Endocrine Physiology 内分泌生理学

#### By Wang Hui-Ping Department of Physiology Zhejiang University School of Medicine

Endocrinology 内分泌学

### Endocrinology

 The study of chemical communication systems that provide the means to control a huge number of physiologic processes



# Endocrine system 内分泌系统

- Endocrine glands
  内分泌腺
- Endocrine tissues
- Endocrine cells



#### Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### Summary of the Hormones TABLE II-I SITE PRODUCED (ENDOCRINE GLAND) HORMONE MAJOR FUNCTION\* IS CONTROL OF: Adipose tissue cells Leptin Appetite; metabolic rate; reproduction Adrenal: Adrenal cortex Cortisol Organic metabolism; response to stress; immune system; development Sex drive in women; adrenarche Androgens Aldosterone Sodium and potassium excretion by kidneys Adrenal medulla Epinephrine Organic metabolism; cardiovascular Norepinephrine function; response to stress Gastrointestinal tract Gastrin Gastrointestinal tract motility and secretions; exocrine and endocrine secretions from pancreas; Secretin Secretion of bile from gallbladder Cholecystokinin (CCK)<sup>†</sup> Glucose-dependent insulinotropic peptide (GIP) Motilin Gonads: **Ovaries:** female Estrogen (Estradiol in humans) Reproductive system; breasts; growth and development; development of ovarian follicles Progesterone Inhibin Follicle-stimulating hormone (FSH) secretion ? Relaxation of cervix and pubic ligaments Relaxin Reproductive system; secondary sex characteristics; Testes: male Androgen (Testosterone and Dihydrotestosterone) growth and development; sex drive; gamete development Inhibin FSH secretion Müllerian-inhibiting substance (MIS) Regression of Müllerian ducts

| Heart                                                                | Atrial natriuretic peptide (ANP, atriopeptin)                                                                                                                                                                                        | Sodium excretion by kidneys; blood<br>pressure                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hypothalamus                                                         | Hypophysiotropic hormones:<br>Corticotropin-releasing hormone (CRH)<br>Thyrotropin-releasing hormone (TSH)<br>Growth hormone-releasing hormone (GHRH)<br>Somatostatin (SS)<br>Gonadotropin-releasing hormone (GnRH)<br>Dopamine (DA) | Secretion of hormones by the anterior pituitary<br>Secretion of adrenocorticotropic hormone (ACTH)<br>Secretion of thyroid-stimulating hormone (TSH)<br>Secretion of growth hormone (GH)<br>Secretion of growth hormone<br>Secretion of luteinizing hormone (LH) and follicle-<br>stimulating hormone (FSH)<br>Secretion of prolactin (PRL) |
| Kidneys                                                              | Erythropoietin (EPO)<br>1,25-dihydroxyvitamin D                                                                                                                                                                                      | Erythrocyte production in bone marrow<br>Calcium absorption in GI tract                                                                                                                                                                                                                                                                     |
| Leukocytes,<br>macrophages,<br>endothelial cells,<br>and fibroblasts | Cytokines <sup>‡</sup> (these include the<br>interleukins, colony-stimulating<br>factors, interferons, tumor<br>necrosis factors)                                                                                                    | Immune defenses; immune cell growth and secretory processes                                                                                                                                                                                                                                                                                 |
| Liver and other cells                                                | Insulin-like growth factor-I (IGF-I)                                                                                                                                                                                                 | Cell division and growth of bone and other tissues                                                                                                                                                                                                                                                                                          |
| Pancreas                                                             | Insulin<br>Glucagon<br>Somatostatin (SS)                                                                                                                                                                                             | Organic metabolism; plasma glucose, amino acids and fatty acids                                                                                                                                                                                                                                                                             |
| Parathyroids                                                         | Parathyroid hormone<br>(PTH, parathormone)                                                                                                                                                                                           | Plasma calcium and phosphate; synthesis of<br>1,25-dihydroxyvitamin D                                                                                                                                                                                                                                                                       |
| Pineal                                                               | Melatonin                                                                                                                                                                                                                            | ? Sexual maturity; body rhythms                                                                                                                                                                                                                                                                                                             |

