjugate class of maximal R-algebraic torus in H contains an

algebraic torus T which can be defined over Q.

Proof. It is sufficient to prove that for any maximal tori T ′ in H defined over R there exists a

g ∈ H(R) such that T = g−1T ′g is a maximal tori defined over Q, we show the proof as follows :

a) Let T1 be a maximal torus in H defined over R and t1 ∈ T1 be an element. The following

properties are known (cf. [4, 12.2]):

i. t1 is regular if and only if CentH(t1)
0 = HT1 .

ii. The set U of the regular elements in T1 is Zariski dense open in T1.S

Because T1(R) = (R∗)dim T1 and dimR(T1 − U) < dimR T1, the set U1(R) is nonempty and is

Hausdroff open in T1(R).

b) By the assumption that H is reductive, we have HT1 = T1 and any Cartan subgroup of H

coincide with a maximal torus (cf. [4, 13.17]), here a Cartan subgroup is the centralizer of a

maximal torus. Then, for any t′ ∈ H(R), if it is regular then T ′ = CentH(t′)0 is a Cartan group

and T ′ is a maximal torus in H defined over R. Moreover, if t′ ∈ U(R) then Cent0(t′) = T1.

c) Let

V =
⋃

g∈H(R)

gU(R)g−1.

We have a everywhere regular map H(R) × V → H(R) defined by (g, x) 7→ gxg−1; then V

is Hausdroff open set in H(R). As H is a linear group defined over Q, it is obvious that the

Hausdroff closure of H(Q) contains the identity component H(R)0, then H(Q) ∩ V is not

empty. Altogether, we have a regular element t ∈ H(Q), T := CentH(t)0 is an algebraic torus

defined over Q, and T is in the H(R)-conjugate class of T1.

¤

Remark. Let t1 ∈ U(R) and B ⊂ U be any Zariski open neighborhood of t1. Denote B(R) =

U(R) ∩B. Then

B :=
⋃

g∈H(R)

gB(R)g−1

is an Hausdroff open set in H(R), and so we can choose an regular t ∈ H(Q) ∩ B close to t1.

Proof of the theorem 3.17: Let (V, h, ψ) is an arbitrary point in the period domain D. Then,

H := Hdg(V, h) ⊂ G.

1. Let K∞ := CentH(h(U1(R)))0 where U1 is defined in the proposition 1.1. K∞ is an algebraic

subgroup of HR defined over R. By a result of Borel and Springer (cf. [5, p26]), K∞ itself has

at least one maximal algebraic torus defined over R; let T1 ⊂ K∞ be one of maximal algebraic

torus in K∞.
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2. Actually, T1 is a maximal algebraic torus of HR : Since h(U1(R)) ⊂ CentH(K∞), we have

h(U1(R)) ⊂ T1. If there exists an R-torus T ′
1 ⊂ HR containing T1, then T ′

1 centralizes h(U1(R));

hence T ′
1 ⊂ K∞ and so T1 = T ′

1.

3. By the lemma 3.19, there is a g ∈ H(R) such that

T = g−1T1g

is defined over Q. Since h(U1(R)) ⊂ T1, then

gh(U1(R))g−1 ⊂ T.

On the other hand, gh(U1(R))g−1 determines one rational Hodge structure (V, ghg−1). There-

fore,

Hdg(V, ghg−1) ⊂ T,

i.e., (V, ghg−1) is a CM point in the domain D.

4. Moreover, T1 is CentH(t1)
0 for some regular element t1 ∈ H(R). Let J be any Zariski neigh-

borhood of t1 in G. Let B = J ∩ U where U is the set of regular elements of G in T1. By

the remark of 3.19, B is not empty Zariski open in T1, and we can choose an regular element

t ∈ G(Q) ∩ B such that T = Cent(t)0 is a maximal algebraic torus defined over Q. Altogether,

the set of CM points of Γ\D is Zariski dense.

¤

Corollary 3.20. Let V1, V2 be two polarized rational Hodge structures. Then V1 ⊗ V2 is of CM

type if and only if both V1 and V2 are of CM type.

Analogue André-Oort problems for families of polarized Calabi-Yau varieties.

