https://doi.org/10.3799/dqkx.2018.018



# 华北东南缘五河杂岩中镁铁质麻粒岩的变质演化

王程程1,刘贻灿1\*,杨 阳1,张品刚1,2,聂佳珍1

中国科学院壳幔物质与环境重点实验室,中国科学技术大学地球和空间科学学院,安徽合肥 230026
 2.安徽省煤田地质局勘察研究院,安徽合肥 230088

摘要:华北东南缘五河杂岩的变质演化过程研究有助于揭示研究区前寒武纪变质基底的形成与演化历史.基于对五河杂岩中 镁铁质麻粒岩进行的详细岩相学观察、矿物电子探针及锆石 LA-ICP-MS U-Pb 定年和微量元素分析,识别出古元古代变质演 化的 3 个阶段,重建了峰期后近等温减压及降压冷却的顺时针 *P-T-t* 轨迹.峰期高压麻粒岩相变质阶段的代表性矿物组合为 石榴子石(富 Ca 核部)+单斜辉石(富 Al)+斜长石+石英+金红石±角闪石(富 Ti),所记录的峰期温压条件为 850~900 ℃、 1.5 GPa;峰期后近等温减压麻粒岩相变质阶段,富 Ti 角闪石分解在周围形成石榴子石+斜方辉石+斜长石±单斜辉石的矿 物组合,所记录的温压条件为~900 ℃、1.1~1.2 GPa;晚期角闪岩相退变质阶段,石榴子石分解产生角闪石+斜长石±石英, 所记录的温压条件为 600~680 ℃、0.65~0.75 GPa,皓石 U-Pb 定年结果表明,高压麻粒岩相、中压麻粒岩相和角闪岩相变质时 代分别为~1.90 Ga、~1.85 Ga 和~1.78 Ga.因此,研究区镁铁质麻粒岩的变质演化过程与胶北地体可以对比,结合已有的 2.1 Ga花岗质岩石的成因和锆石年代学等方面研究成果,进一步证明五河杂岩属于胶一辽一吉带的西延,二者共同构成了华 北克拉通东部一条古元古代碰撞造山带.

关键词:镁铁质麻粒岩;高压麻粒岩相;前寒武纪变质基底;古元古代;五河杂岩;岩石学. 中图分类号: P588.34;P586 文章编号: 1000-2383(2018)01-0296-21 收稿日

#### **收稿日期:**2017-09-16

## Metamorphic Evolution of Mafic Granulites from the Wuhe Complex at the Southeastern Margin of the North China Craton

Wang Chengcheng<sup>1</sup>, Liu Yican<sup>1\*</sup>, Yang Yang<sup>1</sup>, Zhang Pingang<sup>1,2</sup>, Nie Jiazhen<sup>1</sup>

1.Key Laboratory of Crust-Mantle Materials and Environments, Chinese Acdemy of Sciences; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. Exploration Institute of Anhui Coalfield Geology Bureau, Hefei 230088, China

Abstract: Investigations on metamorphic processes of the Wuhe complex provide new insights into the formation and evolution of Precambrian metamorphic basement at the southeastern margin of the North China Craton (NCC). In this paper, three Paleoproterozoic stages of metamorphic assemblages from mafic granulites in the Wuhe complex is recognized and a clockwise P-T-t path characterized by post-peak near-isothermal decompression and subsequent decompression-cooling by conducting detailed petrographic observations, mineral electron microprobe analysis, zircon LA-ICP-MS U-Pb dating and trace element analysis is reconstructed. The peak HP granulite-facies metamorphism (M<sub>1</sub>) is characterized by high-Ca cores in granet, high-Al cores in clinopyrexene, plagioclase, quartz and rutile, yielding P-T conditions of 850-900 °C and 1.5 GPa. The mediumpressure (MP) granulite facies assemblage (M<sub>2</sub>) mainly consists of garnet+orthopyrexene+plagioclase± clinopyrexene surrounding the amphibole porphyroblasts, recording P-T conditions of ~900 °C and 1.1-1.2 GPa. Symplectites or coronas com-

**基金项目:**国家自然科学基金项目(No.41773020);国家重点基础研究发展计划(973 计划)项目(No.2015CB856104);高等学校博士学科点专项 科研基金(No.20133402130008).

作者简介:王程程(1993-),女,硕士,主要从事前寒武纪岩石地球化学研究.ORCID: 0000-0002-1099-6994. E-mail: upecho@outlook.com \* 通讯作者:刘贻灿.E-mail: liuyc@ustc.edu.cn

posed of hornblende+ plagioclase ( $M_3$ ) surrounding the garnet porphyroblasts indicate garnet decompressional reactions occurred at 600-680 °C and 0.65-0.75 GPa. The zircon dating results can be categorized into three groups of ~1.90 Ga, ~1.85 Ga and ~1.78 Ga, corresponding to the time of HP granulite facies, MP granulite facies and amphibolite facies metamorphism. The comparable metamorphic evolution of mafic granulites from the Wuhe complex to Jiaobei terrane, combined with previous studies on petrogenesis and U-Pb ages of 2.1 Ga granitic rocks, suggest that the Wuhe complex is the west extension of the Jiao-Liao-Ji belt (JLJB) and they constitute a Paleoproterozoic collisional orogen as a whole in the eastern block of the NCC.

Key words: mafic granulite; high-pressure granulite facies; Precambrian metamorphic basement; Paleoproterozoic; Wuhe complex; petrology.

目前,有关华北前寒武纪变质基底和造山带形成 演化的研究已成为国内外前寒武纪和变质岩石学等 研究领域的热点和焦点(Zhao, 2014; Zhai, 2015; 刘 贻灿等,2015b),广泛出露的古元古代高级变质岩(包 括高压和高温麻粒岩)为此提供了良好的天然实验 室.自 20 世纪 90 年代人们发现高压麻粒岩和退变榴 辉岩以来(翟明国等,1992,1995),1.8~1.9 Ga 陆-陆碰撞过程中发生的高压麻粒岩相变质作用在中部 造山带和东部陆块胶-辽-吉活动带中被大量报道, 在变质演化和年代学等方面的研究不断深化(Zhao et al., 1999, 2000; Guo et al., 2002; Zhang et al., 2006; 翟明国, 2009; Tam et al., 2011, 2012a, 2012b; Liu et al., 2013a; Wei et al., 2014; Duan et al., 2015; Zhou et al., 2017; Zou et al., 2017), 为探 讨古元古代造山过程和机制及华北克拉通的形成与 演化提供了重要信息.

华北东南缘蚌埠一凤阳一带出露的前寒武纪变 质基底(五河杂岩),岩石类型丰富,主要包括 TTG 片麻岩、石榴斜长角闪岩、镁铁质麻粒岩、花岗片麻 岩类、云母片岩、大理岩和变质砂岩等,并伴生有古 元古代片麻状钾长花岗岩和中生代花岗岩类.关于 变基性岩,前人已在岩相学、变质演化过程和同位素 地质年代学等方面开展了研究(许文良等,2006; 郭素淑和李曙光, 2009; Liu et al., 2009; Wang et al., 2013; 王娟等, 2014; 刘贻灿等, 2015a, 2015b; 王娟和宋传中, 2016).但是,有关前寒武纪基底岩 石的变质阶段划分、峰期变质条件等方面研究程度 仍然较低并存在较大争议.Liu et al. (2009) 在凤阳 石榴斜长角闪岩中识别出了麻粒岩相(石榴子石+ 斜长石+单斜辉石+石英+金红石±富钛角闪石)、 角闪岩相(斜长石+绿色角闪石+钛铁矿+榍石)和 绿片岩相(绿泥石+方解石+磁铁矿)3期矿物组 合;限定的峰期温压条件为 >800 ℃、1.1 GPa,达到 高压麻粒岩相变质条件;此外,在古元古代变质锆石 中也发现了可以代表高压麻粒岩相变质的石榴子 石+单斜辉石+斜长石+石英+金红石的矿物包

体.然而,王娟等(2014)对蒙城钻孔中的石榴斜长角 闪岩限定的峰期温压条件为 671~700 ℃、0.82~ 0.95 GPa,并据此认为五河杂岩整体经历了高角闪 岩相变质作用.

因此,五河杂岩变基性岩的具体变质演化过程 尚不明确,特别在是否经历了中压麻粒岩相变质叠 加方面,尚缺乏岩相学方面的证据和制约,这在一定 程度上受限于所研究岩石样品采样点的局限性、种 类的片面性以及退变质改造.本文首次报道了含有 紫苏辉石的石榴二辉麻粒岩,结合石榴麻粒岩和石 榴斜长角闪岩等不同类型变基性岩的岩石学、矿物 学和锆石年代学等方面的系统分析,进一步划分了 五河杂岩中变基性岩的变质演化阶段并限定了各阶 段温压条件和变质时代,重建了古元古代 P-T-t 演 化轨迹.在此基础之上,结合笔者对五河杂岩分布区 2.1 Ga花岗质岩石的成因和锆石年代学方面的最新 研究成果(Wang et al., 2017),为探讨研究区古元 古代地质背景及其与胶一辽一吉带的构造关系提供 了新的岩石学方面制约.

### 1 区域地质背景

本文的华北东南缘,是指距苏鲁造山带西端的 郯一庐断裂带以西约100 km,距大别造山带北界大 约300 km研究区(图1).区内前寒武纪下地壳变质 岩主要以高级变质地体(或麻粒岩地体)和(麻粒岩) 捕虏体或包体形式存在(Liu et al., 2009, 2013b). 变质基底包括霍邱杂岩和五河杂岩,其中的五河杂 岩常被中生代含石榴子石花岗岩侵入.五河杂岩出 露于安徽省北部蚌埠、怀远、凤阳及五河一带(图 1),主要含有石榴斜长角闪岩、石榴麻粒岩、石榴斜 长角闪片麻岩等变基性岩以及花岗片麻岩/TTG片 麻岩、云母片岩、大理岩和变质砂岩等.最新的锆石 年代学数据统计结果表明,五河杂岩中 TTG 片麻 岩的最老形成时代为 2.6~2.9 Ga,变基性岩、花岗



图 1 华北东南缘五河杂岩及相邻地区地质简图 Fig.1 Geological sketch of the Wuhe complex and adjacent parts of the southeastern margin of the North China Craton

MTZ.门台子; MJ.梅家; FY.凤阳;图据刘贻灿等(2015a)

片麻岩和不纯大理岩等不同类型基底岩石都经历了 1.8~1.9 Ga 多阶段麻粒岩相和角闪岩相变质作用, 峰期高压麻粒岩相变质作用时间为~1.91 Ga (Liu et al., 2016, 2017b).此外,在北部徐宿地区中生代 闪长斑岩中还存在大量前寒武纪下地壳包体,包括 含石榴斜长角闪岩、石榴麻粒岩、含石榴角闪斜长片 麻岩和花岗片麻岩等.这些深源包体记录了 2.5~ 2.6 Ga和 2.1 Ga 两期可能和俯冲增生有关的岩浆作 用 (Liu et al., 2013b),以及~2.5 Ga 和 1.80~ 1.88 Ga两期麻粒岩相变质作用 (Liu et al., 2009; Wang et al., 2012).

### 2 分析方法

所有矿物的电子探针分析均在合肥工业大学资源与环境工程学院电子探针分析室完成,所用仪器型号是JEOLJXA-8230,加速电压为15kV,探针电流为20nA,束斑尺寸为5μm.标准矿物来自天然矿物和美国SPI公司合成的纯氧化物.文中所用矿物缩写:石榴子石-Grt,单斜辉石-Cpx,斜方辉石-Opx,石英-Qtz,

斜长石-Pl,钾长石-Kfs,钠长石-Ab,角闪石-Amp,榍石-Ttn,金红石-Rt,磷灰石-Ap.

锆石样品和标准锆石 TEM 制靶,透射、反射光 图像和 CL 图像拍照工作在中国地质科学院地质研 究所北京离子探针中心完成.锆石 LA-ICP-MS U-Pb 定年及微量元素分析在中国科学技术大学中科院壳 幔物质与环境重点实验室激光剥蚀等离子体质谱实 验室完成.所用 ICP-MS 为 Agilent 7700,激光剥蚀系 统为 ArF 准分子激光器(GeoLasPro, 193 nm).载气 为高纯 He 气,脉冲频率 10 Hz,束斑尺寸为 32 μm,单 点分析包括空白时间~20 s 和数据采集时间~60 s. 锆石 U-Pb 年龄采样国际标准锆石 91500 作为外标, 每4个样品点测一次标准锆石.微量元素使用<sup>29</sup> Si 作 为内标,NIST610 作为外标,数据处理软件为 ICPMS-DataCal(Liu *et al.*, 2008, 2010).

### 3 岩石学和矿物学特征

五河杂岩中变基性岩(镁铁质麻粒岩和石榴斜 长角闪岩或榴闪岩)常呈岩块或者构造透镜体产于



图 2 华北东南缘五河杂岩中变基性岩的野外照片

Fig.2 Photographs showing the field occurrence of the metabasic rocks from the Wuhe complex in southeastern margin of the North China Craton

a.石榴斜长角闪岩及其围岩大理岩;b,c,d.部分熔融及混合岩化作用;图 2a 和 2b 来自于刘贻灿等(2015b)

不纯大理岩(图 2a)或花岗片麻岩中,发生了一定程 度的部分熔融甚至混合岩化作用(图 2b~2d)(刘贻 灿等,2015b).本文研究样品的采样位置见图 1.镁铁 质麻粒岩外观上呈灰黑色,细一中粒粒状变晶结构, 块状构造.此外,石榴单辉麻粒岩发育的典型高压麻 粒岩相矿物组合主要为石榴子石、单斜辉石、斜长石 和石英,偶尔含有金红石(Liu et al., 2009),镜下各 矿物颗粒多呈半自形一他形粒状,平直相接,平衡共 生.另外,多数样品中含有一定数量的角闪石(富 钛),在部分样品中发现少量钛铁矿、黄铁矿、锆石、 磷灰石、榍石等副矿物.石榴二辉麻粒岩主要矿物组 合为石榴子石、单斜辉石、紫苏辉石、富钛角闪石、斜 长石和石英.

