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ABSTRACT: 

 

While extracting land cover from remote sensing images, each pixel in the image is allocated to one of the possible class. In reality 

different land covers within a pixel can be found due to continuum of variation in landscape and intrinsic mixed nature of most 

classes. Mixed pixels may not be appropriately processed by traditional image classifiers, which assume that pixels are pure. The 

existence of mixed pixels led to the development of several approaches for soft (often termed fuzzy in the remote sensing literature) 

classification in which each pixel is allocated to all classes in varying proportions. However, while the proportions of each land 

cover within each pixel may be predicted, the spatial location of each land cover within each pixel is not. Thus, it is important to 

develop and implement a classifier that can work as soft classifiers for landslide identification. This work is an attempt to document 

and identify landslide areas by five spectral indices using temporal multi-spectral images from IRS-P6 LISS-IV images. To improve 

the spectral properties of spectral indices for specific class identification (in this case landslide) a Class Based Sensor Independent 

(CBSI) technique proposed. The result indicates that CBSI based Transformed Normalized Difference Vegetation Index (TNDVI) 

temporal indices data gives better results for landslide identification with minimum entropy and membership range. 
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1. INTRODUCTION 

Remote sensing images dominated by mixed pixels tend to 

increase the error in classification. Conventional hard classifiers 

may tend to over and under estimate the actual aerial extends of 

the classes on the ground and incorporate more errors in the 

results. Further, when there is large numbers of mixed pixels 

present within an image, identification of sufficient number of 

pure pixels for training and testing parameters may not be 

possible. The contribution of each pixel is assigned in 

proportion to the percentage area each ground cover class 

occupies in that mixed pixel (Boardman 1989).  Such an 

approach is called spectral un-mixing which assigns more than 

one class label to an individual mixed pixel (Keshava and 

Mustard 2002). However, the most promising area seems to be 

the application of remote sensing in sub-pixel classification, not 

widely used in the field of disaster events. For this reason, it has 

been proposed that fuzziness should be accommodated in the 

classification procedure so that pixels may have multiple or 

partial class membership and handle mixed pixel (Foody et al. 

1997). 

 

Examples of soft classification techniques applied to remotely-

sensed imagery include the linear mixture model (Adams et al., 

1985; Foody and Cox, 1994; Garcia-Haro et al., 1996), fuzzy c-

means classification (FCM) (Bezdek, 1981; Bezdek et al., 

1984), and feed-forward, back-propagation (FFBP) neural 

networks trained on class proportions (Benediktsson et al., 

1990; Paola and Schowengerdt, 1995; Atkinson and Tatnall, 

1997; Atkinson et al., 1997), support vector machines (Brown 

et al., 1999), among many others. 

 

In FCM, the summation of class memberships of a pixel is equal 

to one, which is based on a probabilistic constraint. This 

constraint may have application where it is appropriate to 

interpret memberships as relative strength of class memberships 

(Krishnapuram and Keller, 1993). The major drawback of this 

constraint is that classes present in a pixel are inter-dependent, 

which may not be the case in reality. This may lead to 

inaccurate classification. In PCM clustering, (Krishnapuram and 

Keller, 1993, 1996) probabilistic constraint has been relaxed to 

produce absolute class memberships, which may indicate the 

class proportions in a pixel. This can produce more accurate 

soft classification results compared to FCM (Harris, 1981). For 

identification of landslides using coarse resolution remotely 

sensed data, the work is designed to meet the following 

objectives: 

1. Identification of earthquake induced landslides area using 

coarse resolution satellite data. 

2. Identification of landslides area as a specific class without 

merging it with other classes at sub-pixel level. 

3. Improve the performance of different indices for specific 

class identification using CBSI technique. 

4.   Evaluate the outputs using entropy concept 
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2. STUDY AREA 

An earthquake of magnitude Mw 7.6 (USGS, 2005) shook 

entire northern India and northern Pakistan on 8 October 2005. 

