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ANOMALY CANCELLATION AND MODULARITY II: THE E8 × E8 CASE

FEI HAN, KEFENG LIU, AND WEIPING ZHANG

Abstract. In this paper we show that both of the Green-Schwarz anomaly factorization formula
for the gauge group E8 × E8 and the Hořava-Witten anomaly factorization formula for the gauge
group E8 can be derived through modular forms of weight 14. This answers a question of J.
H. Schwarz. We also establish generalizations of these factorization formulas and obtain a new
Hořava-Witten type factorization formula.

Introduction

In [15], [8] and [9], it has been shown that both of the Alvarez-Gaumé-Witten miraculous anomaly
cancellation formula [2] and the Green-Schwarz anomaly factorization formula [7] for the gauge
group SO(32) can be derived (and extended) through a pair of modularly related modular forms,
which are over the modular subgroup Γ0(2) and Γ0(2) respectively. In answering a question of J.
H. Schwarz [16], we deal with the remaining case of gauge group E8 × E8 in this article.

Let Z → X → B be a fiber bundle with fiber Z being 10 dimensional. Let TZ be the vertical
tangent bundle equipped with a metric gTZ and an associated Levi-Civita connection ∇TZ (cf. [3,
Proposition 10.2]). Let RTZ = (∇TZ)2 be the curvature of ∇TZ , which we also for simplicity denote
by R. Let TCZ be the complexification of TZ with the induced Hermitian connection ∇TCZ .

Let (P1, ϑ1), (P2, ϑ2) be two principal E8 bundles with connections over X. Let ρ be the ad-
joint representation of E8. Let Wi = Pi ×ρ C248, i = 1, 2 be the associated vector bundles,
which are of rank 248. We equip both W1, W2 with Hermitian metrics and Hermitian connections
respectively. Let Fi denote the curvature of the bundle Wi. Let “Tr” denote the trace in the
adjoint representation. Then one has TrF 2n+1

i = 0 (cf. the proof of Theorem 2.1 in this article),

TrF 4
i = 1

100(TrF
2
i )

2,TrF 6
i = 1

7200 (TrF
2
i )

3 (cf. [1]). It’s easy to see that c2(Wi) = −1
2TrF

2
i . Simply

denote TrFn
1 +TrFn

2 by TrFn.
The Green-Schwarz anomaly formula [7] asserts that the following factorization for the 12 forms

holds,1

I12

=
{
Â(TZ)ch(W1 +W2) + Â(TZ)ch(TCZ)− 2Â(TZ)

}(12)

=
−1

64π6

1

720

(
−15

8
trR2trR4 − 15

32
(trR2)3 +TrF 6 +TrF 2

(
1

16
trR4 +

5

64
(trR2)2

)
− 5

8
TrF 4trR2

)

=
−1

4π2

1

2

(
trR2 − 1

30
TrF 2

)
· 1

16π4

1

180

(
1

960
(TrF 2)2 − 5

16
TrF 4 +

1

32
trR2TrF 2 − 15

16
trR4 − 15

64
(trR2)2

)

·

=

(
p1(TZ) +

1

30
(c2(W1) + c2(W2))

)
· I8.

(0.1)

1In what follows, we will write characteristic forms without specifying the connections when there is no confusion
(cf. [17]).
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In [11] and [12], Hořava and Witten observed, on the other hand, that the following anomaly
factorization formula holds for each i = 1, 2,

Îi12 =

{
Â(TZ)ch(Wi) +

1

2
Â(TZ)ch(TCZ)− Â(TZ)

}(12)

=
−1

64π6

1

1440

(
−15

8
trR2trR4 − 15

32
(trR2)3 + 2TrF 6

i +TrF 2
i

(
1

8
trR4 +

5

32
(trR2)2

)
− 5

4
TrF 4

i trR
2

)

=
−1

4π2

1

4

(
trR2 − 1

15
TrF 2

i

)
· Îi8

=

(
1

2
p1(TZ) +

1

30
c2(Wi)

)
· Îi8,

(0.2)

where Îi8 can be written explicitly as

Îi8 =
1

16π4

1

24

(
−1

4

(
1

2
trR2 − 1

30
TrF 2

i

)2

− 1

8
trR4 +

1

32
(trR2)2

)
,

and therefore

I12 = Î112 + Î212 =

(
1

2
p1(TZ) +

1

30
c2(W1)

)
· Î18 +

(
1

2
p1(TZ) +

1

30
c2(W2)

)
· Î28 .