#### 3.1 石榴单辉麻粒岩

门台子石榴单辉麻粒岩(12MTZ6/12MTZ2)中 石榴子石呈浅红色,粒径为 0.5~1.0 mm,含量约 25%~30%(图 3a),内部常含有单斜辉石、斜长石 和富钛角闪石等矿物包体(图 3b);部分石榴子石边 部有角闪石+斜长石蠕虫状后成合晶(图 3b),变质 反应可能为:石榴子石+单斜辉石+水→角闪石+ 斜长石或者石榴子石+单斜辉石+石英+水→角闪石+ 斜长石或者石榴子石+单斜辉石+石英+水→角闪 石+斜长石(Harley, 1989).两个样品石榴子石化 学成分比较均一,主要由铁铝榴石(Alm,55%~ 58%,摩尔含量)、钙铝榴石(Gro,16%~21%,摩尔 含量)、镁铝榴石(Pyr,16%~23%,摩尔含量)和锰 铝榴石(Spe,1%~2%,摩尔含量)端元组成(表 1). 单斜辉石含量为 35%~40%,呈基质矿物和石榴子



- 图 3 华北东南缘石榴单辉麻粒岩显微照片(a, c, d)和背 散射照片(b)
- Fig.3 Micrographs (a, c, d) and back scattered electron (BSE) images (b) of garnet clinopyroxene granulites, southeastern margin of the North China Craton

### 表 1 五河杂岩石榴单辉麻粒岩中代表性石榴子石的化 学成分(%)

Table 1 Chemical composition (%) of representative garnets from garnet clinopyroxene granulites in the Wuhe complex

| 样品                 | 12M   | TZ6   | 12M   | TZ2   | 14031 | MJ2-6 | 1403I  | FY1-2  |
|--------------------|-------|-------|-------|-------|-------|-------|--------|--------|
| $SiO_2$            | 37.86 | 38.12 | 37.64 | 37.16 | 38.38 | 37.94 | 38.91  | 38.76  |
| ${\rm TiO}_2$      | 0.12  | 0.10  | 0.14  | 0.10  | 0.14  | 0.15  | 0.01   | 0.06   |
| $Al_2O_3$          | 20.80 | 20.99 | 20.56 | 20.80 | 21.10 | 21.14 | 21.66  | 21.64  |
| $Cr_2O_3$          | —     | _     | _     | _     | —     | —     | 0.04   | 0.06   |
| $\rm FeO^{T}$      | 26.55 | 26.77 | 26.85 | 27.41 | 25.10 | 21.95 | 26.17  | 27.04  |
| MnO                | 0.61  | 0.68  | 0.60  | 0.55  | 0.60  | 0.61  | 0.26   | 0.23   |
| MgO                | 5.91  | 5.97  | 4.60  | 4.08  | 7.24  | 5.52  | 5.97   | 5.71   |
| CaO                | 6.80  | 6.80  | 8.85  | 8.75  | 6.85  | 11.77 | 7.46   | 7.20   |
| Total              | 98.69 | 99.45 | 99.28 | 98.89 | 99.41 | 99.09 | 100.49 | 100.76 |
|                    | 以     | 12 个氧 | 〔为标准  | 自计算的  | 的阳离于  | 三系数   |        |        |
| Si                 | 2.99  | 2.99  | 2.98  | 2.96  | 2.98  | 2.96  | 3.01   | 3.00   |
| Ti                 | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.00   | 0.00   |
| Al                 | 1.94  | 1.94  | 1.92  | 1.96  | 1.93  | 1.95  | 1.97   | 1.97   |
| Cr                 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   |
| $\mathrm{Fe}^{3+}$ | 0.06  | 0.06  | 0.09  | 0.07  | 0.07  | 0.07  | 0.02   | 0.02   |
| $\mathrm{Fe}^{2+}$ | 1.69  | 1.69  | 1.68  | 1.76  | 1.56  | 1.36  | 1.67   | 1.73   |
| Mn                 | 0.04  | 0.05  | 0.04  | 0.04  | 0.04  | 0.04  | 0.02   | 0.02   |
| Mg                 | 0.70  | 0.70  | 0.54  | 0.48  | 0.84  | 0.64  | 0.69   | 0.66   |
| Ca                 | 0.58  | 0.57  | 0.75  | 0.75  | 0.57  | 0.98  | 0.62   | 0.60   |
| Ura                | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.13   | 0.19   |
| And                | 3.23  | 3.20  | 4.66  | 3.26  | 3.62  | 3.62  | 1.02   | 1.09   |
| Pyr                | 23.18 | 23.22 | 17.99 | 15.99 | 27.89 | 21.23 | 22.99  | 21.97  |
| Spe                | 1.37  | 1.51  | 1.32  | 1.23  | 1.31  | 1.34  | 0.57   | 0.51   |
| Gro                | 15.94 | 15.80 | 20.22 | 21.40 | 15.36 | 28.89 | 19.48  | 18.62  |
| Alm                | 56.28 | 56.27 | 55.80 | 58.12 | 51.82 | 44.92 | 55.81  | 57.61  |

石中包裹体产出,均属于透辉石.前人研究表明单斜 辉石中Al<sub>2</sub>O<sub>3</sub>含量随压力增加而升高(Anovitz,

#### 表 2 五河杂岩石榴单辉麻粒岩中代表性单斜辉石的化 学成分(%)

Table 2 Chemical composition (%) of representative clinopyroxenes from garnet clinopyroxene granulite in the Wuhe complex

| 样品                          | 12M   | TZ6   | 12MTZ2 |       | 1403N | MJ2-6 | 1403FY1-2 |        |  |
|-----------------------------|-------|-------|--------|-------|-------|-------|-----------|--------|--|
| $SiO_2$                     | 50.91 | 50.13 | 49.92  | 49.32 | 52.07 | 51.40 | 51.71     | 51.65  |  |
| $TiO_2$                     | 1.10  | 1.14  | 1.18   | 1.18  | 0.83  | 0.66  | 0.66      | 0.70   |  |
| $\mathrm{Al}_2\mathrm{O}_3$ | 5.43  | 5.22  | 6.54   | 6.52  | 4.03  | 4.14  | 3.27      | 3.70   |  |
| $\rm FeO^T$                 | 9.82  | 9.61  | 12.15  | 12.89 | 8.49  | 9.76  | 9.41      | 9.79   |  |
| MnO                         | 0.04  | 0.02  | 0.09   | 0.09  | 0.04  | 0.11  | 0.01      | 0.03   |  |
| MgO                         | 11.70 | 11.34 | 9.06   | 8.54  | 12.21 | 11.69 | 12.63     | 12.17  |  |
| CaO                         | 20.29 | 21.11 | 20.26  | 20.66 | 21.52 | 21.40 | 22.61     | 22.05  |  |
| $Na_2O$                     | 0.63  | 0.60  | 0.58   | 0.52  | 0.42  | 0.47  | 0.50      | 0.51   |  |
| $\mathrm{K}_2\mathrm{O}$    | 0.01  | 0.00  | 0.01   | 0.01  | 0.01  | 0.03  | —         | _      |  |
| Total                       | 99.96 | 99.20 | 99.80  | 99.72 | 99.68 | 99.72 | 100.81    | 100.63 |  |
|                             | 以     | 6 个氧  | 为标准    | 计算的   | 阳离子   | 系数    |           |        |  |
| Si                          | 1.90  | 1.89  | 1.88   | 1.87  | 1.94  | 1.92  | 1.92      | 1.92   |  |
| AlW                         | 0.10  | 0.11  | 0.12   | 0.13  | 0.06  | 0.08  | 0.08      | 0.08   |  |
| Al                          | 0.13  | 0.12  | 0.17   | 0.16  | 0.11  | 0.11  | 0.06      | 0.08   |  |
| Ti                          | 0.03  | 0.03  | 0.03   | 0.03  | 0.02  | 0.02  | 0.02      | 0.02   |  |
| $\mathrm{Fe}^{3+}$          | 0.00  | 0.00  | 0.00   | 0.00  | 0.00  | 0.00  | 0.02      | 0.00   |  |
| $\mathrm{Fe}^{2+}$          | 0.31  | 0.30  | 0.39   | 0.41  | 0.27  | 0.31  | 0.27      | 0.30   |  |
| Mg                          | 0.65  | 0.64  | 0.51   | 0.48  | 0.68  | 0.65  | 0.70      | 0.67   |  |
| Ca                          | 0.81  | 0.85  | 0.82   | 0.84  | 0.86  | 0.86  | 0.90      | 0.88   |  |
| Na                          | 0.05  | 0.04  | 0.04   | 0.04  | 0.03  | 0.03  | 0.04      | 0.04   |  |
| En                          | 44.65 | 46.36 | 46.53  | 47.27 | 46.79 | 46.28 | 46.68     | 46.33  |  |
| Fs                          | 35.82 | 34.67 | 28.93  | 27.21 | 36.94 | 35.16 | 36.30     | 35.59  |  |
| Ac                          | 17.04 | 16.57 | 22.14  | 23.36 | 14.60 | 16.73 | 15.15     | 16.13  |  |
| Wo                          | 2.49  | 2.40  | 2.40   | 2.16  | 1.66  | 1.82  | 1.87      | 1.95   |  |

#### 表 3 五 河 杂 岩 石 榴 单 辉 麻 粒 岩 中 代 表 性 角 闪 石 的 化 学成分(%)

Table 3 Chemical composition (%) of representative amphiboles from garnet clinopyroxene granulite in

the Wuhe complex

| <b>拦</b> 口                  |       | 1          | 2MTZ  |       | 19MT79 | 14021112 6  |                      |
|-----------------------------|-------|------------|-------|-------|--------|-------------|----------------------|
| 作日                          | N     | <b>1</b> 2 |       | $M_3$ |        | 12 IVI 1 Z2 | 14031 <b>VIJ</b> Z-0 |
| $SiO_2$                     | 40.31 | 41.43      | 40.43 | 40.80 | 40.77  | 41.02       | 42.11                |
| ${\rm TiO}_2$               | 3.41  | 1.31       | 0.12  | 0.12  | 0.19   | 4.90        | 3.88                 |
| $\mathrm{Al}_2\mathrm{O}_3$ | 13.70 | 15.63      | 16.71 | 16.15 | 15.38  | 13.79       | 12.43                |
| $\rm FeO^{T}$               | 17.28 | 15.15      | 17.24 | 19.47 | 20.71  | 14.85       | 13.71                |
| MnO                         | 0.15  | 0.10       | 0.10  | 0.14  | 0.20   | 0.06        | 0.04                 |
| MgO                         | 7.63  | 9.84       | 8.61  | 7.77  | 6.91   | 8.82        | 11.23                |
| CaO                         | 10.93 | 10.49      | 10.90 | 11.00 | 11.21  | 11.26       | 11.07                |
| $Na_2O$                     | 2.06  | 2.33       | 2.05  | 2.09  | 1.64   | 1.31        | 1.33                 |
| $\mathrm{K}_2\mathrm{O}$    | 1.32  | 0.66       | 0.35  | 0.35  | 0.48   | 0.51        | 0.97                 |
| Total                       | 97.08 | 97.18      | 96.71 | 98.06 | 97.50  | 96.59       | 96.81                |
|                             |       | 以 23 个     | ~氧为杨  | 下准计算  | 的阳离    | 子系数         |                      |
| Si                          | 6.16  | 6.19       | 6.13  | 6.16  | 6.22   | 6.16        | 6.29                 |
| $\mathrm{Al}^{\mathbb{N}}$  | 1.84  | 1.81       | 1.87  | 1.84  | 1.78   | 1.84        | 1.71                 |
| Al <sup>M</sup>             | 0.63  | 0.95       | 1.11  | 1.03  | 0.99   | 0.61        | 0.47                 |
| Ti                          | 0.39  | 0.15       | 0.01  | 0.01  | 0.02   | 0.55        | 0.44                 |
| $\mathrm{Fe}^{3+}$          | 0.35  | 0.32       | 0.30  | 0.27  | 0.34   | 0.70        | 0.53                 |
| $\mathrm{Fe}^{2+}$          | 1.85  | 1.58       | 1.89  | 2.19  | 2.31   | 1.17        | 1.18                 |
| Mn                          | 0.02  | 0.01       | 0.01  | 0.02  | 0.03   | 0.01        | 0.01                 |
| Mg                          | 1.74  | 2.19       | 1.94  | 1.75  | 1.57   | 1.97        | 2.50                 |
| Ca                          | 1.79  | 1.68       | 1.77  | 1.78  | 1.83   | 1.81        | 1.77                 |
| Na                          | 0.61  | 0.68       | 0.60  | 0.61  | 0.49   | 0.38        | 0.38                 |
| Κ                           | 0.26  | 0.13       | 0.07  | 0.07  | 0.09   | 0.10        | 0.19                 |

1991),包裹体和基质单斜辉石有较高的 Al<sub>2</sub>O<sub>3</sub> 含





量(5.22%~6.54%,表2),指示二者形成的压力条 件较高.角闪石含量约15%,常呈基质、石榴子石包 裹体和后成合晶 3 种形式存在.基质和包裹体角闪 石呈棕褐色,为韭角闪石种属,显著富集 TiO<sub>2</sub>(最高 可达5%,表3),在Ti-(Na+K)和Al<sup>N</sup>-Ti关系图中 落入麻粒岩相区(图 4);后成合晶中的角闪石则具 有较低的 TiO<sub>2</sub> 含量(~1%),落入低角闪岩相区 (图 4).斜长石含量约 15%,与角闪石相似,也常呈 基质、石榴子石包裹体和后成合晶3种形式出现.基 质和包裹体斜长石的化学特征相似,但与后成合晶 斜长石不同.前者 CaO 含量为 7.8%~8.8%, Na2O 为6%左右,钙长石(An)端元组分为40%~44% (摩尔含量);后者 CaO 含量为 15%~20%, Na, O 为2.5%左右,钙长石(An)端元组分为75%~80% (摩尔含量).石英含量较少,常作为石榴子石和斜长 石中的包体存在.