The focal depth of the earthquake was 26 km. The location of 

the earthquake epicentre (34.493oN, 73.629oE) was close to 

Muzaffarabad in Pakistan-administered Kashmir. The 

earthquake epicentre is very close to the Shinkiari fault, Jhelum 

fault and Main Boundary Thrust (MBT). The Jhelum fault is a 

major neotectonic fault and regionally most extensive. It is a 

north–south (N–S) trending left lateral wrench fault that 

separates Kashmir basin of India from the Peshawar basin of 

Pakistan (GSI 2000). The earthquake occurred in the region of 

the Himalayan frontal fold belt bounded by several tectonic 

features. The region seems to have a complex set-up, as seen on 

the tectonic map prepared by the Geological Survey of India 

(GSI 2000). 

 

The epicentral tract lies in the Jhelum re-entrant, a part of the 

Hazara syntaxis structure, and is surrounded by the Main 

Boundary Thrust (MBT) on the east and north and by the 

Shinkiari Fault (SF) and the Jhelum Fault (JF) (see figure 1). 

The MBT ends abruptly against the N–S trending SF and makes 

an arc over the earthquake zone. The SF is joined by another 

well-known NNW–SSE trending sinistral JF west of 

Muzaffarabad. The frontal Himalayan cover rocks have also 

been affected by folding. Folded hills west of the JF show a 

southward dragging effect, indicating that the western margin of 

the Indian plate has moved northwards along the Jhelum fault 

dragging the sediments west of the fault along with it. Other 

active faults present in the region are Reasi Fault (RT), Main 

Mantle Thrust (MMT), Tarbela Fault (TF), Attock Fault (AF), 

Khairabad–Panjal Thrust (KPT) and Nathiagali Thrust (NT) 

(Das et al. 2007). 

 

Figure 1: Tectonic set-up of the 8 October 2005 Kashmir 

earthquake region and surroundings (Modified from Das et al. 

2007). 

 

The local geology strongly indicates the possibility of large 

amplifications of ground motion owing to the influence 

Peshawar basin and basin edges near Jhelum fault. In this 

region of compressional tectonics, the motion between colliding 

geotectonic units is accommodated by slip on a suite of major 

thrusts. Furthermore, the modern deformation in the area is the 

result of north- and northeast-directed compression producing 

thrust faulting, which is evidenced by this deformation and 

warping of Pleistocene alluvial-fans into anticlinal ridges near 

the town of Muzaffarabad (about 10 km southwest of the 

earthquake epicentre) caused by northwest–southeast trending 

active thrust faults (Bilham 2006). This region is moderately 

active and has experienced several earthquakes of magnitude 

greater than Mw=5.0 during last 300 years. The largest 

earthquake was on 30 May 1885 (Kashmir earthquake) and 

occurred 19.5km west of Srinagar. The earthquake of Badgam 

(magnitude 5.1) on 2 September 1963 and Pattan (magnitude 

5.9) on 28 December 1974 were the most deadliest and affected 

several towns in the region. 

 

At present, use of earth resources satellite data is able to provide 

detailed information regarding such events which occur in poor 

accessible area. By acquiring temporal data, i.e. both pre and 

post event digital satellite images, it is possible to identify such 

phenomenon with relative ease and effectiveness. One of the 

main reasons is that spectral properties of the affected area will 

change as the electromagnetic energy interaction both temporal 

time frame i.e. pre and post event will be different. For the 

purpose of assessing damage at an early stage of a large 

earthquake, this work presents a method of landslide 

identification by temporal indices satellite data. Test data sets 

for this work have been acquired from LISS-IV sensor of IRS 

P6 satellite over two different acquisition dates, i.e., May 27th, 

2005 (pre-earthquake fig.2a) and October 23rd, 2005 (post-

earthquake fig 2b) of the test site shown in figure 2. The study 

area is covered by parts of the western Himalaya and major 

settlements covered in this study are in between Muzafarabad 

and Balakot city, Pakistan. 

 

 

Figure 2. Study area 
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3. METHODOLOGY ADOPTED 

This study mainly focuses on identifying the landslide areas in 

and around Balakot-Muzaffarabad region after the Kashmir 

earthquake in 2005. There has been requirement for identifying 

only one class that is, landslides. First of all, both pre- and post- 

earthquake multi-spectral images have been atmospheric 

corrected using ATCOR-3 and geo-referenced using Autosync 

option of ERDAS software. To create the model of simple ratio 

indices, ERDAS Model Maker has been used. While using 

temporal multi-spectral data for classification in this work, the 

spectral dimensionality of each multi-spectral data has been 

reduced by using appropriate indices while class of interest is 

enhanced. 