The purpose of this article is to show that the above anomaly factorization formulas can also be
derived natually from modularity as in the orthogonal group case dealt with in [9]. This provides
a positive answer to a question of J. H. Schwarz mentioned at the beginning of the article.

To be more precse, we will construct in Section 2 a modular form Q(Pi, Pj , τ) of weight 14 over
SL(2,Z), for any i, j ∈ {1, 2}, such that when i = 1, j = 2, the modularity of Q(P1, P2, τ) gives
the Green-Schwarz factorization formula (0.1), while when i = j, the modularity of Q(Pi, Pi, τ)
gives the Hořava-Witten factorization formula (0.2). Actually what we construct is a more general
modular form Q(Pi, Pj , ξ, τ), which involves a complex line bundle (or equivalently a rank two real
oriented bundle) and we are able to obtain generalizations of the Green-Schwarz formula and the
Hořava-Witten formula by using the associated modularity. Our construction of the modular form
Q(Pi, Pj , ξ, τ) involves the basic representation of the affine Kac-Moody algebra of E8.

Inspired by our modular method of deriving the Green-Schwarz and Hořava-Witten factorization
formulas, we also construct a modular form R(Pi, ξ, τ) of weight 10 over SL(2,Z), the modularity
of which will give us a new factorization formula of Hořava-Witten type. See Theorem 0.2 for
details. It would be interesting to compare (0.8), (0.9) with the Hořava-Witten factorization (0.2)
or (0.6). Actually another interesting question of J.H. Schwarz is to construct quantum field theories
associated to the generalized anomaly factorization formulas in this paper and [9].

In the rest of this section, we will present our generalized Green-Schwarz and Hořava-Witten
formula, as well as the new formulas of Hořava-Witten type obtained from R(Pi, ξ, τ). They will
be proved in Section 2 by using modularity after briefly reviewing some knowledge of the affine
Kac-Moody algebra of E8 in Section 1.

Let ξ be a rank two real oriented Euclidean vector bundle over X carrying a Euclidean connection
∇ξ. Let c = e(ξ,∇ξ) be the Euler form canonically associated to ∇ξ (cf. [17, Section 3.4]).
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Theorem 0.1. The following identities hold,

{
Â(TZ)e

c
2 ch(W1 +W2) + Â(TZ)e

c
2 ch(TCZ)− 2Â(TZ)e

c
2 + Â(TZ)e

c
2 ch(ξ̃C + 3ξ̃C ⊗ ξ̃C

}(12)

=

(
p1(TZ)− 3c2 +

1

30
(c2(W1) + c2(W2))

)

·
{
− e

1

24
(p1(TZ)−3c2+ 1

30
(c2(W1)+c2(W2)) − 1

p1(TZ)− 3c2 + 1
30(c2(W1) + c2(W2))

Â(TZ)e
c
2 ch(A) + e

1

24
(p1(TZ)−3c2+ 1

30
(c2(W1)+c2(W2))Â(TZ)e

c
2

}(8)

,

(0.3)

where A = W1 +W2 + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C;
and for each i,

{
Â(TZ)e

c
2 ch(Wi) +

1

2
Â(TZ)e

c
2 ch(TCZ)− Â(TZ)e

c
2 +

1

2
Â(TZ)e

c
2 ch(ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
1

2
p1(TZ)− 3

2
c2 +

1

30
c2(Wi)

)

·
{
−e

1

24
(p1(TZ)−3c2+ 1

15
c2(Wi)) − 1

p1(TZ)− 3c2 + 1
15c2(Wi)

Â(TZ)e
c
2 ch(Bi) + e

1

24
(p1(TZ)−3c2+ 1

15
c2(Wi))Â(TZ)e

c
2

}(8)

,

(0.4)

where Bi = 2Wi + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C.

If ξ is trivial, we obtain the Green-Schwarz formula (0.1) for E8 × E8 and the Hořava-Witten
formula (0.2) for E8 in the following corollary.