梅家石榴单辉麻粒岩(1403MJ2-6,图 3c)中的 绝大多数石榴子石、单斜辉石等矿物成分均一,各氧 化物含量与样品12MTZ6相似;一些石榴子石核部

| <b>P</b> 日               |       | 12N                   | ITZ6   |            | 191/   | (T79  | 1402  | CV1 9   | 14021 | 1779.0   |
|--------------------------|-------|-----------------------|--------|------------|--------|-------|-------|---------|-------|----------|
| 作于口口                     | N     | <b>1</b> <sub>2</sub> | Ν      | <b>Í</b> 3 | - 12IV | 1122  | 1403. | F I 1-2 | 14031 | I I Z2-0 |
| $\mathrm{SiO}_2$         | 57.51 | 57.46                 | 48.84  | 45.02      | 58.14  | 57.00 | 54.85 | 54.55   | 58.29 | 58.51    |
| ${\rm TiO}_2$            | _     | —                     | 0.01   | —          | 0.02   | 0.08  | _     | 0.05    | 0.04  | 0.04     |
| $Al_2O_3$                | 27.21 | 27.25                 | 33.01  | 35.55      | 27.04  | 26.97 | 28.40 | 28.93   | 26.38 | 26.25    |
| FeO                      | 0.16  | 0.05                  | 0.46   | 0.35       | 0.04   | 0.15  | 0.08  | 0.39    | 0.02  | 0.09     |
| CaO                      | 8.59  | 8.35                  | 15.39  | 18.48      | 8.32   | 8.79  | 11.44 | 11.85   | 8.08  | 7.77     |
| $Na_2O$                  | 6.25  | 6.58                  | 2.51   | 0.44       | 6.36   | 6.15  | 4.96  | 4.84    | 6.72  | 6.45     |
| $\mathrm{K}_2\mathrm{O}$ | 0.04  | 0.06                  | 0.01   | 0.01       | 0.02   | _     | 0.12  | 0.06    | 0.19  | 0.18     |
| Total                    | 99.83 | 99.80                 | 100.24 | 99.90      | 99.98  | 99.24 | 99.84 | 100.71  | 99.75 | 99.35    |
|                          |       |                       | 以      | 8个氧为林      | 示准计算的  | 阳离子系数 | 汝     |         |       |          |
| Si                       | 2.58  | 2.58                  | 2.23   | 2.08       | 2.60   | 2.58  | 2.48  | 2.46    | 2.61  | 2.63     |
| Al                       | 1.44  | 1.44                  | 1.78   | 1.94       | 1.42   | 1.44  | 1.51  | 1.54    | 1.39  | 1.39     |
| Ca                       | 0.41  | 0.40                  | 0.75   | 0.92       | 0.40   | 0.43  | 0.55  | 0.57    | 0.39  | 0.37     |
| Na                       | 0.54  | 0.57                  | 0.22   | 0.04       | 0.55   | 0.54  | 0.43  | 0.42    | 0.58  | 0.56     |
| К                        | 0.00  | 0.00                  | 0.00   | 0.00       | 0.00   | 0.00  | 0.01  | 0.00    | 0.01  | 0.01     |
| An                       | 43.09 | 41.07                 | 77.14  | 95.80      | 41.88  | 44.12 | 55.66 | 57.28   | 39.50 | 39.53    |
| Ab                       | 56.70 | 58.61                 | 22.77  | 4.14       | 58.00  | 55.88 | 43.67 | 42.36   | 59.42 | 59.39    |

0.13

0.00

0.67

0.36

1.08

1.08

0.07

#### 五河杂岩石榴单辉麻粒岩中代表性斜长石化学成分(%) 表 4

Table lex

明显富集 CaO(>11%),而边部 CaO 含量明显降低 至~7%(表1).这说明石榴子石核部保留了(近)峰 期条件下的元素特征,而边部则在后期冷却过程中 发生了元素再平衡.

0.32

0.08

0.22

Or

凤阳石榴单辉麻粒岩(1403FY1-2)中石榴子石、 单斜辉石和斜长石形状较为规则,且粒径相似,为 0.2 mm左右(图 3d),另外还有少量富钛角闪石.石榴 子石成分均一,主量元素成分含量与样品 12MTZ6 相 似(表1).与门台子单斜辉石比较,该样品中单斜辉 石 Al<sub>2</sub>O<sub>3</sub> 含量稍低,为 2.8%~4.4%(表 2);斜长石 CaO含量较高,在11%~12%之间,钙长石(An)端元 组分在 55%~58%之间(摩尔含量)(表 4).

#### 3.2 石榴二辉麻粒岩

3.2.1 梅家石榴二辉麻粒岩(07MJ4) 石榴子石: 含量约25%~30%,镜下呈浅红色,呈不规则状或 筛状,多数粒度小于 0.5 mm,有些含有单斜辉石、斜 长石等矿物包裹体.FeO<sup>T</sup>含量为 26.6%~27.5%, CaO 含量为~6%, MgO 含量为~6%, MnO 含量 为~1%,相应的铁铝榴石(Alm),钙铝榴石(Gro), 镁铝榴石(Pyr)和锰铝榴石(Spe)端元组分分别为 56%~58%,12%~15%,22%~24%,~2%(均为 摩尔含量)(表 5).

辉石:包括单斜辉石和斜方辉石.单斜辉石(透辉 石)含约 20%~25%, Al<sub>2</sub>O<sub>3</sub> 含量在 3.5%~4.5%之间 (表 6);斜方辉石(紫苏辉石)含量约 15%~20%,FeO<sup>T</sup> 含量高于 28%, MgO 含量在 16%~18%之间, 与石榴 子石、单斜辉石、富钛角闪石、斜长石等粒度相似,颗粒



图 5 华北东南缘石榴二辉麻粒岩显微照片(a~e)和背散 射照片(f)

Fig.5 Micrographs (a - e) and back scattered electron (BSE) images (f) of garnet two-pyroxene granulite, southeastern margin of the North China Craton

#### 边界直接接触,属于平衡共生矿物组合(图 5a).

角闪石:含量约10%,镜下呈棕褐色,TiO2含 量高于 4%(表 7).在 Ti-(Na+K)和 Al<sup>™</sup>-Ti 关系图 落入麻粒岩相区域(图 4).

斜长石:含量约20%~25%,CaO含量为7%~

#### 表 5 五河杂岩石榴二辉麻粒岩中代表性石榴子石的化学成分(%)

Table 5 Chemical composition (%) of representative garnets from garnet two-pyroxene granulite in the Wuhe complex

| 样品                 | 1310FY5-3 基质中的石榴子石从核部一边部一核部 |       |       |       |       |        |       |       |       |       |       | 1310FY | 5-3 M <sub>2</sub> |       | 07MJ4 |       |
|--------------------|-----------------------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|--------------------|-------|-------|-------|
| $SiO_2$            | 37.72                       | 37.62 | 37.38 | 38.10 | 38.21 | 38.05  | 38.08 | 38.37 | 38.01 | 37.84 | 38.19 | 38.63  | 38.86              | 39.02 | 38.12 | 37.86 |
| ${\rm TiO}_2$      | 0.09                        | 0.04  | 0.09  | 0.12  | 0.09  | 0.07   | 0.11  | 0.11  | —     | 0.05  | _     | 0.06   | 0.01               | —     | 0.10  | 0.08  |
| $Al_2O_3$          | 21.08                       | 20.77 | 20.46 | 20.79 | 20.64 | 20.73  | 20.44 | 20.64 | 20.57 | 20.56 | 21.00 | 20.67  | 21.10              | 21.01 | 20.80 | 20.57 |
| $Cr_2O_3$          | 0.04                        | 0.04  | _     | 0.00  | _     | _      | 0.05  | 0.04  | 0.03  | 0.07  | 0.04  | 0.10   | 0.00               | _     | _     | _     |
| $\rm FeO^{T}$      | 26.77                       | 24.22 | 23.41 | 21.80 | 21.90 | 23.03  | 23.52 | 22.81 | 22.73 | 27.48 | 26.71 | 27.75  | 26.57              | 25.04 | 26.81 | 27.41 |
| MnO                | 0.82                        | 0.59  | 0.54  | 0.56  | 0.43  | 0.53   | 0.60  | 0.61  | 0.56  | 0.86  | 0.52  | 0.56   | 0.43               | 0.48  | 0.92  | 0.87  |
| MgO                | 5.55                        | 4.78  | 4.66  | 4.50  | 4.42  | 4.64   | 4.39  | 4.24  | 4.13  | 4.82  | 6.91  | 6.19   | 6.90               | 7.47  | 6.09  | 6.07  |
| CaO                | 6.66                        | 10.83 | 12.40 | 13.24 | 13.01 | 11.90  | 12.33 | 12.29 | 12.91 | 7.30  | 5.89  | 5.88   | 6.03               | 6.58  | 6.19  | 6.04  |
| Total              | 98.78                       | 98.89 | 98.97 | 99.10 | 98.72 | 98.96  | 99.53 | 99.14 | 98.94 | 99.02 | 99.28 | 99.87  | 99.92              | 99.69 | 99.07 | 98.93 |
|                    |                             |       |       |       |       | 以 12 个 | 〉氧为标  | 准计算自  | 勺阳离子  | 系数    |       |        |                    |       |       |       |
| Si                 | 2.99                        | 2.97  | 2.95  | 2.98  | 3.00  | 2.99   | 2.98  | 3.01  | 2.99  | 3.00  | 2.99  | 3.02   | 3.01               | 3.02  | 3.00  | 2.99  |
| Ti                 | 0.01                        | 0.00  | 0.01  | 0.01  | 0.01  | 0.00   | 0.01  | 0.01  | 0.00  | 0.00  | 0.00  | 0.00   | 0.00               | 0.00  | 0.01  | 0.00  |
| Al                 | 1.97                        | 1.93  | 1.90  | 1.92  | 1.91  | 1.92   | 1.89  | 1.91  | 1.91  | 1.92  | 1.94  | 1.90   | 1.93               | 1.91  | 1.93  | 1.91  |
| Cr                 | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.01   | 0.00               | 0.00  | 0.00  | 0.00  |
| $\mathrm{Fe}^{3+}$ | 0.04                        | 0.09  | 0.13  | 0.09  | 0.09  | 0.09   | 0.12  | 0.08  | 0.10  | 0.07  | 0.07  | 0.08   | 0.06               | 0.07  | 0.07  | 0.09  |
| $\mathrm{Fe}^{2+}$ | 1.74                        | 1.51  | 1.41  | 1.34  | 1.35  | 1.43   | 1.42  | 1.42  | 1.40  | 1.75  | 1.68  | 1.73   | 1.66               | 1.55  | 1.70  | 1.72  |
| Mn                 | 0.05                        | 0.04  | 0.04  | 0.04  | 0.03  | 0.04   | 0.04  | 0.04  | 0.04  | 0.06  | 0.03  | 0.04   | 0.03               | 0.03  | 0.06  | 0.06  |
| Mg                 | 0.65                        | 0.56  | 0.55  | 0.52  | 0.52  | 0.54   | 0.51  | 0.50  | 0.48  | 0.57  | 0.81  | 0.72   | 0.80               | 0.86  | 0.71  | 0.71  |
| Ca                 | 0.56                        | 0.92  | 1.05  | 1.11  | 1.09  | 1.00   | 1.03  | 1.03  | 1.09  | 0.62  | 0.49  | 0.49   | 0.50               | 0.54  | 0.52  | 0.51  |
| Ura                | 0.13                        | 0.11  | 0.00  | 0.00  | 0.00  | 0.00   | 0.15  | 0.12  | 0.10  | 0.20  | 0.11  | 0.31   | 0.01               | 0.00  | 0.00  | 0.00  |
| And                | 1.85                        | 4.28  | 6.37  | 4.43  | 4.26  | 4.26   | 5.85  | 4.01  | 4.83  | 3.62  | 3.45  | 4.00   | 3.17               | 3.70  | 3.37  | 4.44  |
| Pyr                | 21.74                       | 18.57 | 17.99 | 17.43 | 17.29 | 18.05  | 17.03 | 16.60 | 16.11 | 18.99 | 26.75 | 24.16  | 26.71              | 28.86 | 23.86 | 23.79 |
| Spe                | 1.83                        | 1.31  | 1.18  | 1.24  | 0.95  | 1.18   | 1.32  | 1.35  | 1.25  | 1.92  | 1.15  | 1.24   | 0.95               | 1.06  | 2.05  | 1.93  |
| Gro                | 16.79                       | 25.82 | 28.02 | 32.45 | 32.29 | 29.05  | 28.38 | 30.47 | 31.24 | 16.87 | 12.82 | 12.18  | 13.59              | 14.56 | 14.06 | 12.56 |
| Alm                | 57.66                       | 49.90 | 46.44 | 44.44 | 45.20 | 47.46  | 47.28 | 47.45 | 46.48 | 58.39 | 55.71 | 58.12  | 55.57              | 51.82 | 56.67 | 57.29 |

表 6 五河杂岩石榴二辉麻粒岩中代表性辉石的化学成分(%)