 

For generating band ratio data, it is important to know various 

types of band information present in multi-spectral data. While 

applying any band ratio, the user must be aware about number 

of bands along with their wavelength ranges. Based on spectral 

information of remote sensing data, the user has to decide which 

spectral bands of data are to be used in different band ratio 

functions and may require expert knowledge. To overcome the 

need for expert knowledge about remote sensing data, in this 

work CBSI spectral band ratio has been proposed as explained 

in Eq. (1) (Sengar 2013); 
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where   

     g is grey value or digital number,    

     r and c are the row and column of pixels belonging to a class 

   Ck is kth class of the pixels, 

    nirg
is the band for which the maximum grey value is found 

within the pixels belonging to the considered class; 

analogously, redg
 is the band of the minimum value. 

 

In Eq. (1) the user has to provide the location of a class in the 

form of row and column or latitude and longitude. Based on 

coordinates of a class input, the minimum and maximum value 

of the data will be calculated. Apart from the class of interest 

(landslide) location, spectral information as grey value from all 

the bands will be read.  Minimum and maximum operators finds 

out which band has minimum and which has maximum gray 

values. Then the band having maximum value is denoted as 

NIR and band having minimum values as RED in different 

indices as mentioned in Table 1. Here a simple condition is also 

applied that if indices values are negative then replace it with 

zero value. This enhances the concerned class of interest and 

only requires geo-location of a class, while spectral remote 

sensing data information is not required (Sengar 2014b,Sengar 

2014c). 

 

Now temporal database has been prepared using CBSI and 

conventional approach including mean indices values. These 

mean indices values helped in selection of band values for CBSI 

approach of interested class. Indices output from pre and post 

dated images have been layer stacked to prepare temporal 

indices data corresponding to spectral indices approach (as 

shown in Table.1). Two database (CBSI and conventional) was 

used to process using PCM classifier. In PCM classification, it 

has been presented how these temporal data (CBSI and 

conventional) along with a special form of possibilistic fuzzy 

classification data impact the accuracy of the temporal 

landslides classification. 

 

In this section fuzzy based classifiers have been explained and 

the importance of possibilistic fuzzy based classifier for 

extraction of single class (landslide area) has been discussed. 

One of the fuzzy based classifier fuzzy c-means (FCM) is a 

clustering technique where each data point belongs to a cluster 

with some degree that is specified by a membership grade and 

that the sum of the memberships for each pixel must be one 

(Bezdek, 1981, Krishnapuram and Keller, 1993). This can be 

achieved by minimizing the generalized least-square error 

objective function as in Eq. (2); 
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U          = N   (c+1) matrix 

V  = (v1, v2,…. vc) 

c and N  = Total no. of clusters and pixels respectively 

m          = weighted constant (1< m < ∞) 

  

The squared distance D(xk,vj) between xk, and vj which is given 

as Eq. (4); 
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where A is the weight matrix; Amongst a number of A-norms, 

three namely Euclidean, Diagonal and Mahalonobis norm, each 

induced by specific weight matrix, are there. The formulations 

of each norm are given as (Bezdek, 1981); 
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  Euclidean Norm    A = I 

 Diagonal Norm A = 

1

i

D

  (5) 

 Mahalonobis Norm  A = 

1

i

C

 

 

where I is the identity matrix, Di  is the diagonal matrix having 

diagonal elements as the eigen values of the variance covariance 

matrix, Ci 

given as Eq. (6); 
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In this study, value of weighting exponent ‘m’ has been taken as 

2.3 and Euclidean Norm of weight matrix ‘A’ has been taken, as 

it gives maximum classification accuracy compared to other 

weighted norms and less effected with noise outlier present in 

training data. As Euclidean Norm uses only mean value but 

other norms uses mean as well as variance-covariance. Mean is 

less affected than variance-covariance due to the presence of 

noise in training data (Kumar et al., 2006, Tso and Mather, 

2009). The original FCM formulation minimizes the objective 

function as given in Eq. (2); 
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While in possibilistic fuzzy classifier one would like the 

memberships for representative feature points to be as high as 

possible, while unrepresentative points should have low 

membership in all clusters (Krishnapuram and Keller, 1993). 