Corollary 0.1. One has

{
Â(TZ)ch(W1 +W2) + Â(TZ)ch(TCZ)− 2Â(TZ)

}(12)

=

(
p1(TZ) +

1

30
(c2(W1) + c2(W2))

)

·
{
−e

1

24
(p1(TZ)+ 1

30
(c2(W1)+c2(W2)) − 1

p1(TZ) + 1
30 (c2(W1) + c2(W2))

Â(TZ)ch(C) + e
1

24
(p1(TZ)+ 1

30
(c2(W1)+c2(W2))Â(TZ)

}(8)

,

(0.5)

where C = W1 +W2 + TCZ − 2;
and for each i,

{
Â(TZ)ch(Wi) +

1

2
Â(TZ)ch(TCZ)− Â(TZ)

}(12)

=

(
1

2
p1(TZ) +

1

30
c2(Wi)

)

·
{
−e

1

24
(p1(TZ)+ 1

15
c2(Wi)) − 1

p1(TZ) + 1
15c2(Wi)

Â(TZ)ch(Di) + e
1

24
(p1(TZ)+ 1

15
c2(Wi))Â(TZ)

}(8)

,

(0.6)

where Di = 2Wi + TCZ − 2.

Remark 0.1. It can be checked by direct computation that the second factors in the right hand

sides of (0.5) and (0.6) are equal to I8 and Îi8 respectively.
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We now state a new factorization formula, which is of the Hořava-Witten type.

Theorem 0.2. For each i, the following identity holds,

{
Â(TZ)e

c
2 ch(Wi) + Â(TZ)e

c
2 ch(TCZ) + 246Â(TZ)e

c
2 + Â(TZ)e

c
2 ch(ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)

·
{
−e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi)) − 1

p1(TZ)− 3c2 + 1
30c2(Wi)

Â(TZ)e
c
2 ch(Ei) + e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ)e

c
2

}(8)

,

(0.7)

where Ei = Wi + TCZ + 246 + ξ̃C + 3ξ̃C ⊗ ξ̃C;
if ξ is trivial, we have

{
Â(TZ)ch(Wi) + Â(TZ)ch(TCZ) + 246Â(TZ)

}(12)

=

(
p1(TZ) +

1

30
c2(Wi)

)

·
{
−e

1

24
(p1(TZ)+ 1

30
c2(Wi)) − 1

p1(TZ) + 1
30c2(Wi)

Â(TZ)ch(Fi) + e
1

24
(p1(TZ)+ 1

30
c2(Wi))Â(TZ)

}(8)

,

(0.8)

where Fi = Wi + TCZ + 246.

Remark 0.2. We can express (0.8) by direct computations as follows,

−1

64π6

1

1440

(
−15

4
trR2trR4 − 15

16
(trR2)3 + 2TrF 6

i +TrF 2
i

(
1

8
trR4 +

5

32
(trR2)2

)
− 5

4
TrF 4

i trR
2

)

=
−1

4π2

1

2

(
trR2 − 1

30
TrF 2

i

)
· 1

16π4

1

180

(
− 1

480
(TrF 2

i )
2 +

1

32
trR2TrF 2

i − 15

16
trR4 − 15

64
(trR2)2

)

=

(
p1(TZ) +

1

30
c2(Wi)

)
· Ĵ i

8.

(0.9)

Remark 0.3. As in [16], one may ask whether there is a phyics model corresponding to (0.8) and
(0.9).

1. The Basic Representation of Affine E8

In this section we briefly review the basic representation theory for the affine E8 by following
[13] (see also [14]).

Let g be the Lie algebra of E8. Let 〈, 〉 be the Killing form on g. Let g̃ be the affine Lie algebra
corresponding to g defined by

g̃ = C[t, t−1]⊗ g⊕Cc,

with bracket

[P (t)⊗ x+ λc,Q(t)⊗ y + µc] = P (t)Q(t) ⊗ [x, y] + 〈x, y〉Rest=0

(
dP (t)

dt
Q(t)

)
c.

Let ĝ be the affine Kac-Moody algebra obtained from g̃ by adding a derivation t d
dt which operates

on C[t, t−1]⊗ g in an obvious way and sends c to 0.
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The basic representation V (Λ0) is the ĝ-module defined by the property that there is a nonzero
vector v0 (highest weight vector) in V (Λ0) such that cv0 = v0, (C[t] ⊕ Ct d

dt)v0 = 0. Setting

Vk := {v ∈ V (Λ0)|t d
dt = −kv} gives a Z+-gradation by finite spaces. Since [g, d] = 0, each Vk is a

representation of g. Moreover, V1 is the adjoint representation of E8.