Table 6 Chemical compositions (%) of representative pyroxenes from garnet two-pyroxene granulite in the Wuhe complex

|                             |       |            |        | 单斜辉石   |       |         | 斜方辉石  |        |           |       |        |         |        |
|-----------------------------|-------|------------|--------|--------|-------|---------|-------|--------|-----------|-------|--------|---------|--------|
| 样品                          |       | 1310       | FY5-3  |        |       | 07 MI4  |       | -      | 1210EVE   | 0     |        | 071414  |        |
|                             | N     | <b>1</b> 1 | Ν      | 12     |       | 0710114 |       | Ţ      | 1310F 13- | 0     |        | 0710114 |        |
| SiO <sub>2</sub>            | 49.90 | 50.16      | 51.93  | 51.59  | 51.25 | 51.71   | 51.96 | 52.25  | 51.81     | 51.86 | 52.40  | 51.70   | 51.47  |
| $TiO_2$                     | 0.48  | 0.54       | 0.27   | 0.22   | 0.59  | 0.59    | 0.52  | _      | 0.08      | 0.01  | 0.03   | 0.10    | 0.21   |
| $\mathrm{Al}_2\mathrm{O}_3$ | 5.41  | 5.17       | 4.29   | 4.58   | 3.58  | 4.08    | 3.66  | 2.31   | 2.56      | 2.58  | 1.55   | 2.03    | 2.09   |
| $FeO^{T}$                   | 9.73  | 10.44      | 7.96   | 9.27   | 11.81 | 11.26   | 11.10 | 25.31  | 24.69     | 23.38 | 28.03  | 28.08   | 28.61  |
| MnO                         | 0.13  | 0.09       | 0.08   | 0.31   | 0.15  | 0.16    | 0.02  | 0.22   | 0.38      | 0.33  | 0.30   | 0.32    | 0.27   |
| MgO                         | 11.46 | 11.78      | 12.62  | 12.54  | 11.35 | 10.75   | 11.26 | 19.69  | 20.46     | 21.23 | 17.66  | 17.25   | 16.75  |
| CaO                         | 20.73 | 19.66      | 22.25  | 21.06  | 20.11 | 20.72   | 20.88 | 0.37   | 0.42      | 0.52  | 0.54   | 0.82    | 0.71   |
| $Na_2O$                     | 1.19  | 1.09       | 0.78   | 0.81   | 0.42  | 0.44    | 0.44  | _      | _         | 0.00  | 0.01   | 0.02    | 0.02   |
| $\rm K_2 O$                 | 0.01  | 0.02       | —      | —      | _     | —       | —     | —      | 0.00      | —     | 0.00   | 0.00    | 0.00   |
| Total                       | 99.06 | 98.96      | 100.26 | 100.43 | 99.28 | 99.82   | 99.84 | 100.16 | 100.42    | 99.90 | 100.54 | 100.34  | 100.13 |
|                             |       |            |        |        | 以6个氧  | 为标准计    | 算的阳离  | 子系数    |           |       |        |         |        |
| Si                          | 1.89  | 1.90       | 1.92   | 1.91   | 1.94  | 1.94    | 1.95  | 1.96   | 1.94      | 1.94  | 1.99   | 1.97    | 1.97   |
| $Al^{\mathbb{N}}$           | 0.11  | 0.10       | 0.08   | 0.09   | 0.06  | 0.06    | 0.05  | 0.04   | 0.06      | 0.06  | 0.01   | 0.03    | 0.03   |
| Al <sup>M</sup>             | 0.13  | 0.13       | 0.11   | 0.11   | 0.10  | 0.12    | 0.11  | 0.07   | 0.05      | 0.05  | 0.06   | 0.06    | 0.06   |
| Ti                          | 0.01  | 0.02       | 0.01   | 0.01   | 0.02  | 0.02    | 0.01  | 0.00   | 0.00      | 0.00  | 0.00   | 0.00    | 0.01   |
| $\mathrm{Fe}^{3+}$          | 0.07  | 0.04       | 0.01   | 0.02   | 0.00  | 0.00    | 0.00  | 0.00   | 0.00      | 0.01  | 0.00   | 0.00    | 0.00   |
| $\mathrm{Fe}^{2+}$          | 0.23  | 0.29       | 0.24   | 0.26   | 0.38  | 0.36    | 0.35  | 0.80   | 0.77      | 0.72  | 0.89   | 0.90    | 0.92   |
| Mn                          | 0.00  | 0.00       | 0.00   | 0.01   | 0.00  | 0.00    | 0.00  | 0.01   | 0.01      | 0.01  | 0.01   | 0.01    | 0.01   |
| Mg                          | 0.65  | 0.66       | 0.70   | 0.69   | 0.64  | 0.60    | 0.63  | 1.10   | 1.14      | 1.18  | 1.00   | 0.98    | 0.96   |
| Ca                          | 0.84  | 0.80       | 0.88   | 0.84   | 0.82  | 0.83    | 0.84  | 0.01   | 0.02      | 0.02  | 0.02   | 0.03    | 0.03   |
| Na                          | 0.09  | 0.08       | 0.06   | 0.06   | 0.03  | 0.03    | 0.03  | 0.00   | 0.00      | 0.00  | 0.00   | 0.00    | 0.00   |
| En                          | 44.61 | 42.55      | 46.85  | 44.41  | 43.68 | 45.57   | 45.31 | 0.77   | 0.86      | 1.07  | 1.14   | 1.74    | 1.51   |
| Fs                          | 34.30 | 35.46      | 36.98  | 36.77  | 34.30 | 32.90   | 33.99 | 57.36  | 58.75     | 60.83 | 51.88  | 50.94   | 49.90  |
| Ac                          | 16.46 | 17.73      | 13.20  | 15.75  | 20.36 | 19.76   | 18.97 | 41.88  | 40.39     | 38.09 | 46.95  | 47.24   | 48.52  |
| Wo                          | 4.63  | 4.26       | 2.97   | 3.07   | 1.65  | 1.77    | 1.74  | 0.00   | 0.00      | 0.01  | 0.03   | 0.08    | 0.06   |

8%, Na<sub>2</sub>O为7%左右, 钙长石(An) 端元组分为 35%~37%(摩尔含量)(表8).

3.2.2 凤阳石榴二辉麻粒岩(1310FY5-3) 根据岩

相学结构及矿物之间的相互关系和矿物成份特点, 石榴子石、单斜辉石和斜长石可以分为两个世代.第 一世代的石榴子石为变斑晶,粒径为0.5~1.0 mm,

Table 7 Chemical composition (%) of representative amphiboles from garnet two-pyroxene granulites in the Wuhe complex

| 样品                          |       | 07N   | ⁄IJ4  |       | 1310FY5-3 从核部到边部 |       |       |       |       |       |       |       | 1310FY5-3 |       |       |       |       |
|-----------------------------|-------|-------|-------|-------|------------------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|
| $\mathrm{SiO}_2$            | 41.48 | 42.22 | 41.61 | 41.59 | 41.07            | 41.02 | 40.95 | 41.05 | 41.05 | 41.37 | 41.29 | 40.93 | 41.02     | 40.83 | 40.52 | 40.49 | 41.00 |
| ${\rm TiO}_2$               | 4.08  | 4.23  | 4.12  | 4.01  | 1.75             | 1.94  | 1.75  | 1.84  | 1.85  | 1.73  | 1.67  | 1.81  | 1.73      | 1.39  | 3.58  | 3.69  | 3.88  |
| $Al_2O_3$                   | 12.40 | 12.20 | 12.14 | 12.11 | 13.66            | 13.52 | 13.36 | 13.32 | 13.57 | 13.34 | 13.58 | 13.53 | 13.86     | 14.44 | 12.63 | 12.79 | 12.28 |
| $\rm FeO^T$                 | 15.23 | 12.03 | 15.94 | 15.92 | 13.49            | 13.05 | 13.17 | 12.95 | 13.21 | 12.98 | 12.87 | 13.15 | 12.63     | 12.25 | 14.30 | 14.56 | 14.01 |
| MnO                         | 0.09  | 0.06  | 0.05  | 0.09  | 0.04             | 0.12  | 0.05  | 0.09  | 0.10  | 0.16  | 0.11  |       | 0.01      | 0.05  | 0.13  | 0.05  | 0.05  |
| MgO                         | 9.75  | 11.54 | 9.54  | 9.38  | 11.05            | 10.87 | 11.02 | 11.17 | 11.08 | 11.20 | 10.99 | 11.18 | 11.15     | 12.15 | 10.40 | 10.02 | 10.51 |
| CaO                         | 10.81 | 11.10 | 11.00 | 10.83 | 10.95            | 11.29 | 11.20 | 11.15 | 11.25 | 11.18 | 11.15 | 11.33 | 11.18     | 11.50 | 10.32 | 10.37 | 10.51 |
| $Na_2O$                     | 1.35  | 1.47  | 1.35  | 1.32  | 1.76             | 1.73  | 1.69  | 1.75  | 1.71  | 1.83  | 1.79  | 1.82  | 1.86      | 1.88  | 1.90  | 1.79  | 1.82  |
| $\mathrm{K}_2\mathrm{O}$    | 0.90  | 0.65  | 0.93  | 0.98  | 2.08             | 2.06  | 2.09  | 2.20  | 2.20  | 2.04  | 1.87  | 1.97  | 1.89      | 1.67  | 2.01  | 2.00  | 1.87  |
| Total                       | 96.13 | 95.54 | 96.70 | 96.28 | 96.87            | 96.64 | 96.37 | 96.58 | 97.05 | 96.83 | 96.32 | 96.66 | 96.28     | 97.12 | 96.80 | 96.72 | 96.81 |
|                             |       |       |       |       |                  | 以 23  | 个氧为   | 标准计   | 算的阳离  | 离子系数  | t     |       |           |       |       |       |       |
| Si                          | 6.28  | 6.33  | 6.29  | 6.31  | 6.19             | 6.20  | 6.21  | 6.21  | 6.18  | 6.23  | 6.24  | 6.18  | 6.19      | 6.10  | 6.15  | 6.15  | 6.20  |
| $\mathrm{Al}^{\mathbb{N}}$  | 1.72  | 1.67  | 1.71  | 1.69  | 1.81             | 1.80  | 1.79  | 1.79  | 1.82  | 1.77  | 1.76  | 1.82  | 1.81      | 1.90  | 1.85  | 1.85  | 1.80  |
| $\mathrm{Al}^{\mathrm{VI}}$ | 0.50  | 0.49  | 0.45  | 0.48  | 0.62             | 0.61  | 0.60  | 0.58  | 0.59  | 0.60  | 0.65  | 0.59  | 0.66      | 0.65  | 0.41  | 0.44  | 0.39  |
| Ti                          | 0.46  | 0.48  | 0.47  | 0.46  | 0.20             | 0.22  | 0.20  | 0.21  | 0.21  | 0.20  | 0.19  | 0.21  | 0.20      | 0.16  | 0.41  | 0.42  | 0.44  |
| $\mathrm{Fe}^{3+}$          | 0.57  | 0.61  | 0.55  | 0.57  | 0.31             | 0.33  | 0.32  | 0.30  | 0.30  | 0.30  | 0.35  | 0.29  | 0.33      | 0.24  | 0.37  | 0.41  | 0.43  |
| $\mathrm{Fe}^{2+}$          | 1.36  | 0.90  | 1.46  | 1.46  | 1.39             | 1.32  | 1.35  | 1.34  | 1.36  | 1.33  | 1.27  | 1.37  | 1.27      | 1.29  | 1.44  | 1.44  | 1.34  |
| Mn                          | 0.01  | 0.01  | 0.01  | 0.01  | 0.00             | 0.02  | 0.01  | 0.01  | 0.01  | 0.02  | 0.01  | 0.00  | 0.00      | 0.01  | 0.02  | 0.01  | 0.01  |
| Mg                          | 2.20  | 2.58  | 2.15  | 2.12  | 2.48             | 2.45  | 2.49  | 2.52  | 2.49  | 2.52  | 2.47  | 2.52  | 2.51      | 2.71  | 2.35  | 2.27  | 2.37  |
| Ca                          | 1.75  | 1.78  | 1.78  | 1.76  | 1.77             | 1.83  | 1.82  | 1.81  | 1.81  | 1.80  | 1.80  | 1.83  | 1.81      | 1.84  | 1.68  | 1.69  | 1.70  |
| Na                          | 0.40  | 0.43  | 0.40  | 0.39  | 0.51             | 0.51  | 0.50  | 0.51  | 0.50  | 0.54  | 0.52  | 0.53  | 0.54      | 0.55  | 0.56  | 0.53  | 0.53  |
| Κ                           | 0.17  | 0.12  | 0.18  | 0.19  | 0.40             | 0.40  | 0.40  | 0.42  | 0.42  | 0.39  | 0.36  | 0.38  | 0.36      | 0.32  | 0.39  | 0.39  | 0.36  |

表 8 五河杂岩石榴二辉麻粒岩中代表性斜长石的化学成分(%)

Table 8 Chemical composition (%) of representative plagioclases from garnet two-pyroxene granulites in the Wuhe complex

| ₩ D                         |       | 07 МИ |       |       | 1310FY5-3 |       |       |       |       |  |  |  |
|-----------------------------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|--|--|--|
| 件面                          |       | 07MJ4 |       |       | $M_1$     |       |       | $M_2$ |       |  |  |  |
| $SiO_2$                     | 59.37 | 58.84 | 59.51 | 57.82 | 55.63     | 55.27 | 59.58 | 59.40 | 59.05 |  |  |  |
| ${\rm TiO}_2$               | —     | 0.03  | 0.06  | 0.02  | 0.04      | —     | 0.01  | 0.04  | 0.02  |  |  |  |
| $\mathrm{Al}_2\mathrm{O}_3$ | 25.86 | 25.63 | 25.78 | 26.27 | 27.62     | 27.75 | 24.68 | 24.77 | 24.83 |  |  |  |
| FeO                         | 0.10  | 0.10  | 0.06  | 0.11  | 0.13      | 0.16  | 0.63  | 0.77  | 0.38  |  |  |  |
| CaO                         | 7.16  | 7.30  | 7.22  | 9.06  | 10.45     | 10.53 | 7.22  | 7.10  | 7.14  |  |  |  |
| $Na_2O$                     | 7.07  | 6.91  | 7.00  | 6.40  | 5.67      | 5.51  | 7.49  | 7.21  | 7.23  |  |  |  |
| $\mathrm{K}_2\mathrm{O}$    | 0.05  | 0.13  | 0.13  | 0.10  | 0.03      | 0.07  | 0.03  | 0.02  | 0.05  |  |  |  |
| Total                       | 99.62 | 98.98 | 99.77 | 99.78 | 103.29    | 98.75 | 99.66 | 99.36 | 98.69 |  |  |  |
|                             |       |       | 以8个   | 氧为标准计 | 算的阳离子     | 系数    |       |       |       |  |  |  |
| Si                          | 2.65  | 2.65  | 2.66  | 2.60  | 2.52      | 2.51  | 2.68  | 2.68  | 2.67  |  |  |  |
| Al                          | 1.36  | 1.36  | 1.36  | 1.39  | 1.47      | 1.48  | 1.31  | 1.32  | 1.32  |  |  |  |
| Ca                          | 0.34  | 0.35  | 0.35  | 0.44  | 0.51      | 0.51  | 0.35  | 0.34  | 0.35  |  |  |  |
| Na                          | 0.61  | 0.60  | 0.61  | 0.56  | 0.50      | 0.48  | 0.65  | 0.63  | 0.63  |  |  |  |
| Κ                           | 0.00  | 0.01  | 0.01  | 0.01  | 0.00      | 0.00  | 0.00  | 0.00  | 0.00  |  |  |  |
| An                          | 35.78 | 36.56 | 36.03 | 43.65 | 50.38     | 51.17 | 34.70 | 35.20 | 35.19 |  |  |  |
| Ab                          | 63.93 | 62.65 | 63.21 | 55.80 | 49.44     | 48.42 | 65.15 | 64.67 | 64.54 |  |  |  |
| Or                          | 0.29  | 0.79  | 0.77  | 0.55  | 0.18      | 0.42  | 0.15  | 0.13  | 0.26  |  |  |  |