Definition 3.21. A polarized Calabi-Yau manifold (X,L) is of CM type if its period point is of

CM-type, i.e., the Hodge-Tate group of Hdim X
prim (X,Q) is commutative where

Hdim X
prim (X,Q) := ker(Hdim X(X,C)

∧c1(L)−−−−→ Hdim X+2(X,C)) ∩Hdim X(X,Q).

Remark. This definition is compatible with the original definition of CM al elliptic curve when

dimCX = 1, compatible with the definition in [3] and [27] for Calabi-Yau threefolds. However,

one can generalize the formal definition to any polarized projective varieties.

Besides the motivations by pure mathematics for us to study Calabi-Yau manifolds of CM-
type, there is a deep theorem in the string theory : a Calabi–Yau sigma model is completely
characterized by its complex and Kähler moduli, i.e., a Calabi–Yau sigma model is determined by
a mirror pair of Calabi–Yau manifolds (M,W ) where M is a Calabi–Yau manifold and W is its
mirror. Recently, Gukov–Vafa showed a deep and interesting phenomena :

Theorem 3.22 (cf. [11]). A Calabi-Yau sigma model (M,W ) is an RCFT (Rational Conformal

Field Theory) if and only if M and W admit complex multiplication over a same number field.

This result push us to study Calabi-Yau manifolds of CM-type throughly.
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Example 3.23 (CM-type Calabi-Yau threefolds cf. [3]). Let h1 and h2 be rational polarized

Hodge structures on V with weights w1 and w2. The Hodge structure h3 = h1 ⊗ h2 is CM if and

only if h1 and h2 are CM . Let E1, E2, E3 be three elliptic curves. The group G4 = Z2×Z2 acts on

E1×E2×E3 by the involution on E1×E2 and by the identity on the third factor so that the action

preserves the holomorphic 3-form on the product variety. The quotient variety E1 × E2 × E3/G4

has a Calabi–Yau threefold resolution X with Euler number 96 and h2,1(X) = 3. Let hi be the

Hodge structure of H1(Ei,C)∀i. The Hodge structure of H3(X,C) is then h1 ⊗ h2 ⊗ h3, i.e. the

G4- invariant part of H3(E1 × E2 × E3,C). Hence X is CM if and only if all Ei are CM.

Now, let us indicate some open questions.
Let f : X → M be any smooth family of polarized Calabi-Yau manifolds over a quasi-projective

manifold and h : M → D/Γ be its period map. It is known that dh(TM) is in the horizonal
tangent space of the period domain. We have some efficient results as 3.17 for period domains of
VHSs, but it is very difficult to find out necessary conditions for the family f such that the set
of CM points is Zariski dense in M. Therefore, it is still far away knowing that whether the set
of CM points is Zariski dense in the moduli space of polarized Calabi-Yau manifolds, or dense
into a subvariety with dimension ≥ 1. For moduli spaces of higher dimension algebraic manifolds,
we have the following significant result by Viehweg, and so the algebraic quasi-projective coarse
moduli scheme exists for the set of Calabi-Yau manifolds with a fixed polarization.

Theorem 3.24 (cf. [23]). Let h be a fixed polynomial of degree n with h(Z) ⊂ Z. Define a moduli

functor

Mh(Y ) := {(f : X −−→ Y,L) | f flat, projective and L invertible, relatively ample

over Y, such that : for all p ∈ Y (C) Xp = f−1(p) is a projective

manifold with semi-ample canonical bundle and χ(L|Xp) = h }/ ∼ .

Then, the moduli functor Mh is bounded by the Matsusaka Big theorem, and there exists a quasi-

projective coarse moduli scheme Mh for Mh, of finite type over C. Moreover, if

ωδ
Γ = OΓ ∀Γ ∈Mh(C)

for one integer δ > 0, then for some p > 0 there exists an ample line bundle λ(p) on Mh such that

φ∗gλ
(p) = g∗ω

δ·p
X/Y for any family (g : X → Y,L) ∈Mh(Y ) with moduli morphism φg : Y → Mh.

It is believed that the set of CM points is dense in a moduli space only if the moduli space itself
is of the form G/K. For example, the moduli spaces of elliptic curves, polarized Abelian varieties
and polarized K3 surfaces are of this type, so that we can predict such a moduli space will have a
dense set of CM ( RCFT) points. Unfortunately, moduli spaces of polarized Calabi–Yau manifolds
may not be homogeneous spaces and the deformation space of a Calabi–Yau manifold is into the
horizonal tangent space of the corresponding period domain; thus we now can say little about the
distribution of CM points in the moduli space of Calabi–Yau manifolds.