Let q = e2π
√
−1τ . Fix a basis {zi}8i=1 for the Cartan subalgebra. The character of the basic

representation is given by

ch(z1, z2, · · · , z8, τ) :=
∞∑

k=0

(chVk)(z1, z2, · · · , z8)qk = ϕ(τ)−rΘg(z1, z2, · · · , z8, τ),

where ϕ(τ) =
∏∞

n=1(1−qn) so that η(τ) = q1/24ϕ(τ) is the Dedekind η function; Θg(z1, z2, · · · , z8, τ)
is the theta function defined on the root lattice Q by

Θg(z1, z2, · · · , z8, τ) =
∑

γ∈Q
q|γ|

2/2e2π
√
−1γ(−→z ).

It is proved in [6] (cf. [10]) that there is a basis for the E8 root lattice such that

(1.1) Θg(z1, · · · .z8, τ) =
1

2

(
8∏

l=1

θ(zl, τ) +
8∏

l=1

θ1(zl, τ) +
8∏

l=1

θ2(zl, τ) +
8∏

l=1

θ3(zl, τ)

)
,

where θ and θi (i = 1, 2, 3) are the Jacobi theta functions (cf. [4] and [8]).

2. Derivation of Green-Schwarz and Horava-Witten type anomaly factorizations
via modularity

In this section, we will derive the Green-Schwarz and Hořava-Witten type factorization formulas
in Theorems 0.1 and 0.2 via modularity.

For the principal E8 bundles Pi, i = 1, 2, consider the associated bundles

Vi =

∞∑

k=0

(Pi ×ρk Vk) q
k ∈ K(X)[[q]].

Since ρ1 is the adjoint representation of E8, we have Wi = Pi ×ρ1 V1.

Following [5], set

Θ(TCZ, ξC) :=

(
∞
⊗

m=1
Sqm(T̃CZ)

)
⊗
(

∞
⊗
n=1

Λqn(ξ̃C)

)
⊗
(

∞
⊗
u=1

Λ−qu−1/2(ξ̃C)

)
⊗
(

∞
⊗
v=1

Λqv−1/2(ξ̃C)

)
∈ K(X)[[q]],

where ξC is the complexification of ξ, and for a complex vector bundle E, Ẽ := E −Crk(E).
Clearly, Θ(TCZ, ξC) admits a formal Fourier expansion in q as

(2.1) Θ(TCZ, ξC) = C+B1q +B2q
2 · · · ,

where the Bj ’s are elements in the semi-group formally generated by complex vector bundles over

X. Moreover, they carry canonically induced connections denoted by ∇Bj . Let ∇Θ be the induced
connection with q-coefficients on Θ.

For 1 ≤ i, j ≤ 2, set

Q(Pi, Pj , ξ, τ)

:=
{
e

1

24
E2(τ)(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)

16ch(Vi)ch(Vj)
}(12)

.

(2.2)

Theorem 2.1. Q(Pi, Pj , ξ, τ) is a modular form of weight 14 over SL(2,Z).
5



Proof: By the knowledge reviewed in Section 2, we see that there are formal two forms yil , 1 ≤ l ≤
8, i = 1, 2 such that

(2.3) ϕ(τ)8ch(Vi) =
1

2

(
8∏

l=1

θ(yil , τ) +

8∏

l=1

θ1(y
i
l , τ) +

8∏

l=1

θ2(y
i
l , τ) +

8∏

l=1

θ3(y
i
l , τ)

)
.

Since θ(z, τ) is an odd function about z and we only take forms of degrees not greater than12,
one has

(2.4) ϕ(τ)8ch(Vi) =
1

2

(
8∏

l=1

θ1(y
i
l , τ) +

8∏

l=1

θ2(y
i
l , τ) +

8∏

l=1

θ3(y
i
l , τ)

)
.

Since θ1(z, τ), θ2(z, τ) and θ3(z, τ) are all even functions about z, the right hand side of the
above equality only contains even powers of yij’s. Therefore ch(Wi) only consists of forms of degrees
divisible by 4. So

(2.5) ch(Vi) = 1 + ch(Wi)q + · · · = 1 + (248 − c2(Wi) + · · · )q + · · · .