多数被斜长石包围(图 5b),少量较自形颗粒的元素 含量沿剖面具有明显变化.一些石榴子石从核部、幔 部到边部的 FeO、MnO 和 MgO 含量先降低再升 高,而 CaO 含量则先升高后降低;一些在较宽的核 部元素含量稳定,而从核到边 FeO、MnO 和 MgO 含量明显升高(FeO: 21.80%~27.48%; MnO: 0.43%~0.86%; MgO:4.4%~5.5%),而CaO含量则明显降低(13.2%~6.7%)(表 5,图 6).与斑晶石榴子石接触的单斜辉石粒径为 0.5 mm 左右,元素含量变化较大,核部 Al<sub>2</sub>O<sub>3</sub>含量较高,可达 5%以



Fig.6 Compositional zoning of garnets from the Fengyang garnet two-pyroxene granulite

上,而边部较低,为3%~4%.少量与石榴子石和单 斜辉石平衡共生的斜长石较为自形,核部 CaO 含量 较高,接近10%.第二世代的石榴子石、单斜辉石和 斜长石与斜方辉石分布于富钛角闪石周围.石榴子 石呈细粒状或长条状,粒径多为100 µm 左右,元素 组成与基质石榴子石边部一致(表5).单斜辉石有 的呈细粒状,有的与斜长石一起形成蠕虫状交生体 (图 5c~5f),宽度为50~100 µm,元素组成与第一 世代单斜辉石相似.斜长石 CaO 含量与第一世代相 比普遍偏低(7%),钙长石(An)端元组分为30%~ 35%(摩尔含量).斜方辉石(紫苏辉石)含量约 15%~20%,在富钛角闪石周围出现(图 5c,5d, 5f),粒度约为200 µm,与石榴子石、单斜辉石和斜长 石为平衡共生矿物组合.

角闪石呈棕褐色,与其他矿物相比,粒径较大 (0.5~2.0 mm),含量约15%,与第一世代的石榴子 石、单斜辉石等平衡共生.不同颗粒之间元素含量有 一定变化,但单个颗粒元素组成均一,从核到边无明 显变化(表7).富集TiO<sub>2</sub>,一些颗粒中TiO<sub>2</sub>含量为 1%~2%,一些为3%~4%,在Ti-(Na+K)和Al<sup>N</sup>-Ti关系图落入麻粒岩相区域(图4).多数颗粒周围 有石榴子石+单斜辉石+斜长石冠状体 (图 5d~5f),或者单斜辉石+斜长石蠕虫状后成 合晶(图 5c).

## 4 变质阶段划分及温压条件

根据上述五河杂岩中变基性岩的矿物成分变化 和矿物转变结构等方面的详细研究,可以识别出 3 个变质阶段:(1)峰期高压麻粒岩相;(2)峰期后近等 温减压麻粒岩相变质;(3)晚期角闪岩相变质阶段. 利用多种地质温压计计算了不同变质阶段的温压条 件,包括 4 种 Grt-Cpx 温度公式:

 $T (^{\circ}C) = \begin{bmatrix} 3 & 104X_{Ca}^{Grt} + 3 & 030 + 10.86P (kb) \end{bmatrix} / (lnK_{D} + 1.903 4) - 273 (Ellis and Green, 1979),$ (1)

 $T(^{\circ}C) = [-6\ 173\ (X_{Ca})^2 + 6\ 713X_{Ca} + 1\ 879 + 10P(kb)]/(lnK_D + 1.393) - 273\ (Krogh,\ 1988), \qquad (2)$ 

 $T(^{\circ}C) = [2 790 + 10P (kb) + 3 140X_{Ca}]/(\ln K_{\rm D} + 1.735) - 273 (Powell, 1985),$ (3)

 $T(^{\circ}C) = \left[ (1\ 939.9 + 3\ 270X_{Ca}^{Grt} - 1\ 396\ (X_{Ca}^{Grt})^2 + 3\ 319X_{Mn}^{Grt} - 3\ 535\ (X_{Grt}^{Mn})^2 + 1\ 105X_{Grt}^{Mg^{\#}} - 3\ 561\ (X_{Grt}^{Mg^{\#}})^2 + 2\ 324(X_{Grt}^{Mg^{\#}})^3 + 169.4P(\text{GPa}))/(\ln K_{\text{D}} + 1.223) \right] - 273 (\text{Ravna, 2000a}).$ (4)

两种 Cpx-Opx 温度公式:

 $T(^{\circ}C) = [7 \ 341/(3.355 + 2.44X _{Fe}^{Cpx} - \ln K_{D}) - 273 \text{ (Wells, 1977)}, \qquad (5)$ 

| $T(^{\circ}C) = [24 \ 787 + 678P \ (\text{GPa})]/[15.6]$                                                                               | 37 + |
|----------------------------------------------------------------------------------------------------------------------------------------|------|
| $14.37 \operatorname{Ti}_{C_{\mathrm{PX}}} + 3.69 \operatorname{Fe}_{C_{\mathrm{PX}}} - 3.25 X_{\mathrm{ts}} + (\ln K_{\mathrm{D}})^2$ | -273 |
| (Taylor, 1998).                                                                                                                        | (6)  |

Grt-Cpx-Pl-Qtz 压力公式:

 $P(\text{kbar}) = 2.60 + 0.017 \ 18T(\text{K}) + 0.003 \ 596 \ T$ (K)ln $K_{\text{D}}$ (Eckert *et al.*, 1991). (7)

Grt-Opx-Pl-Qtz 压力公式:

 $P(bar) = 3944 + 13.07 + 3.5038T(K) \ln K_{\rm D}$ (Bhattacharya *et al.*, 1991). (8)

Grt-Amp 温度公式:

 $T(^{\circ}C) = \begin{bmatrix} 1 \ 504 + 1 \ 784X_{Ca}^{Grt} + X_{Ca}^{Grt} / \ln K_{D} + \\ 0.720) \end{bmatrix} - 273 \text{ (Ravna, 2000b).}$ (9)

Amp-Pl 压力公式:

 $P (\text{kbar}) = (8.314 \text{ 4T} (\text{K}) \ln D_{\text{Al/Si}}^{\text{Pl/Amp}} - 8.7T (\text{K}) + 23 377X_{\text{Al}}^{\text{Tl}} + 7 579X_{\text{Ab}} - 11 302)/(-274) (\text{Molina et al., 2015}).$ (10)

#### 4.1 峰期高压麻粒岩相变质(M<sub>1</sub>)

主要矿物组合为石榴子石+单斜辉石+斜长 石十石英±角闪石(高 Ti)±金红石.高 Ti 角闪石普 遍存在,在多数样品中粒径较大(>0.5 mm),与石 榴子石、单斜辉石、斜长石等平衡共生,说明其在 (近)峰期条件下稳定存在.采自不同地区的石榴麻 粒岩温压计算结果显示,不同样品之间的温压范围 有一定差异,从门台子到梅家到凤阳样品温压结果 逐渐降低(表9,表10).门台子石榴基性麻粒岩温压 条件是 900 ℃、1.3~1.4 GPa 和 850 ℃、1.3~ 1.4 GPa,梅家石榴麻粒岩为 800 ℃、1.1~1.2 GPa, 凤阳石榴麻粒岩为 750 ℃、0.9~1.0 GPa.不同地点 样品峰期条件的差异,可能代表了一个碰撞造山带 岩石地质体的岩性柱,也可能是在峰期之后石榴子 石与单斜辉石之间发生了 Fe-Mg 再平衡而没有保 留峰期变质条件(Frost and Chacko, 1989; Harley, 1989; Spear and Florence, 1992; Pattison, 2003),相对较低的温压计算结果即为发生再平衡时 的温压条件(Liu et al., 2015b).笔者选择凤阳石榴 二辉麻粒岩中高 CaO 的石榴子石核部、高 Al<sub>2</sub>O<sub>3</sub> 的 单斜辉石、基质中的斜长石和石英,利用上述 Grt-Cpx 温度计和 Grt-Cpx-Pl-Qtz 压力计来进行温压 计算.计算结果显示,不同温度计计算结果有一定差 异,但总体温度多高于 850 ℃,部分接近 900 ℃,压 力为1.5 GPa(表 11,表 12,表 13).

#### 4.2 峰期后近等温减压麻粒岩相变质阶段(M<sub>2</sub>)

在 1310FY5-3 样品中,沿峰期矿物棕褐色角闪 石周围,分布石榴子石+单斜辉石+紫苏辉石+斜

### 表 9 石榴麻粒岩中石榴子石一单斜辉石地质温度计数据

 Table 9 Calculated results using the garnrt-clinopyroxene geothermometer for the garnet granulite

| 样品号       | 矿物对 | $T_1({}^{\circ}\!\!\mathbb{C})$ | $T_2(^{\circ}\mathbb{C})$ | $T_3(^{\circ}\!\!\mathbb{C})$ | P(GPa) | $T_4({}^{\circ}\!\!\mathbb{C})$ |
|-----------|-----|---------------------------------|---------------------------|-------------------------------|--------|---------------------------------|
| 12MTZ6    | 4   | $913 \sim 942$                  | $874 \sim 908$            | 886~916                       | 1.3    | $881 \sim 916$                  |
| 12MTZ2    | 4   | $845 \sim 894$                  | $807 \sim 863$            | $817 \sim 868$                | 1.3    | $800 \sim 860$                  |
| 1403MJ2-6 | 4   | $826\!\sim\!879$                | $772 \sim 838$            | $801 \sim 856$                | 1.2    | $737 \sim 802$                  |
| 1403FY1-2 | 6   | $755 \sim 814$                  | $692 \sim 757$            | $724 \sim 784$                | 1.0    | $670 \sim 735$                  |

注: $T_1$ 据 Elllis and Green, 1979; $T_2$ 据 Krogh(1988); $T_3$ 据 Powell(1985); $T_4$ 据 Ravna(2000a);所用压力值来自于表 10 计算结果.

#### 表 10 石榴麻粒岩中石榴子石一单斜辉石一斜长石一石英 地质压力计数据

Table 10 Calculated results using the garnrt-clinopyroxeneplagioclase-quartz geobarometer for the garnet granulite

| 民日日       | 变质    | Срх               |              | Grt          |                   | Pl                |                         |        |
|-----------|-------|-------------------|--------------|--------------|-------------------|-------------------|-------------------------|--------|
| 作曲与       | 阶段    | $a_{\mathrm{Di}}$ | $X_{\rm Fe}$ | $X_{\rm Mg}$ | $X_{\mathrm{Ca}}$ | $X_{\mathrm{An}}$ | $T(^{\circ}\mathbb{C})$ | P(GPa) |
|           |       | 0.46              | 0.55         | 0.23         | 0.21              | 0.43              | 900                     | 1.33   |
|           |       | 0.49              | 0.55         | 0.23         | 0.23              | 0.41              | 900                     | 1.35   |
| 12MTZ6    | $M_1$ | 0.46              | 0.55         | 0.23         | 0.22              | 0.42              | 900                     | 1.38   |
|           |       | 0.42              | 0.56         | 0.22         | 0.22              | 0.41              | 900                     | 1.36   |
|           |       | 0.44              | 0.56         | 0.25         | 0.19              | 0.44              | 900                     | 1.31   |
|           |       | 0.49              | 0.54         | 0.20         | 0.26              | 0.29              | 850                     | 1.38   |
|           |       | 0.42              | 0.57         | 0.19         | 0.25              | 0.32              | 850                     | 1.33   |
| 12MTZ2    | $M_1$ | 0.48              | 0.56         | 0.18         | 0.26              | 0.28              | 850                     | 1.34   |
|           |       | 0.44              | 0.56         | 0.19         | 0.25              | 0.28              | 850                     | 1.38   |
|           |       | 0.42              | 0.57         | 0.18         | 0.25              | 0.29              | 850                     | 1.38   |
|           |       | 0.48              | 0.54         | 0.29         | 0.18              | 0.41              | 800                     | 1.22   |
| 1403MJ2-6 | $M_1$ | 0.59              | 0.54         | 0.29         | 0.17              | 0.43              | 800                     | 1.14   |
|           |       | 0.55              | 0.54         | 0.28         | 0.18              | 0.43              | 800                     | 1.14   |
|           |       | 0.55              | 0.57         | 0.23         | 0.21              | 0.57              | 750                     | 0.92   |
| 1403FY1-2 | $M_1$ | 0.51              | 0.58         | 0.22         | 0.20              | 0.58              | 750                     | 0.90   |
|           |       | 0.56              | 0.57         | 0.23         | 0.21              | 0.56              | 750                     | 0.92   |

注:所用温度值来自于表9计算结果.