#### SITE PRODUCED (ENDOCRINE GLAND) HORMONE

MAJOR FUNCTION\* IS CONTROL OF:

| Pituitary glands:<br>Anterior pituitary | Growth hormone (somatotropin)<br>Thyroid-stimulating hormone<br>(thyrotropin)<br>Adrenocorticotropic hormone<br>(corticotropin)<br>Prolactin<br>Gonadotropic hormones:<br>Follicle-stimulating hormone<br>Males<br>Females<br>Luteinizing hormone:<br>Males | Growth, mainly via local production of IGF-I;<br>protein, carbohydrate, and lipid metabolism<br>Thyroid gland<br>Adrenal cortex<br>Gamete production<br>Ovarian follicle growth<br>Testicular production of testosterone |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Females<br>β-lipotropin and β-endorphin                                                                                                                                                                                                                     | Ovarian production of estradiol; ovulation<br>? Fat mobilization and analgesic during stress                                                                                                                             |
| Posterior pituitary <sup>s</sup>        | Oxytocin<br>Vasopressin (antidiuretic hormone, ADH)                                                                                                                                                                                                         | Milk let-down; uterine motility<br>Blood pressure; water excretion by the kidneys                                                                                                                                        |
| Placenta                                | Human chorionic gonadotropin (hCG)<br>Estrogens<br>Progesterone<br>Human placental lactogen (hPL)                                                                                                                                                           | Secretion by corpus luteum<br>See Gonads: ovaries<br>See Gonads: ovaries<br>Breast development; organic<br>metabolism                                                                                                    |
| Thymus                                  | Thymopoietin                                                                                                                                                                                                                                                | T-lymphocyte function                                                                                                                                                                                                    |
| Thyroid                                 | Thyroxine (T <sub>4</sub> )<br>Triiodothyronine (T <sub>3</sub> )<br>Calcitonin                                                                                                                                                                             | Metabolic rate; growth; brain<br>development and function<br>? Plasma calcium                                                                                                                                            |
| Multiple cell types                     | Growth factors <sup>‡</sup> (e.g., epidermal growth factor)                                                                                                                                                                                                 | Growth and proliferation of specific cell types                                                                                                                                                                          |
| Other (blood)                           | Angiotensin II                                                                                                                                                                                                                                              | Blood pressure; production of aldosterone from adrenal cortex                                                                                                                                                            |



### What is a hormone (激素)?

#### Definition

- Chemical messenger (信使) synthesized by specific endocrine cells in response to certain stimuli and secreted into the blood, which carries it to the target cells (靶细胞).
- Signal target cells to perform specific chemical reactions

#### Functions

 Regulation of metabolism, growth and development, water and electrolyte balance, reproduction, and behavior



#### Types of Hormones

- Proteins and peptides (蛋白质和肽类)
  - The majority of hormones (3 to 200 amino acids), lipid insoluble e.g., insulin, prolactin, oxytocin, GH
- Steroids(类固醇或甾体类)
  - Made from cholesterol, lipid soluble, from gonads and adrenal cortex, e.g. cortisol, androgen
- Amines(胺类)
  - Derivatives of the amino acid tyrosine, e.g., adrenaline, thyroxine (T4), lipid insoluble



### **Peptide Hormone Synthesis**



### **Typical synthesis of peptide hormones**

- Preprohormones (前激素元) larger hormones
  produced on the ribosomes of the endocrine cells
- Prohormones(激素元) cleavage of preprohormones by proteolytic enzymes in rER
- Prohormones packaged into secretory vesicles by the Golgi apparatus
- Prohormones cleaved to give active hormone and profragments



Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### Figure 3-16

#### **NUCLEUS**

The DNA code is "transcribed" into mRNA.

#### **RIBOSOMES**

The mRNA is "translated" to give instructions for proteins synthesis.