On the other hand,

(2.6)
1

2

(
8∏

l=1

θ1(y
i
l , τ) +

8∏

l=1

θ2(y
i
l , τ) +

8∏

l=1

θ3(y
i
l , τ)

)
= 1 +

(
240 + 30

8∑

l=1

(yil)
2 + · · ·

)
q +O(q2).

From (2.4), (2.5) and (2.6), we have

(2.7)
8∑

l=1

(
yil
)2

= − 1

30
c2(Wi).

Let {±2π
√
−1xl} be the formal Chern roots for (TZC,∇TZC). Let c = 2π

√
−1u. One has

Q(Pi, Pj , ξ, τ)

=
{
e

1

24
E2(τ)(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj))Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)

16ch(Vi)ch(Vj)
}(12)

=

{
e

1

24
E2(τ)(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj))

(
5∏

l=1

(
xl

θ′(0, τ)
θ(xl, τ)

))
θ1(u, τ)

θ1(0, τ)

θ2(u, τ)

θ2(0, τ)

θ3(u, τ)

θ3(0, τ)

·1
4

(
8∏

l=1

θ1(y
i
l , τ) +

8∏

l=1

θ2(y
i
l , τ) +

8∏

l=1

θ3(y
i
l , τ)

)(
8∏

l=1

θ1(y
j
l , τ) +

8∏

l=1

θ2(y
j
l , τ) +

8∏

l=1

θ3(y
j
l , τ)

)}(12)

.

(2.8)

Then we can preform the transformation formulas for the theta functions and E2(τ) (c.f. [4] and
[8]) to show that Q(Pi, Pj , ξ, τ) is a modular form of weight 14 over SL(2,Z). Q.E.D.
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Proof of Theorem 0.1: Expanding the q-series, we have

e
1

24
E2(τ)(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj))Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)

16ch(Vi)ch(Vj)

=
(
e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))

−e
1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
q +O(q2)

)

· Â(TZ) cosh
( c
2

)
ch(C+B1q +O(q2))(1 − 16q +O(q2))(1 + ch(Wi)q +O(q2))(1 + ch(Wj)q +O(q2))

=e
1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))Â(TZ) cosh

( c
2

)

+ q
(
e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))Â(TZ) cosh

( c
2

)
ch(B1 − 16 +Wi +Wj)

−e
1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
Â(TZ) cosh

( c
2

))

+O(q2).

(2.9)

It is well known that modular forms over SL(2,Z) can be expressed as polynomials of the
Eisenstein series E4(τ), E6(τ), where

(2.10) E4(τ) = 1 + 240q + 2160q2 + 6720q3 + · · · ,

(2.11) E6(τ) = 1− 504q − 16632q2 − 122976q3 + · · · .

Their weights are 4 and 6 respectively.
Since the weight of the modular form Q(Pi, Pj , ξ, τ) is 14, it must be a multiple of

(2.12) E4(τ)
2E6(τ) = 1− 24q + · · · .

So from (2.9) and (2.12), we have

{
e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))Â(TZ) cosh

( c
2

)
ch(B1 − 16 +Wi +Wj)

}(12)

−
{
e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
Â(TZ) cosh

( c
2

)}(12)

=− 24
{
e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)))Â(TZ) cosh

( c
2

)}(12)
.

(2.13)

Therefore
{
Â(TZ) cosh

( c
2

)
ch(Wi +Wj +B1 + 8)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)

·
{
− e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)) − 1

p1(TZ)− 3c2 + 1
30 (c2(Wi) + c2(Wj))

Â(TZ) cosh
( c
2

)
ch(Wi +Wj +B1 + 8)

+e
1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj))Â(TZ) cosh

( c
2

)}(8)
.

(2.14)
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To find B1, we have

Θ(TCZ, ξC)

=

(
∞
⊗

m=1
Sqm(T̃CZ)

)
⊗
(

∞
⊗
n=1

Λqn(ξ̃C)

)
⊗
(

∞
⊗
u=1

Λ−qu−1/2(ξ̃C)

)
⊗
(

∞
⊗
v=1

Λqv−1/2(ξ̃C)

)

=(1 + (TCZ − 10)q +O(q2))⊗ (1 + ξ̃Cq +O(q2))

⊗ (1− ξ̃Cq
1/2 − 2ξ̃Cq +O(q3/2))⊗ (1 + ξ̃Cq

1/2 − 2ξ̃Cq +O(q3/2))

=1 + (TCZ − 10 + ξ̃C + 3ξ̃C ⊗ ξ̃C)q +O(q2).