长石(图 5d~5f),石榴子石+单斜辉石+斜长石后 成合晶(图 5c),这些矿物代表峰期后近等温减压麻 粒岩相变质阶段的矿物组合,反应过程可能为 Amp+Qtz→Grt+Cpx+melt和Amp+Qtz→ Opx+Grt+Pl±melt.对于石榴子石+单斜辉石+ 紫苏辉石+斜长石矿物组合,Cpx-Opx温度计结果 多高于900℃(表 12),Grt-Cpx温度计结果稍低,但 也多介于850~900℃(表 11),Grt-Opx-Pl-Qtz压 力计结果为1.1~1.2 GPa(表 13).对于石榴子石+ 单斜辉石+斜长石组合,Grt-Cpx温度计结果多集 中在700~750℃(表 11),Grt-Cpx-Pl-Qtz压力计结 果为1.1 GPa左右(表 13).梅家石榴二辉麻粒岩 (07MJ4)Grt-Cpx和Cpx-Opx温度结果多高达 900℃(表 11,表 12),Grt-Opx-Pl-Qtz压力计结果 为~1.2 GPa(表 13).

#### 第 43 卷

#### 表 11 石榴二辉麻粒岩中石榴子石一单斜辉石地质温度计数据

Table 11 Calculated results using the garnet-clinopyroxene geothermometer for the garnet two-pyroxene granulite

| 样品号                                           |       | 矿物对      | $T_1(^{\circ}\mathbb{C})$ | $T_2(^{\circ}\mathbb{C})$ | $T_3(^{\circ}\mathbb{C})$ | P(GPa) | $T_4(^{\circ}\mathbb{C})$ |
|-----------------------------------------------|-------|----------|---------------------------|---------------------------|---------------------------|--------|---------------------------|
| 1310FY5-3 Grt+Cpx+Pl                          | $M_1$ | 8        | $845 \sim 913$            | $820\!\sim\!892$          | 831~902                   | 1.5    | $773 \sim 844$            |
| 1310FY5-3 富钛角闪石周围 Grt + Cpx + Opx + Pl<br>交生体 | $M_2$ | 5        | 730~776                   | 677~728                   | 723~771                   | 1.2    | 692~712                   |
| 07MJ4                                         | $M_1$ | 5        | $913 \sim 942$            | $874 \sim 908$            | $886 \sim 916$            | 1.2    | $881 \sim 916$            |
| ※ の 相 PUU: 10 (4050) の 相 H 1(4000)            | m +1  | D 11/4.0 |                           | (0000) 17                 |                           | マナイ・ソ  |                           |

注: T<sub>1</sub> 据 Elllis and Green(1979); T<sub>2</sub> 据 Krogh(1988); T<sub>3</sub> 据 Powell(1985); T<sub>4</sub> 据 Ravna(2000a); 所用压力值来自于表 13 计算结果.

#### 表 12 石榴二辉麻粒岩中单斜辉石一斜方辉石地质温度计数据

Table 12 Calculated results using the clinopyroxene-orthopyroxene geothermometer for the garnet two-pyroxene granulite

|                                          | Cpx<br>a En     | Opx<br>a En | $\ln K_{\rm D}$ | $T(^{\circ}\mathbb{C})$ | Cpx<br>a En | Opx<br>a En | $\ln K_{\rm d}$ | P<br>(GPa) | <i>T</i><br>(℃) |
|------------------------------------------|-----------------|-------------|-----------------|-------------------------|-------------|-------------|-----------------|------------|-----------------|
|                                          | 0.04            | 0.25        | -1.87           | 878                     | 0.11        | 0.91        | -2.13           | 1.2        | 935             |
|                                          | 0.04            | 0.24        | -1.75           | 898                     | 0.11        | 0.88        | -2.10           | 1.2        | 937             |
| 07 MJ 4                                  | 0.04            | 0.25        | -1.89           | 873                     | 0.10        | 0.90        | -2.20           | 1.2        | 909             |
|                                          | 0.05            | 0.23        | -1.57           | 926                     | 0.13        | 0.87        | -1.89           | ) 1.2 982  |                 |
|                                          | 0.04            | 0.24        | -1.83           | 882                     | 0.11        | 0.88        | -2.11           | 1.2        | 935             |
|                                          | 0.05            | 0.31        | -1.83           | 908                     | 0.10        | 0.89        | -2.23           | 1.2        | 930             |
|                                          | 0.04 0.33 -2.21 | 849         | 0.06            | 0.86                    | -2.59       | 1.2         | 832             |            |                 |
| 1310FY5-3 晶钛用闪石周围 Grt+Cpx+<br>Opy+Pl 交生体 | 0.04            | 0.35        | -2.06           | 887                     | 0.08        | 0.86        | -2.32           | 1.2        | 910             |
| Opx + 11 XI m                            | 0.05            | 0.31        | -1.72           | 932                     | 0.11        | 0.87        | -2.08           | 1.2        | 957             |
|                                          | 0.05            | 0.33        | -1.93           | 900                     | 0.09        | 0.88        | -2.24           | 1.2        | 909             |

注:所用压力值来自于表 13 计算结果.

#### 表 13 石榴二辉麻粒岩中石榴子石一单斜辉石一斜长石一石英和石榴子石一斜方辉石一斜长石一石英地质压力计数据

Table 13 Calculated results using the garnrt-clinopyroxene-plagioclase-quartz and garnrt-orthopyroxene-plagioclase-quartz geobarometer for the garnet two-pyroxene granulite

| 样日早                                     | 亦舌阶即  | Срх             |             | Grt               |             | Pl          |                         |        |
|-----------------------------------------|-------|-----------------|-------------|-------------------|-------------|-------------|-------------------------|--------|
| 件曲写                                     | 受顶顶技  | a <sub>Di</sub> | $X_{ m Fe}$ | $X_{\mathrm{Mg}}$ | $X_{ m Ca}$ | $X_{ m An}$ | $T(^{\circ}\mathbb{C})$ | P(GPa) |
|                                         |       | 0.48            | 0.47        | 0.18              | 0.35        | 0.44        | 850                     | 1.51   |
| 1310FY5-3 Grt+Cpx+Pl                    | $M_1$ | 0.45            | 0.45        | 0.18              | 0.37        | 0.50        | 850                     | 1.52   |
|                                         |       | 0.47            | 0.46        | 0.17              | 0.37        | 0.50        | 850                     | 1.49   |
| 1010円にの合作を守て用用の。」                       |       | 0.44            | 0.61        | 0.22              | 0.17        | 0.38        | 750                     | 1.13   |
| 1310FY5-3 晶钛用闪石 同 围 Grt +<br>Cpx+Pl 态生体 | $M_2$ | 0.45            | 0.59        | 0.24              | 0.17        | 0.39        | 750                     | 1.13   |
| CPX+IIZEM                               |       | 0.46            | 0.58        | 0.25              | 0.17        | 0.38        | 750                     | 1.20   |
|                                         |       | Opx             |             | Grt               |             | Pl          |                         |        |
|                                         |       | $a_{ m Di}$     | $X_{ m Fe}$ | $X_{\mathrm{Mg}}$ | $X_{ m Ca}$ | $X_{ m An}$ | $T(^{\circ}\mathbb{C})$ | P(GPa) |
|                                         |       | 0.65            | 0.56        | 0.27              | 0.16        | 0.39        | 900                     | 1.20   |
| 1010円760字件在过了日田。                        |       | 0.66            | 0.58        | 0.24              | 0.16        | 0.37        | 900                     | 1.13   |
| 1310FY5-3 晶钛用闪石 向围 Grt +<br>Cpy+Opy+Pl  | $M_2$ | 0.67            | 0.56        | 0.27              | 0.17        | 0.39        | 900                     | 1.18   |
| Opx + Opx + 11                          |       | 0.65            | 0.58        | 0.25              | 0.16        | 0.36        | 900                     | 1.17   |
|                                         |       | 0.65            | 0.58        | 0.24              | 0.17        | 0.35        | 900                     | 1.17   |
|                                         |       | 0.59            | 0.57        | 0.24              | 0.17        | 0.36        | 900                     | 1.23   |
|                                         |       | 0.58            | 0.57        | 0.24              | 0.17        | 0.37        | 900                     | 1.23   |
| 07MJ4                                   | $M_1$ | 0.57            | 0.56        | 0.24              | 0.18        | 0.36        | 900                     | 1.22   |
|                                         |       | 0.58            | 0.57        | 0.23              | 0.18        | 0.38        | 900                     | 1.25   |
|                                         |       | 0.57            | 0.58        | 0.23              | 0.17        | 0.37        | 900                     | 1.29   |

注:所用温度值来自于表 11 和 12 计算结果.

#### 4.3 晚期角闪岩相变质(M<sub>3</sub>)

石榴麻粒岩部分石榴子石边部退变分解为角闪 石和斜长石的蠕虫状后成合晶(图 3b),部分角闪石 呈单斜辉石的退变边.反应过程可能为 Grt +  $H_2 O \rightarrow Amp + Pl, Grt + Cpx + H_2 O \rightarrow Amp + Pl,$ Grt+Cpx+Qtz+H<sub>2</sub>O→Amp+Pl 和 Cpx+Pl+ H<sub>2</sub>O→Amp.利用 Grt-Amp 温度计(Ravna, 2000b) 和 Amp-Pl 压力计(Molina *et al.*, 2015)计算的温



图 7 华北东南缘五河杂岩中石榴斜长角闪岩的显微照片 Fig.7 Micrographs of garnet amphibolites from the Wuhe complex in southeastern margin of the North China Craton

压范围为 T=600~680 ℃、P=0.65~0.75 GPa.

## 5 锆石 U-Pb 定年

对一个石榴斜长角闪岩和一个石榴二辉麻粒岩样品进行了 LA-ICP-MS 锆石 U-Pb 定年和微量元素分析,定年结果见表 14,微量元素见表 15.由于锆石定年区域 U 含量较低,<sup>206</sup> Pb/<sup>238</sup> U 年龄精度要优于<sup>207</sup> Pb/<sup>206</sup> Pb 年龄,故本文采用<sup>206</sup> Pb/<sup>238</sup> U 年龄.

石榴斜长角闪岩(07FY01) 主要矿物组合为石 榴子石、斜长石和绿色角闪石,另含有少量的富钛角 闪石、单斜辉石、榍石和金红石.部分石榴子石中含 有斜长石和金红石等矿物包体,多数被斜长石和角 闪石围绕,有的完全被斜长石和角闪石取代呈石榴 子石假象.局部可见单斜辉石被绿色角闪石和极细 小的斜长石取代,应为后期角闪岩相退变质产物(图 7).锆石粒度比较均一,为100 µm 左右,浑圆状,在 阴极发光图像中呈淡灰色一白色,发光性较强.多数 无明显结构,部分具有面状、扇形和冷杉叶分带特 征,少量含有深灰色的核,该样品经历了高压麻粒岩 相变质(Liu et al., 2009; Wang et al., 2013),笔者 在部分锆石中发现有单斜辉石、金红石和磷灰石等 矿物包体(图 8a, 8d).23 个分析点 Th/U 比值为 0.11~0.53,<sup>206</sup> Pb/<sup>238</sup> U 谐和年龄为(1828±58)~ (1974±62)Ma,多数具有明显的 Ce 正异常和 Eu 负异常以及平坦的 HREE 配分模式(图 10), 与麻 粒岩相锆石特征一致(吴元保和郑永飞, 2004).年 龄可进一步分为3组(图9a,9b):第1组包括分析 点 2.1、3.1、6.1、7.1、8.1、14.1、15.1、16.1、17.1、21.1 和 23.1,  $\Sigma$  REE 为 33×10<sup>-6</sup>~657×10<sup>-6</sup>, Th 和 U 含量分别为1×10<sup>-6</sup>~24×10<sup>-6</sup>和10×10<sup>-6</sup>~93× 10<sup>-6</sup>, Th/U 比值为 0.13~0.38, SEu 值多小于 1,



- 图 8 石榴斜长角闪岩(07FY01, a~e)和石榴二辉麻粒岩 (07MJ4, f~i)锆石中矿物包体、阴极发光图像及 LA-ICP-MS U-Pb 定年结果
- Fig. 8 Plane-polarized light images of mineral inclusions, cathodoluminescence (CL) images and LA-ICP-MS U-Pb ages of zircons from garnet amphibolite (07FY01, a-e) and garnet two-pyroxene granulite (07MJ4, f-i)

 $(Tb/Yb)_{N}$ 多为 0.5 左右,加权平均<sup>206</sup> Pb/<sup>238</sup> U 年龄 为1 904±23 Ma(MSWD=0.21);第 2 组包括分析 点 1.1、4.1、5.1、9.1、10.1、11.1、13.1、18.1、20.1 和 22.1,  $\Sigma$  REE 为 46×10<sup>-6</sup>~490×10<sup>-6</sup>, Th 和 U 含 量分别为 2×10<sup>-6</sup>~30×10<sup>-6</sup>和 12×10<sup>-6</sup>~102× 10<sup>-6</sup>, Th/U 比值为 0.14~0.53,  $\delta$  Eu 值总体比第一 组稍大,为 0.36~2.73, (Tb/Yb)<sub>N</sub> 值为 0.29~1.28, 加权平均<sup>206</sup> Pb/<sup>238</sup> U年龄为1 849±24 Ma(MSWD= 0.22); 第3组包括分析点12.1和19.1,<sup>206</sup> Pb/<sup>238</sup> U

| 数据       |
|----------|
| U-Pb     |
| 锆石       |
| SM-4     |
| LA-IC    |
| SMJ4)    |
| 营(07     |
| 麻粒       |
| 211年     |
| 和石       |
| (07FY01) |
| 闪岩       |
| 大角       |
| 石榴彩      |
| 表 14     |