#### Amine hormones

■ From tyrosine (酪氨酸)

Be stored

#### Secretion (分泌)

- Concentrations of Hs in the blood
  - $pg/mL \sim \mu g/mL$
- Hormonal secretion rate
  - $\mu g/day \sim mg/day$
- Rhythmic secretion (pulses)
  - Diurnal (日周期)
    - daily, occurring in a 24-hour cycle
    - growth hormone, cortisol
  - Cyclic (月周期)
    - oestrogen, progesterone, LH



#### Transport of Hs in the blood

- Peptides and catecholamine(儿茶酚胺)
  - water soluble
  - dissolve in blood
  - circulate in blood mainly in free form
- Steroid and thyroid hormones (甲状腺激素)
  - circulate in blood mainly bound to plasma proteins
  - the free form is biologically active
  - the greater binding, the longer half-life

## Half-life

- Persistence of a hormone in blood
- A time indicating half of its activity remaining
- Is brief
  - Free: min
  - Binding: mins, hrs, days
  - e.g. T4 (6 days); Insulin (0.006 days)
- But effects can last for several minutes to hours

The "metabolic fate" of a given hormone molecule in the blood is not always fully characterized, but some of the main possibilities are:

- Excretion
- Inactivation by metabolism
- Activation by metabolism Binding to receptor and produces a cellular response





### Clearance of Hs from the blood

### Ways

- Metabolic destruction by the tissues
- Binding with the tissues
- Liver
- Kidney

Modes of Action 内分泌方式

- Can be categorized by the site of action relative to the site of secretion.
- Endocrine (内分泌)
- Paracrine (旁分泌)
- Autocrine (自分泌)
- Neurocrine (神经分泌)

## **Endocrine secretion**

- From gland via blood into a distance
- Substance released by cell into bloodstream that affects distant cells.
  - e.g. testosterone (睾酮)is secreted by Leydig cells in testis.



### Hormone from an endocrine cell



### **Paracrine secretion**

- Neighboring cells of different types
- Substance released by cell that affects neighboring cells.
- Not released into bloodstream
- e.g. histamine (组胺) released at site of injury to constrict blood vessel walls and stop bleeding



# **Autocrine secretion**

- Neighboring cells of the same type or the secreting cell itself
  - substance released by cell that affects the secreting cell itself
  - e.g. norepinephrine(去甲肾上腺素) is released by a secretory cell in the adrenal medulla(肾上腺髓质), and norepinephrine itself inhibits further release by that cell - this is also an example of direct negative feedback



# **Neurocrine secretion**

 Secreted by nerve endings, via axonal transport and then via blood



## **Endocrine route**



A secretion may have several sites of action simultaneously.

**Example:** 

- **Norepinephrine** (去甲肾上腺素)
  - *Autocrine* action causes negative feedback on secretion.

- Simultaneously, *endocrine* action causes respiration rate to  $\uparrow$ , peripheral blood vessels to constrict, etc.

#### Characteristics

- Regulates rate of reaction
- Specificity (特异性)
- Amplification effect (放大效应)



#### Characteristics

- Interaction between hormones
  - Synergistic action (协同作用)
  - Antagonistic action(拮抗作用)
  - Permissive action (允许作用)
    - Hormone A must be present for the full strength of hormone B's effect.
    - Up-regulation of one hormone's receptors by another hormone



e.g. the ability of TH to "permit" epinephrine-induced release of fatty acids from adipose tissue cells (TH causes an  $\uparrow$  no. of epinephrine receptors on the cell)

#### Mechanism of hormone action(激素作用机制)

- Receptor (受体)
  - Membrane receptor
  - Intracellular receptor
- Regulation of Receptors
  - Up-regulation (上调)
    - An increase in the number of a H's receptor
    - Resulting from a prolonged exposure to a low concentration of the H
    - A target cell responsiveness to the H
  - Down-regulation (下调)
    - $\downarrow$  in number of receptors for a hormone in the target cell



#### Mechanisms of hormone actions

- Peptide/protein Hs
  - Proteins and peptides cannot freely penetrate plasma membrane (fixed receptor)
  - Involve a second messenger (第二信使)
  - Bind to a specific receptor and activate the intracellular second messenger, e.g., ACTH, parathyroid hormones

#### Mechanism of action

- Peptide/protein Hs
  - Second messenger mechanisms (第二信使学说)
    - AC-cAMP second messenger system
    - Cell membrane phospholipids second messenger system
    - Calcium-calmodulin (钙调蛋白) second messenger system