The objective function, which satisfies this requirement, may be 

formulated as Eq. (7); 
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In Eq. (7)  ηi  is a parameter that depends on the distribution of 

pixels in the cluster i and is assumed to be proportional to the 

mean value of the intra cluster distance. For clusters with 

similar distributions, ηi may be set to the same value for each 

cluster (Massone, et al., 2000). Generally ηi depends on the 

shape and average size of the cluster i and its value may be 

computed as Eq. (9); 
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here µk,i is taken from Eq. 3  

 

Where K is a constant and generally kept equal to 1. The class 

memberships µk,i  are obtained as Eq. (10);  
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For extracting land cover classes, FCM is depended upon 

number of land cover classes to be extracted from remote 

sensing multi-spectral image. Membership values generated 

from Eq. 3, are depended upon summation of distances of 

unknown feature to mean vectors of land cover classes 
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equals to 1   and then µk,i for all features becomes one in Eq. 3. 

This concludes that all features in remote sensing multi-spectral 

image belong to one class, which is not the case (Tso and 

Mather, 2009). Possibilistic fuzzy based classifiers do not 

follow probability rule. That means submission of occurrence of 

all classes in a pixel may not be one, as in the case of classifiers 

follows probability rule. While working with PCM algorithm 

for extracting single land cover class it behaves as: 
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 and from Eq. 10, µk,i will 

be calculated. This indicates that possibilistic view of the 

membership of a feature vector in a class has nothing to do with 

its membership in other classes (Krishnapuram and Keller, 

1993). 

 

The Automatic Land Cover Mapping (ALCM) module from 

Sub-Pixel Multi-Spectral Image Classifier (SMIC) package 

(Kumar et al. 2010) has been used generate output from PCM 

classifier. The ALCM module has the capability to process 

multiple multi-spectral images for single land cover class 

extraction at sub-pixel level using supervised approach with 

small training data set. The size of training data used for 

supervised sub-pixel classification approach was approximately 

equal to 10n (Jensen, 1996), were n is dimension (number of 

bands) of data used. 

 

Assessing the accuracy of classified maps is an integral part 

while generating thematic classified map. The accuracy of 

classification is usually assessed by comparing the classification 

with some reference data that is believed to accurately reflect 

the true land cover. As occurrence of landslides due to 

earthquake is unique activity not occurring regularly in a hilly 

area. Secondly, while discriminating landslide areas through 

fraction images generated while using soft classifiers like fuzzy 

approaches; the fraction within pixel is not possible to locate on 

the ground. So, in this case, entropy as uncertainty indicator, an 

absolute indirect method for accuracy assessment has been 

used. 

 

Shanon entropy (Foody, 1995) and fuzzy set based measures 

such as an index of fuzziness (Binaghi et al., 1999) may be used 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-461-2018 | © Authors 2018. CC BY 4.0 License.

 
464



to estimate the uncertainty in the classification data. Entropy 

measures show how the strength of class membership in the 

classification output is partitioned between the classes for each 

pixel (Foody, 1996). The value of these measures is maximized 

(a high degree of uncertainty) when the class membership is 

partitioned evenly between all the classes, and minimized (a low 

degree or uncertainty) when the membership is associated 

entirely with one class. Shanon entropy, a measure 

conceptualized in terms of probability theory may be computed 

from Eq.(11) (Klir, 1990); 
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Therefore the accuracy assessment through entropy analysis 

using Eq. (11) was conducted for quality assessment. Entropy 

criterion is based on actual outputs of classifier and hence is 

sensitive to uncertain variations. Therefore this criterion can 

visualize the uncertainty of the classification results. The 

uncertainty can be controlled and its effects may be mitigated 

by removing the uncertainty causes and reasons. The 

uncertainty behavior is nearly independent of the correctness 

behaviour (Sengar 2014a). The uncertainty of the classification 

results gives a point of view about results quality and classifier 

performance, where each pixel may be classified with particular 

uncertainty. The results extracted from Eq. (11) shows that the 

pixels are classified with different quality and certainty. 

Therefore the certainty criteria can be used as a new comparison 

means for classifier performance (Hamid and Hassan, 2006). 