Table 14 LA-ICP-MS zircon U-Pb data for sample garnet amphibolite (07FY01) and garnet two-pyroxene granulite (07SMJ4)

|            | $\pm 1_{\sigma}$                | 53<br>26              | 40                      | 40       | 35             | 56                | 59     | 36         | 20<br>20       | 62        | 32    | 34             | 54<br>A1       | 37        | 37    | 57    | 42    | 44              | 37<br>40       | 2       | 51<br>68       | 39        | 32              | 49             | 47             | 42    | 07             | 34         | 38    | 45      | 34               | 52                              | 28    | 28<br>28       | 00<br>43  | 38               | 46<br>36    | 56<br>26       | 2 00<br>2000   |
|------------|---------------------------------|-----------------------|-------------------------|----------|----------------|-------------------|--------|------------|----------------|-----------|-------|----------------|----------------|-----------|-------|-------|-------|-----------------|----------------|---------|----------------|-----------|-----------------|----------------|----------------|-------|----------------|------------|-------|---------|------------------|---------------------------------|-------|----------------|-----------|------------------|-------------|----------------|----------------|
| Ma)        | $^{206}{ m Pb}*/^{238}{ m U}$   | 1 848                 | 1 004<br>1 930          | 1 866    | 1 909<br>1     | 1886              | 1  914 | 1 864      | 1 869          | $1 \ 974$ | 1 821 | 1 883          | 1 900          | 1 908     | 1856  | 1 973 | 1 852 | 1892            | 1 826<br>1 937 | -       | 1 811<br>1 823 | 1 899     | 1 847           | 1 853<br>2 020 | 2 029<br>1 889 | 1 871 | 1 1/9          | 1 820      | 1 963 | 1 772   | 1 846            | $\frac{1}{1}$ $\frac{766}{766}$ | 1841  | 1 838          | 1 872     | $\frac{1}{1873}$ | 1 870       | 1 846<br>1 808 | 1 878          |
| 年龄()       | $\pm 1\sigma$                   | 132                   | 16<br>16                | 110      | 101            | 148               | 151    | 92<br>1 20 | 105            | 163       | 83    | 86             | 101<br>104     | -04<br>92 | 26    | 171   | 107   | $\frac{118}{2}$ | 99<br>109      | 2       | 120<br>114     | 82        | 62              | 101            | 96             | 89    | 00<br>7.9      | 76         | 78    | 96<br>0 | 0 <i>6</i><br>20 | 131                             | 71    | 60<br>12       | 70        | 84               | 94          | 71<br>82       | 708            |
|            | $^{207}{ m Pb}*/^{206}{ m Pb}*$ | 2 016<br>1 713        | 1 997                   | 1 725    | 1 744<br>1 860 | $\frac{1}{1}$ 770 | 2 044  | 1 825      | 1 804<br>1 830 | 1581      | 1 787 | 1 719          | 1 051          | 1770      | 1 651 | 1 793 | 2 017 | 1 953           | 1 795<br>1 788 | -       | 2 082<br>2 362 | 1 817     | 1 804           | 1 891          | 1 020<br>1 923 | 1 883 | 1 604<br>1 809 | 1834       | 1 859 | 1 984   | 1 930            | 1 936                           | 1 789 | 1 733          | 1 790     | 1857             | 1 843       | 1 712          | 1 943          |
|            | $\pm 1\sigma$                   | 0.011                 | 0.008                   | 0.008    | 0.008          | 0.012             | 0.012  | 0.007      | 0.012          | 0.013     | 0.007 | 0.007          | 0.00           | 0.008     | 0.008 | 0.012 | 0.009 | 0.009           | 0.008          | •       | 0.011          | 0.008     | 0.007           | 0.010          | 0.010          | 0.009 | 0000<br>0000   | 0.007      | 0.008 | 0.009   | 0.007            | 0.011                           | 0.006 | 0.006          | 0000      | 0.008            | 0.010       | 0.006          | 0.008          |
| 206 Ph * / | 238 U                           | 0.332                 | 0.349                   | 0.336    | 0.334<br>0.345 | 0.340             | 0.346  | 0.335      | 0.328<br>0.336 | 0.358     | 0.326 | 0.339          | 0.343          | 0.344     | 0.334 | 0.358 | 0.333 | 0.341           | 0.327          |         | 0.324          | 0.343     | 0.332           | 0.333          | 0.340          | 0.337 | 0.318          | 0.326      | 0.356 | 0.316   | 0.332            | 0.315                           | 0.331 | 0.330          | 0.337     | 0.337            | 0.336       | 0.332          | 0.338          |
|            | $\pm 1\sigma$                   | 0.462                 | 0.348                   | 0.323    | 0.299          | 0.450             | 0.526  | 0.283      | 0.431<br>0.324 | 0.454     | 0.247 | 0.256          | 0.257          | 0.282     | 0.269 | 0.501 | 0.363 | 0.391           | 0.288          |         | 0.560          | 0.346     | 0.309           | 0.440          | 0.437          | 0.386 | 0.248          | 0.306      | 0.349 | 0.421   | 0.341            | 0.533                           | 0.271 | 0.264          | 0.384     | 0.356            | 0.400       | 0.261          | 0.363          |
| 207 Ph * / | 235 U                           | 5.683<br>4.000        | 4. <i>33</i> 0<br>5.906 | 4.888    | 4.915<br>5.406 | 5.072             | 6.010  | 5.158      | 0.152<br>5 188 | 4.828     | 4.918 | 4.925          | 0.310<br>7.670 | 5.138     | 4.666 | 5.412 | 5.700 | 5.634           | 4.953<br>5.284 |         | 5.761<br>6.823 | 5.246     | 5.043           | 5.311<br>5.600 | 5.531          | 5.349 | 4.128<br>5.008 | 5.044      | 5.579 | 5.315   | 5.406            | 5.155                           | 4.985 | 4.823<br>5.044 | 5.087     | 5.279            | 5.227       | 4.794<br>5.411 | 0.411<br>5.553 |
|            | $\pm 1\sigma$                   | 0.010                 | 0.007                   | 0.007    | 0.006          | 0.009             | 0.011  | 0.006      | 0.007          | 0.009     | 0.005 | 0.005          | 0.007          | 0.006     | 0.006 | 0.011 | 0.008 | 0.008           | 0.006          |         | 0.009          | 0.005     | 0.005           | 0.007          | 0.006          | 0.006 | 0.004          | 0.005      | 0.005 | 0.007   | 0.005            | 0.009                           | 0.004 | 0.004          | 0.006     | 0.005            | 0.006       | 0.004          | 0.005          |
| 207 Ph * / | $^{206} Pb *$                   | 0.124                 | 0.123                   | 0.106    | 0.107          | 0.108             | 0.126  | 0.112      | 0.114          | 0.098     | 0.109 | 0.105          | 0.113          | 0.108     | 0.101 | 0.110 | 0.124 | 0.120           | 0.110          |         | 0.129          | 0.111     | 0.110           | 0.116          | 0.118          | 0.115 | 0.110          | 0.112      | 0.114 | 0.122   | 0.118            | 0.119                           | 0.109 | 0.106          | 0.109     | 0.114            | 0.113       | 0.105          | 0.119          |
| 206 Ph *   | $(10^{-6})$                     | 9 c                   | 17                      | 12       | 32 0           | 4                 | en (   | 19         | 4              | 100       | 33    | 28<br>1 8      | 07             | 22        | 17    | 4     | 00 1  | 200             | 72             | 0       |                | $10^{1}$  | 17              | 4 1            | ഹ              | 992   | 617<br>C07     | $14^{-14}$ | 15    | LO ₹    | + [              | ; m                             | 61    | 48             | ي ہ       | Ϊ                | ы I         | 75<br>19       | 11             |
| Th/        | Ď                               | 0.14                  | 0.26                    | 0.31     | 0.30           | 0.13              | 0.13   | 0.27       | 0.10           | 0.16      | 0.29  | 0.26           | 0.27           | 0.38      | 0.18  | 0.11  | 0.31  | 0.31            | 0.32           |         | 0.22           | 0.37      | 0.23            | 0.26           | 0.35           | 0.26  | 0.46           | 0.22       | 0.24  | 0.47    | 0.20             | 0.36                            | 0.47  | 0.44           | 0.33      | 0.40             | 0.30        | 0.42           | 0.28           |
| μL         | $(10^{-6})$                     | 2 5                   | 13                      | 11       | 18             | 1                 | ;      | 15         | 72             | 101       | 30    | 22             | 07             | 24        | 10    | 1     | 2     | 9               | 22             | 2       | - 12           | $12^{-1}$ | 12              | ng Li          | റഥ             | 4     | 39 I<br>16     | 6<br>6     | 10    |         | 10 4             | 4                               | 87    | 64<br>7        | - 9       | ,<br>13          | ю g         | 98<br>17       | 6              |
| 1          | $(10^{-6})$                     | 701<br>17<br>72       | 49                      | 36<br>70 | 59<br>03       | 11                | 10     | 57         | 12<br>33       | 10        | 102   | 82<br>87<br>87 | 7.5<br>2,8     | 64<br>64  | 53    | 11    | 23    | 21              | 69<br>41       | '4 ···  | ω u            | 31        | 53              | 12             | 12             | 17    | 843<br>120     | 43         | 45    | 15      | 35               | 11                              | 187   | 147            | 50<br>202 | 32               | $16_{0.00}$ | 232<br>36      | 200<br>000     |
|            | 点号                              | _样品07FY<br>1.1<br>3.1 | 3.1                     | 4.1      | 5.1<br>61      | 7.1               | 8.1    | 9.1        | 10.1           | 12.1      | 13.1  | 14.1           | 10.1           | 17.1      | 18.1  | 19.1  | 20.1  | 21.1            | 22.1           | 样品 07MJ | 1.1            | 3.1       | $\frac{4.1}{1}$ | 5.1<br>6.1     | 7.1            | 8.1   | 9.1<br>101     | 11.1       | 12.1  | 13.1    | 151              | 16.1                            | 17.1  | 18.1           | 20.1      | 21.1             | 22.1        | 23.1           | 25.1<br>25.1   |

| LA-ICP-MS 微量元素(10 <sup>-6</sup> )        |
|------------------------------------------|
| 中锆石                                      |
| (07SMJ4)                                 |
| 军麻粒岩(                                    |
| 口石楢二次                                    |
| JFY01)                                   |
| () () () () () () () () () () () () () ( |
| 石榴斜长                                     |
| 表 15                                     |

| $\sim$                  |
|-------------------------|
| ]4                      |
| Σ                       |
| $\overline{\mathbf{S}}$ |
| 0                       |
|                         |
| ite                     |
| In                      |
| an                      |
| 50                      |
| ē                       |
| en                      |
| XC                      |
| Ar(                     |
| d'                      |
| ò                       |
| tν                      |
| et                      |
| Ē                       |
| gai                     |
|                         |
| цц                      |
| 0                       |
| Ð                       |
| 5                       |
| Ĺц                      |
| 07                      |
| C                       |
| te                      |
| :FO                     |
| -ġ                      |
| ЧĊ.                     |
| Ē                       |
| aı                      |
| let                     |
| E                       |
| ga                      |
| e                       |
| Įdı                     |
| Щ                       |
| SS                      |
| ш.                      |
| ц                       |
| 00                      |
| ЗĿ.                     |
| r 2                     |
| fo                      |
| s.                      |
| ZS.                     |
| aly                     |
| an                      |
|                         |
| 9                       |
| 0                       |
| $\Box$                  |
| It                      |
| ler                     |
| ЭЦ                      |
| eF                      |
| e                       |
| ac                      |
| tr                      |
| 1S                      |
| Š                       |
| É,                      |
| IC                      |
| $\rm A^-$               |
| Ľ                       |
|                         |
| 15                      |
| e                       |
| ldl                     |
| $\Gamma_{a}$            |