### Mechanism of action

- Peptide/protein Hs
  - cAMP second messenger system



### **Cyclic AMP signaling-sequence of events**

- The *hormone* (*1<sup>st</sup> messenger*) binds to the membrane receptor; the membrane receptor changes shape and bind to G protein (GTP-binding protein)
- G protein is activated; binds to GTP (Guanosine 5'- triphosphate) and release GDP
- Activated G protein moves to membrane and binds and activates adenylate cyclase (GTP is hydrolysed by GTPase activity of G protein)
- Activated adenylate cyclase converts ATP to cAMP (second messenger) (if inhibited, no catalysed reaction by AC)
- cAMP is free to circulate inside the cell; triggers activation of one to several protein kinase molecules; protein kinase phosphorylates many proteins
- The phosphorylated proteins may either be activated or inhibited by phosphorylation

Adenylyl cyclase forms cAMP, a "second messenger" that activates enzymes used in cellular responses.

The phosphodiesterase enzymes "terminate" the second messenger cAMP.



## **Amplification effect**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



The cAMP system rapidly amplifies the response capacity of cells: here, one "first messenger" led to the formation of one million product molecules. Cells can respond via the cAMP pathways using a diversity of cAMP-dependent enzymes, channels, organelles, contractile filaments, ion pumps, and changes in gene expression.



#### Mechanism of action

- Peptide/protein Hs
  - Phospholipids second messenger system



#### **PIP-calcium signaling mechanism**

- A hormone (first messenger) binding to its receptor causes the receptor to bind inactive G protein
- *G protein* is activated; binds GTP & releases GDP
- Activated G protein binds & activates a membrane-bound phospholipase enzyme;
- G protein becomes inactive
- Phospholipase splits phosphatidyl inositol biphosphate (PIP2) to diacylglycerol (DAG) & inositol triphosphate (IP3);
- DAG activates protein kinases on the plasma membrane; IP3 triggers *calcium ion* release from the ER
- Released *calcium ions* (second messengers) alter specific enzymes' activity and ion channels or bind to the regulatory protein calmodulin;
- Calmodulin also activates specific enzymes to amplify the cellular response







#### Mechanism of action

- Peptide/protein Hs
  - Calcium-calmodulin second messenger system

The Ca-calmodulin system is similar to some of the cAMP pathways, because it results in the activation of protein kinases that can phosphorylate key proteins required for cellular responses.



#### Mechanism of action

- Second messengers
  - cAMP, cGMP, IP<sub>3</sub>, DG, Ca<sup>2+</sup>

| Second Messenger                 | Examples of Hormones Which Utilize This<br>System                                                                                                                                        |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cyclic AMP                       | Epinephrine and norepinephrine, glucagon,<br>luteinizing hormone, follicle stimulating hormone,<br>thyroid-stimulating hormone, calcitonin,<br>parathyroid hormone, antidiuretic hormone |
| Protein kinase activity          | Insulin, growth hormone, prolactin, oxytocin,<br>erythropoietin, several growth factors                                                                                                  |
| Calcium and/or phosphoinositides | Epinephrine and norepinephrine, angiotensin II,<br>antidiuretic hormone, gonadotropin-releasing<br>hormone, thyroid-releasing hormone.                                                   |
| Cyclic GMP                       | Atrial naturetic hormone, nitric oxide                                                                                                                                                   |

#### Mechanism of action

- Steroid hormones
  - Modulation of gene expression
    - Steroid hormones bind to intracellular receptors





The steroid-receptor complex binds to DNA, turning specific genes *on* or *off* 

#### **Sequence of events for steroid hormone binding**

- Steroids are lipid-based and can diffuse into cells easily
- No need for intracellular second messenger
- Mobile receptors
- Some steroids bind to a cytoplasmic receptor, which then translocates to the nucleus
- Other receptors for steroids are located in the nucleus or are nuclear receptor proteins
- In both cases, the steroid-receptor complex formed can then bind to specific regions of DNA and activate specific genes
- Activated genes transcribe into messenger RNA and instruct the cell to synthesize specific enzyme proteins that change the metabolism of the target cell

#### ■ Control of H secretion (激素分泌调控)

• Three types of inputs to endocrine cells that stimulate or inhibit hormone secretion.