For sufficiently large genus g (g ≥ 4), it is conjectured by Coleman that there should be only
a finite number of Riemann surfaces C of genus g admitting CM (cf. [6]), and in order that a
(sub)family of varieties contain a dense set of CM points, the base should be a Shimura (sub)variety
due to the André–Oort conjecture.
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Conjecture 3.25. [André–Oort cf. [1, 2],[18]] Assume S is a connected Shimura variety. Let

Z ⊂ S be an irreducible algebraic subvariety. Then Z contains a Zariski dense set of CM points

if and only if Z is a Shimura subvariety of S.

Remark. Moonen showes : Let Z be an irreducible subvariety of a Shimura variety. Z is a

Shimura subvariety if and only if it contains a CM point and the completion of the local ring of

any smooth point of Z is formally linear (cf. [13]).

The André-Oort conjecture is thus a motivation for us to find necessary conditions for a smooth
family of Calabi-Yau manifolds with an open dense set of CM points in the base. However, moduli
spaces of polarized Calabi-Yau manifolds are like homogeneous spaces. Hence, it is reasonable to
consider the analogue of the André-Oort conjecture for moduli spaces of Calabi–Yau manifolds.
We believe this is a meaningful question. Suppose that the conjecture holds and the set of CM
points is open dense in a quasi-projective curve C in a moduli space Mh of Calabi–Yau manifolds.
Then, C should be a Shimura curve and so the induced family f : X → C should be rigid, because
any Shimura curve has a model defined over a number field and then it can not move freely in
the moduli space Mh. We have interest in studying the relation between the distribution of CM
points in moduli spaces and the rigidity problem for Shafarevich problems (cf. [25],[31]).

Example 3.26 (cf. [25]). Recently, Viehweg–Zuo constructed a nontrivial family of Calabi-Yau

manifolds such that the closed fibers are Calabi-Yau manifolds of CM-type over a Zariski dense

set. Precisely, they obtained a family g : Z → S of quintic hypersurfaces in CP4 such that S is

finite dominant over a ball quotient (which is a Shimura variety) and S has a dense set of CM

points. Furthermore, they got an important counterexample for the rigidity part of the Shafarevich

problem by showing that there exists a product of moduli spaces of hypersurfaces of degree d in

Pn and that this product can be embedded into the moduli space of hypersurfaces of degree d in

PN for some N > n.

We have interest in the following questions, and we hope to make progress in further.

Question 3.27. Let X be a Calabi–Yau n-fold of CM-type. Assume that X is fibered by (n−1)-

dimensional Calabi–Yau varieties over P1. Is the set of CM points dense in P1? Even in the case

n = 3, i.e., for K3 fibrations, this does not seem to be known.

Question 3.28. Fix a pair (C, S) where C is a smooth projective curve and S ⊂ C is a finite

subset. Let f : X → C be a non-isotrivial family of Calabi–Yau varieties smooth over C − S and

E be the set of CM points in C \ S. Does there exist a number N independent of f such that the

family f would be rigid if #E > N?

In the coming paper, we will focus studying on the analogue André-Oort problem for families of
polarized Calabi-Yau varieties and construct examples.
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4. Appendix : A Geometric Introduction to Shimura Curves

Denote

PSL(2,R) = {z 7→ T (z) =
az + b

cz + d
| ad− bc = 1}.

T ∈ PSL(2,R) is elliptic if Tr(T ) := |a + d| < 2, parabolic if Tr(T ) = 2 and hyperbolic otherwise.
A Fuchsian group is defined to be a discrete subgroup of PSL(2,R). Let H be the upper half
plane, or Poincaré disk.

Theorem 4.1. A subgroup Γ of PSL(2,R) is a Fuchsian group if and only if it acts properly

discontinuously on H.

Let F be a totally real number field of degree n and ϕi (1 ≤ i ≤ n) be the n distinct embeddings
of F into R. We assume that ϕ1 = id.