 

Two dimensions are required to show the accuracy of output 

result, as it arises on a given set of testing data. One is True 

Positive Ratio (TPR) and another one is False Alarm Ratio 

(FAR). Low FAR (Eq. 13) and high TPR (Eq. 12) is desirable 

for good result (Brier and Allen, 1951). 

 

TPR = 
sample in the presents target of  no. Total

  targetasdetect    target  of  No.

 (12) 

 

FAR = sample in the presents background of  no. Total

  targetasdetect    background  of  No.

 (13) 

 

4. RESULTS AND DISCUSSION 

Remote sensing techniques provide a rapid and powerful tool to 

identify spatial distribution of the co-seismic rupture zone 

associated with large earthquakes in the remote and high 

mountainous areas (Fu et al., 2004). The mean from training 

data landslide class generated from temporal indices data has 

been mentioned in Table 1. 

 

The Table.1 clearly indicates that the mean indices value of 

interested class changed from pre earthquake to post earthquake 

data set. The higher mean value changes indicate that one class 

of interest easily separate with other classes. The various indices 

based on CBSI and conventional approach for landslides 

identification has been generated (figure 3 and 4). In these 

images landslide areas have high membership values and are 

seen as bright areas. The results of the same have super imposed 

on the corresponding landslide areas on indices images. If this 

temporal index variation is more from a specific index, than 

more nicely landslides can be distinguished. 

 

 

Spectral indices 

Landslides 

CBSI Conventional 

Pre Post Pre Post 

NDVI(Rouse et al. 1973) 0.47

2 

0.64

4 

0.58

9 

0.33

0 

SAVI(Huete 1988) 0.47

2 

0.64

4 

0.58

9 

0.33

0 

SR(Birth and McVey 

1968) 

0.44

1 

0.62

1 

0.37

5 

0.35

1 

TNDVI(Tucker 1979) 0.83

0 

0.92

9 

0.88

2 

0.74

9 

TVI(Broge and Leblanc 

2000) 

0.73

0 

0.56

0 

0.65

6 

0.48

8 

Table 1: Mean values from temporal indices data 

 

 

Figure 3. CBSI temporal indices output for landslides 

identification 

 

 

Temporal 

Indices 

Landslides 

CBSI Conventional 

Membership 

values 

Entropy Membership 

values 

Entropy 

NDVI 0.898-0.996 0.045 0.890-0.996 0.034 

SAVI 0.910-0.996 0.017 0.890-0.996 0.028 

SR 0.910-0.996 0.060 0.898-0.996 0.118 

TNDVI 0.980-0.996 0.011 0.914-0.996 0.060 

TVI 0.820-0.996 0.323 0.847-0.996 0.343 

Table 2. Membership range and entropy value for landslides 

 

Table 2 indicates that for landslides identification TNDVI 

temporal indices data shows best result with minimum 

membership range and minimum entropy value. But if both 

CBSI and conventional TNDVI indices result compare with 

each other then it is found that CBSI-TNDVI shows best result 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 
GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

This contribution has been peer-reviewed.    
https://doi.org/10.5194/isprs-archives-XLII-3-W4-461-2018 | © Authors 2018. CC BY 4.0 License.

 
465



with membership range (0.980-0.996) and minimum entropy 

(0.011). The less membership range indicates that the class of 

interest can easily be identified without being overlapping with 

other classes. Similarly, less entropy indicates that there is less 

uncertainty in the class of interest. 

 

 

 

Figure 4. Conventional temporal indices output for landslides 

identification 

 

5. CONCLUSION 

In this study, importance of temporal indices has been studied 

for extracting landslide using PCM classifier. From results it 

was observed that using CBSI-TNDVI temporal indices show 

better separation between landslide and background as compare 

to other temporal indices result. The entropy analysis shows that 

using CBSI temporal indices data, the one class of interest 

(landslide area) was better identified in comparison to 

conventional indices data. The methodology proposed in this 

work requires minimal reference data as training sample and 

less information requirement about image characteristics for 

identification landslides. This methodology provides a quick 

and efficient way to identify landslides locations and may be 

useful for management and development plans for decision 

makers, local administrations, and scientists interested in 

landslides. 
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