### Control of H secretion

### By negative feedback(负反馈)

■ By positive feedback (正反馈)

## **Regulation of hormone secretion**

- Negative Feedback
  - Characteristic of control systems in which system's response opposes the original change in the system.
  - Hormone <u>itself</u> feeds back to inhibit its own synthesis.
  - Regulated product (<u>metabolite</u>) feeds back to inhibit hormone synthesis.
  - Important for homeostatic control.





## **Regulation of hormone secretion**

#### Positive Feedback

- Characteristic of control systems in which an initial disturbance sets off train of events that *increases the disturbance even further*.
- Amplifies the deviation from the normal levels
- Example: Oxytocin (suckling)
- Important for amplification of level for action.

# Radioimmunoassay (RIA)





#### **Dr. Rosalyn Yalow**

#### **Dr. Solomon Berson**

## **Radioimmunoassay (RIA)**



(from the Nobel lecture by Dr. Rosalyn Yalow, 1977)





(ng/dl)

### Enzyme-Linked Immunosorbent Assay (ELISA)



### Hypothalamus and pituitary 下丘脑和垂体



## Hypothalamus and pituitary

- Hypophyseal portal system (垂体门脉系统)
  - 下丘脑一腺垂体
- Hypothalamohypophyseal tract (下丘脑垂体束)
  - 下丘脑一神经垂体



### Hypothalamus-Adenohypophysis system

### Hypothalamus

- Neuroendocrine Cells (神经内分泌细胞)
  - Peptidergic neuron (肽能神经元)
    - Magnocellular neuroendocrine cell
    - Parvocellular neuroendocrine cell

### Hypothalamus-Adenohypophysis system

- Hypothalamus
  Hypophysiotrophic area
  (下丘脑促垂体区)
  Releasing H
  - Release-inhibiting H



### Hypothalamus-Adenohypophysis system

#### Hypothalamic regulatory peptide

- Thyrotropin-releasing hormone (TRH)
- Gonadotropin-releasing hormone (GnRH)
- Corticotropin-releasing hormone (CRH)
- Growth hormone releasing hormone (GHRH)
- Prolactin releasing factor (PRF)
- Growth hormone release-inhibiting hormone (GHRIH, somatostatin)
- Prolactin release-inhibiting hormone (PIH)
- Melanophore-stimulating hormone releasing factor (MRF)
- Melanophore-stimulating hormone release-inhibiting factor (MIF)

#### **Relationships between hypothalamic and pituitary Hs**



| Major known hypophysiotropic hormones   | Major effect on anterior pituitary |
|-----------------------------------------|------------------------------------|
| Corticotropin-releasing hormone (CRH)   | Stimulates secretion of ACTH       |
| Thyrotropin-releasing hormone (TRH)*    | Stimulates secretion of TSH        |
| Growth hormone-releasing hormone (GHRH) | Stimulates secretion of GH         |
| Somatostatin (SS)                       | Inhibits secretion of GH           |
| Gonadotropin-releasing hormone (GnRH)   | Stimulates secretion of LH and FSH |
| Dopamine (DA)‡                          | Inhibits secretion of prolactin    |

\*TRH can also stimulate the release of prolactin, but whether this occurs physiologically is unclear. ‡Dopamine is a catecholamine; all the other hypophysiotropic hormones are peptides.

### Hypothalamus-Neurohypophysis System

Supraoptic

nucleus — (Vasopressir

- Hypothalamus
  - Supraoptic nucleus
    - (视上核)

(室旁核)

- Paraventricular nucleus
- Hypothalamic or ADH) neurons Axons Optic chiasm Axon Secretory terminals granules (granular material containing oxytocin and vasopressin) Systemic arterial flow Systemic venous outflow \_ADH ►Kidney Neurophysin I - Oxytocin Neurophysin II - Vasopressin → Oxytocin ►uterus (ADH)

Paraventricular

nucleus

(Oxytocin)

Lactating mammary gland

### **Regulation of hypothalamic H secretion**

- Nervous regulation
  - NE, DA, 5-HT
- Hormonal regulation
  - Long-loop feedback
  - Short-loop feedback





### To be continued.....