(2.15)

So B1 = TCZ − 10 + ξ̃C + 3ξ̃C ⊗ ξ̃C.

Plugging B1 into (2.14), we have

{
Â(TZ) cosh

( c
2

)
ch(Wi +Wj + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)

·
{
− e

1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj)) − 1

p1(TZ)− 3c2 + 1
30(c2(Wi) + c2(Wj))

Â(TZ) cosh
( c
2

)
ch(Wi +Wj + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

+e
1

24
(p1(TZ)−3c2+ 1

30
(c2(Wi)+c2(Wj))Â(TZ) cosh

( c
2

)}(8)
.

(2.16)

Since ch(Wi), ch(Wj) only contribute degree 4l forms, we can replace cosh
(
c
2

)
by e

c
2 . Then in

(2.16), putting i = 1, j = 2 gives (0.4) and putting i = j gives (0.5). Q.E.D.

To prove theorem 0.2, for each i, set

R(Pi, ξ, τ)

:=
{
e

1

24
E2(τ)(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)

8ch(Vi)
}(12)

.
(2.17)

Theorem 2.2. R(Pi, ξ, τ) is a modular form of weight 10 over SL(2,Z).

Proof: This can be similarly proved as Theorem 2.1 by seeing that

R(Pi, ξ, τ)

=
{
e

1

24
E2(τ)(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)

8ch(Vi)
}(12)

=

{
e

1

24
E2(τ)(p1(TZ)−3c2+ 1

30
c2(Wi))

(
5∏

l=1

(
xl

θ′(0, τ)
θ(xl, τ)

))
θ1(u, τ)

θ1(0, τ)

θ2(u, τ)

θ2(0, τ)

θ3(u, τ)

θ3(0, τ)

·1
2

(
8∏

l=1

θ1(y
i
l , τ) +

8∏

l=1

θ2(y
i
l , τ) +

8∏

l=1

θ3(y
i
l , τ)

)}(12)

,

(2.18)

and then apply the transformation laws of theta functions. Q.E.D.
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Proof of Theorem 0.2: Similar as in the proof of Theorem 0.1, expanding the q-series, we have

e
1

24
E2(τ)(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)

8ch(Vi)

=
(
e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))

−e
1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
q +O(q2)

)

· Â(TZ) cosh
( c
2

)
ch(C+B1q +O(q2))(1 − 8q +O(q2))(1 + ch(Wi)q +O(q2))

=e
1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)

+ q
(
e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)
ch(B1 − 8 +Wi)

−e
1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
Â(TZ) cosh

( c
2

))

+O(q2).

(2.19)

However modular form of weight 10 must be a multiple of E4(τ)E6(τ) = 1 − 264q + · · · , so we
have

{
e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)
ch(B1 − 8 +Wi)

}(12)

−
{
e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
Â(TZ) cosh

( c
2

)}(12)

=− 264
{
e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)}(12)
.

(2.20)

Therefore
{
Â(TZ) cosh

( c
2

)
ch(Wi +B1 + 256)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)

·
{
−e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi)) − 1

p1(TZ)− 3c2 + 1
30c2(Wi)

Â(TZ) cosh
( c
2

)
ch(Wi +B1 + 256)

+e
1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)}(8)
.

(2.21)

Plugging in B1, we have
{
Â(TZ) cosh

( c
2

)
ch(Wi + TCZ + 246 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)

·
{
−e

1

24
(p1(TZ)−3c2+ 1

30
c2(Wi)) − 1

p1(TZ)− 3c2 + 1
30c2(Wi)

Â(TZ) cosh
( c
2

)
ch(Wi + TCZ + 246 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

+e
1

24
(p1(TZ)−3c2+ 1

30
c2(Wi))Â(TZ) cosh

( c
2

)}(8)
.

(2.22)

Since ch(Wi) only contribute degree 4l forms, we can replace cosh
(
c
2

)
by e

c
2 , (2.22) gives us

(0.7). Q.E.D.
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