Definition 4.2 (Archimedean ramification). Let A = ( l,q
F ) be a quaternion algebra over a totally

real number field F. A possesses Archimedean ramification if A is unramified at ϕ1 and ramified

at the other infinite places ϕi(2 ≤ i ≤ n), i.e. there exist R-isomorphisms ρi with

ρ1 : Aϕ1 ⊗ R→ M(2,R), ρi : Aϕi ⊗ R→ H (2 ≤ i ≤ n).

Remark. A = ( l,q
F ) is a subalgebra of M(2,F(

√
l)), i.e. an F-linear injective homomorphism

φ : A ↪→ M(2,F(
√

l)) satisfying

φ(x) = gx =

[
x0 + x1

√
l x2 + x3

√
l

q(x2 + x3

√
l) x0 − x1

√
l

]
.

Theorem 4.3. Let A be a quaternion algebra over a totally real number field F 6= Q. Assume F
possesses Archimedean ramification. Then A is a division algebra.

Example 4.4. (Criteria for division algebra). Let A be a quaternion algebra and Nrd be the

norm function on A.

(i) A is a division algebra ⇐⇒ Nrd(x) = 0 only at x = 0.

(ii) A = (a,b
F ) is a division algebra if A is not isomorphic to M(2,F).

Let O be an order of A and O1 be the group of units with reduced norm 1 in O; then ρ1(O1)
is a subgroup of SL(2,R) and Γ(A,O) = ρ1(O1)/{+1,−1} is a subgroup of PSL(2,R). One has

Nrd(x) = det(ρ1(x)), Trd(x) = Tr(ρ1(x)),

ϕi(Nrd(x)) = NrdH(ρi(x)), ϕi(Trd(x)) = TrdH(ρi(x)).

Proposition 4.5. Γ(A,O) is a Fuchsian group of the first kind, i.e., the volume µ(H/Γ(A,O))

is finite.

Definition 4.6. One says that a Fuchsian group Γ is derived from a quaternion algebra A if Γ is

a subgroup of Γ(A,O) of finite index. Moreover, the Fuchsian group Γ is called arithmetic if Γ is

commensurable with Γ(A,O).
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Theorem 4.7 (Takeuchi cf. [22]). Let Γ be a Fuchsian group. Assume Γ is of the first kind.

Then Γ is derived from a quaternion algebra A over a totally real number field F if and only if Γ

satisfies the following conditions :

1. Let k1 be the field Q(Tr(T ) | T ∈ Γ) generated by the set Tr(T ) over Q. Then k1 is an algebraic

number field of finite degree, and Tr(T ) is contained in Ok1 the ring of integers of k1.

2. For any embedding ϕ of k1 into C such that ϕ 6= Id, ϕ(Tr(Γ)) is bounded in C.

Remarks. (Results related to the arithmeticity of Fuchsian groups).

1. Γ is arithmetic if and only if {T 2|T ∈ Γ} is derived from a quaternion algebra.

2. Let A(Γ) be a vector space spanned by Γ over k1 in M(2,R); then A(Γ) is a quaternion algebra

over k1. Moreover, Γ satisfies the condition (1) and the submodule O(Γ) of A(Γ) spanned by

Γ over Ok1 is an order of A(Γ).

3. Let Γ be a Fuchsian group with µ(H/Γ) < ∞. Assume Γ satisfies the conditions (1) and (2).

Then,

a) k1 is a totally real number field. Moreover, if ϕ is not the identity, then ϕ(Tr(T )) is contained

in [−2, 2];

b) A(Γ) satisfies the Archimedean ramified condition.

Example 4.8. (Quaternion algebras over Q).

(i) Let Γ be a Fuchsian group with µ(H/Γ) < ∞. Then Γ is derived from a quaternion algebra

A over Q if and only if Tr(T ) ∈ Z ∀T ∈ Γ.

(ii) If T ∈ PSL(2,R) is elliptic and Tr(T ) ∈ Z, T is then of order 2 or 3.

(iii) By (i) and (ii), a Fuchsian group derived from a quaternion algebra over Q only has order

2 or 3 elliptic elements.

Theorem 4.9 (Shimura curve cf. [20]). Suppose a Fuchsian group Γ is derived from a division

quaternion algebra. Then H/Γ is a projective curve, and it is called Shimura curve.

Example 4.10. Let A be a quaternion algebra over a totally real number field F 6= Q. Assume

that A satisfies the Archimedean ramified condition. Then A is a division algebra, and thus

H/Γ(A,O) is compact.
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