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| δEu                      | <ul> <li>1.23</li> <li>0.72</li> <li>0.72</li> <li>0.72</li> <li>0.72</li> <li>0.92</li> <li>0.55</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.56</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.57</li> <li>0.57</li> <li>0.56</li> <li>0.57</li> <li>0.56</li> <li>0.56</li> <li>0.57</li> <l< td=""><td><math>\begin{array}{c} 0.81\\ 0.82\\ 0.83\\ 0.83\\ 0.84\\ 0.86\\ 0.84\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\</math></td></l<></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.81\\ 0.82\\ 0.83\\ 0.83\\ 0.84\\ 0.86\\ 0.84\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\mathrm{Th}/\mathrm{U}$ | $\begin{array}{c} 0.14\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.24\\ 0.13\\ 0.13\\ 0.26\\ 0.13\\ 0.26\\ 0.29\\ 0.26\\ 0.23\\ 0.23\\ 0.23\\ 0.26\\ 0.23\\ 0.26\\ 0.23\\ 0.26\\ 0.24\\ 11\\ 0.24\\ 11\\ 0.24\\ 0.24\\ 11\\ 0.24\\ 12\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.22\\ 0.22\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.24\\ 0.24\\ 0.24\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Υ                        | 15.85<br>49.28<br>52.24<br>23.73<br>55.24<br>44.03<br>55.61<br>11.62<br>55.61<br>11.62<br>53.61<br>11.62<br>53.61<br>11.62<br>23.14<br>10.23<br>55.61<br>11.42<br>130.49<br>130.49<br>130.49<br>130.49<br>130.49<br>14.42<br>130.49<br>130.49<br>130.49<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.12<br>14.42<br>130.49<br>14.42<br>130.49<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.42<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.44<br>14.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 38.30\\ 18.55\\ 28.65\\ 39.86\\ 68.28\\ 34.44\\ 137.35\\ 34.44\\ 137.35\\ 34.44\\ 137.35\\ 35.54\\ 69.05\\ 33.05\\ 33.05\\ 36.79\\ 108.79\\ 108.79\\ 69.54\\ 65.74\\ 65.74\\ 65.74\\ 65.74\\ 65.74\\ 65.74\\ 65.76\\ 69.05\\ 60.75\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.76\\ 60.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D                        | 17.09<br>50.48<br>50.48<br>55.67<br>55.67<br>10.31<br>9.27<br>9.97<br>9.96<br>81.40<br>77<br>71.10<br>81.40<br>77<br>81.40<br>77<br>710<br>81.40<br>77<br>81.40<br>1001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>11001<br>110000<br>1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.00<br>5.38<br>30.30<br>49.70<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11.43<br>11 |
| Th                       | 2.34<br>2.60<br>14.19<br>18.18<br>18.18<br>13.21<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 1.78\\ 1.78\\ 11.44\\ 11.48\\ 5.02\\ 5.19\\ 5.19\\ 5.66\\ 5.7\\ 5.66\\ 5.6\\ 5.68\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $^{\mathrm{Pb}}$         | 6.55<br>27.20<br>27.20<br>20.60<br>3.514<br>3.5.14<br>3.5.14<br>4.01<br>119.70<br>3.78<br>11.88<br>51<br>3.24<br>11.88<br>51<br>13.52<br>13.51<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>13.65<br>14.01<br>13.65<br>14.01<br>13.65<br>14.01<br>13.65<br>14.01<br>13.65<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>14.01<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 3.06\\ 2.08\\ 19.50\\ 19.50\\ 19.50\\ 7.04\\ 7.04\\ 7.04\\ 7.52\\ 18.55\\ 5.63\\ 7.3.92\\ 5.63\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3.92\\ 7.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Та                       | $\begin{array}{c} 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ηf                       | 8 019, 99<br>9 455, 11<br>9 455, 11<br>8 787, 17<br>8 8 429, 82<br>8 8 429, 82<br>8 8 640, 02<br>9 4450, 66<br>9 4450, 66<br>9 4450, 66<br>9 443, 08<br>9 7 88, 69<br>9 7 88, 69<br>9 7 88, 69<br>9 563, 85<br>9 563, 85<br>9 563, 85<br>9 553, 47<br>8 9 44, 21<br>8 9 44, 21<br>8 9 44, 21<br>8 9 44, 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 7\ 677, 69\\ 7\ 417, 86\\ 7\ 417, 86\\ 8\ 139, 66\\ 8\ 139, 66\\ 8\ 8672, 44\\ 7\ 689, 97\\ 7\ 689, 97\\ 7\ 790, 69\\ 8\ 612, 57\\ 7\ 790, 69\\ 8\ 612, 56\\ 8\ 612, 56\\ 8\ 612, 56\\ 8\ 612, 56\\ 8\ 612, 56\\ 8\ 612, 56\\ 8\ 612, 56\\ 8\ 8128, 50\\ 7\ 7533, 20\\ 8\ 8128, 50\\ 7\ 7533, 20\\ 8\ 8128, 50\\ 7\ 7533, 20\\ 8\ 8128, 50\\ 7\ 7533, 20\\ 8\ 8128, 50\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\ 7533, 20\\ 7\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lu                       | 0.27<br>0.78<br>0.78<br>0.78<br>0.32<br>0.32<br>0.32<br>0.10<br>0.10<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.89\\ 0.44\\ 0.38\\ 0.58\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\ 1.55\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $_{\mathrm{Yb}}$         | 1.36<br>6.08<br>5.78<br>5.78<br>5.78<br>3.29<br>0.78<br>1.02<br>1.02<br>6.38<br>1.2.96<br>6.38<br>1.2.96<br>1.2.96<br>6.38<br>1.2.96<br>1.2.96<br>1.2.96<br>1.2.63<br>1.2.63<br>1.2.63<br>3.74<br>1.36<br>7.5<br>5.89<br>3.77<br>7<br>5.89<br>3.77<br>7<br>5.89<br>3.77<br>7<br>5.89<br>3.77<br>7<br>5.89<br>3.77<br>7<br>5.89<br>3.77<br>7<br>5.89<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.77<br>5.77<br>5.77<br>3.58<br>9.28<br>9.28<br>4.57<br>1.4.57<br>1.4.57<br>1.4.57<br>5.92<br>3.61<br>5.92<br>3.61<br>1.4.52<br>5.33<br>3.61<br>1.4.52<br>5.33<br>3.61<br>1.4.52<br>5.33<br>3.61<br>1.4.52<br>5.33<br>3.61<br>5.49<br>8.52<br>8.52<br>8.52<br>8.52<br>8.52<br>6.55<br>6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathrm{Tm}$            | 0.21<br>0.23<br>0.53<br>0.53<br>0.53<br>0.17<br>0.17<br>0.17<br>0.17<br>0.17<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.71\\ 0.71\\ 0.36\\ 0.36\\ 0.36\\ 0.65\\ 0.65\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Er                       | L 1. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 22 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 3.96\\ 2.2810\\ 2.2810\\ 3.2510\\ 3.2583\\ 3.2583\\ 3.258\\ 3.258\\ 3.258\\ 3.258\\ 114.76\\ 5.136\\ 5.136\\ 5.136\\ 5.136\\ 6.12\\ 5.136\\ 6.12\\ 5.136\\ 6.12\\ 5.136\\ 6.12\\ 5.136\\ 6.12\\ 5.136\\ 6.12\\ 5.136\\ 6.12\\ 5.136\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.136\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Но                       | <ul> <li>1.52</li> <li>1.52</li> <li>1.52</li> <li>1.46</li> <li>1.46</li> <li>1.46</li> <li>1.46</li> <li>1.46</li> <li>1.46</li> <li>1.46</li> <li>1.23</li> <li>1.24</li> <li>1.24</li> <li>1.25</li> <li>1.24</li> <li>1.25</li> <li>1.25<td><math display="block">\begin{array}{c} 1.18\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 1.22\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\</math></td></li></ul> | $\begin{array}{c} 1.18\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 1.22\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\ 0.95\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dy                       | $\begin{array}{c} 1.76\\ 6.37\\ 6.37\\ 6.37\\ 6.37\\ 6.36\\ 6.36\\ 6.36\\ 7.68\\ 1.44\\ 1.44\\ 1.3.50\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.70\\ 1.2.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 3.10\\ 3.10\\ 5.17\\ 5.17\\ 5.17\\ 6.70\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.17\\ 5.18\\ 5.11\\ 11.51\\ 10.80\\ 5.13\\ 10.49\\ 5.13\\ 11.51\\ 11.51\\ 11.51\\ 11.51\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32\\ 8.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tb                       | 0.52<br>0.51<br>0.51<br>0.52<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.285<br>0.21<br>0.330<br>0.43<br>0.52<br>0.52<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.33\\ 0.14\\ 0.48\\ 0.48\\ 0.58\\ 0.58\\ 0.53\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gd                       | $\begin{array}{c} 1.02\\ 2.37\\ 2.37\\ 2.36\\ 0.70\\ 0.70\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.48\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.46\\ 0.38\\ 1.56\\ 1.56\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\ 1.58\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Eu                       | $\begin{array}{c} 0.11\\ 0.27\\ 0.27\\ 0.27\\ 0.26\\ 0.25\\ 0.22\\ 0.22\\ 0.22\\ 0.23\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.08\\ 0.03\\ 0.21\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sm                       | $\sum_{0.07\\0.47\\0.58\\0.68\\0.68\\0.68\\0.68\\0.068\\0.01\\0.01\\0.03\\0.03\\0.03\\0.02\\0.03\\0.03\\0.03\\0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.18\\ 0.07\\ 0.18\\ 0.25\\ 0.25\\ 0.25\\ 0.25\\ 0.24\\ 0.24\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Νd                       | 0.08<br>0.17<br>0.17<br>0.17<br>0.017<br>0.017<br>0.013<br>0.017<br>0.013<br>0.013<br>0.013<br>0.012<br>0.013<br>0.012<br>0.012<br>0.013<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017<br>0.0170000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.06\\ 0.001\\ 0.001\\ 0.001\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathbf{Pr}$            | 0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ce                       | $\begin{array}{c} 0.49\\ 0.47\\ 0.66\\ 0.66\\ 0.73\\ 0.73\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.47\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ 0.26\\ 0.249\\ 0.249\\ 0.249\\ 0.249\\ 0.27\\ 0.27\\ 0.27\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0.72\\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| La                       | $\begin{array}{c} 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| dΝ                       | 0.12<br>0.13<br>0.15<br>0.15<br>0.15<br>0.13<br>0.13<br>0.13<br>0.15<br>0.15<br>0.15<br>0.13<br>0.15<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.20\\ 0.12\\ 0.12\\ 0.12\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ξ                        | 1<br>3.02<br>5.42<br>6.59<br>6.59<br>6.41<br>12.46<br>6.01<br>12.46<br>6.01<br>109.65<br>5.32<br>6.03<br>5.52<br>6.03<br>5.52<br>5.52<br>5.52<br>6.03<br>5.52<br>6.41<br>109.65<br>5.74<br>6.01<br>109.65<br>5.73<br>5.52<br>4.45<br>5.52<br>7.45<br>5.74<br>6.01<br>10.71<br>5.54<br>6.59<br>6.11<br>10.71<br>5.54<br>6.59<br>6.51<br>5.74<br>5.54<br>6.51<br>6.11<br>10.71<br>5.54<br>6.59<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>6.51<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.54<br>6.51<br>5.55<br>5.74<br>6.51<br>5.54<br>6.51<br>5.54<br>6.55<br>5.54<br>6.51<br>5.54<br>6.51<br>5.55<br>5.54<br>6.51<br>5.55<br>5.54<br>6.51<br>5.55<br>5.54<br>6.51<br>5.55<br>5.54<br>5.55<br>5.54<br>5.55<br>5.55<br>5.55<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 4.82\\ 6.05\\ 6.05\\ 6.05\\ 6.05\\ 6.05\\ 6.05\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\ 6.03\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 点号                       | 07FY0<br>1.1<br>1.1<br>3.1<br>5.1<br>5.1<br>5.1<br>5.1<br>6.1<br>7.1<br>10.1<br>11.1<br>11.1<br>11.1<br>11.1<br>11.1<br>11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07004<br>1.1<br>2.1<br>3.1<br>5.1<br>5.1<br>5.1<br>5.1<br>5.1<br>1.4<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



图 9 石榴斜长角闪岩(07FY01)和石榴二辉麻粒岩(07MJ4)锆石 U-Pb 年龄谐和图(a, c)和<sup>206</sup>Pb/<sup>238</sup>U 年龄频率图(b, d) Fig. 9 Zircon U-Pb concordia diagrams (a, c) and histograms of <sup>206</sup>Pb/<sup>238</sup>U ages (b, d) from one garnet amphibolite (07FY01) and garnet two-pyroxene granulite (07MJ4)



图 10 石榴斜长角闪岩(07FY01)和石榴二辉麻粒岩(07MJ4)锆石中稀土元素球粒陨石标准化配分模式图

Fig.10 Chondrite-normalized zircon trace elements diagrams of garnet amphibolite (07FY01) and garnet two-pyroxene granulite (07MJ4)

图中颜色符号含义见图 9

年龄分别为1974±62 Ma 和1973±57 Ma.

石榴二辉麻粒岩(07MJ4)中的锆石粒径变化从 几十到几百微米,多呈浑圆状,少量呈不规则一半自 形粒状.在阴极发光图像中多数颗粒发光性较强,内 部结构均一,部分颗粒为中灰色,具有弱分带、扇形 和冷杉叶形分带特征(图 8f~8i).24 个分析点 Th/ U比值为 0.22~0.47,<sup>206</sup> Pb/<sup>238</sup> U 年龄为(1 766± 52)~(2 029±52)Ma,可进一步分为4 组(图 9,9c 和 9d):第1 组包括分析点 6.1 和 12.1,<sup>206</sup> Pb/<sup>238</sup> U 年龄分别为 2 029±52 Ma 和 1 963±38 Ma;第 2 组 包括分析点 3.1、7.1、8.1、14.1、20.1、21.1、22.1、24.1 和 25.1,  $\Sigma$  REE 为 131×10<sup>-6</sup>~618×10<sup>-6</sup>, Th 和 U 含量分别为 4×10<sup>-6</sup>~17×10<sup>-6</sup> 和 11×10<sup>-6</sup>~36× 10<sup>-6</sup>, Th/U 比值为 0.26~0.46,  $\delta$ Eu 值为 0.74~ 2.07, (Tb/Yb)<sub>N</sub> 值为 0.15~0.94, 加权平均 <sup>206</sup> Pb/<sup>238</sup> U 年龄为 1 882±27 Ma(MSWD=0.085); 第 3 组包括分析点 1.1、2.1、4.1、5.1、10.1、11.1、 15.1、17.1、18.1、19.1 和 23.1,  $\Sigma$  REE 为 86×10<sup>-6</sup>~ 673×10<sup>-6</sup>, Th 和 U 含量分别为 1×10<sup>-6</sup>~98× 10<sup>-6</sup>和 6×10<sup>-6</sup>~232×10<sup>-6</sup>, Th/U 比值为 0.20~ 0.47, δEu 值为 0.34~1.02, (Tb/Yb)<sub>N</sub> 值为 0.15~ 0.98, 加权平均<sup>206</sup> Pb/<sup>238</sup> U 年龄为 1 838±20 Ma (MSWD=0.098); 第 4 组包括分析点 9.1、13.1 和 16.1,<sup>206</sup> Pb/<sup>238</sup> U 年龄分别为 1 779±26 Ma、1 772± 45 Ma 和 1 766±52 Ma, 加权平均年龄为 1 775± 40 Ma(MSWD=0.029).

上述年龄结果表明,两个分析样品都有类似的 年龄记录,特别是都有类似的、在误差范围内一致的 两组变质年龄记录即1904±23 Ma/1882±27 Ma 和1849±24 Ma/1838±20 Ma,它们的锆石都有重 稀土元素配分曲线扁平和负的 Eu 异常(图 10),指 示形成于与石榴子石和斜长石共生的条件下 (Rubatto, 2002; Liu et al., 2009),因而代表了两 组麻粒岩相变质年龄.这与以前报道的研究区下地 壳包体的锆石年代学分析结果(Liu et al., 2016)一 致,分别代表了高压麻粒岩相和低压麻粒岩相变质 时代.而样品 07MJ4 中 1775±40 Ma 年龄,与之前 报道的研究区下地壳岩石角闪岩相变质年龄 1754±11 Ma(Liu et al., 2016)一致,代表了角闪 岩相退变质时代.

## 6 镁铁质麻粒岩的变质演化过程及其 地质意义

综上所述,华北东南缘五河杂岩中镁铁质麻粒 岩在峰期高压麻粒岩相之后经历了近等温减压(中 压麻粒岩相),再降压冷却(角闪岩相)的变质过程, 构成了一条顺时针的 P-T-t 轨迹(图 11),反映了研 究区从早期地壳增厚到晚期构造抬升的俯冲一碰撞 造山过程.在北部的胶北地体中,经历了古元古代高 压麻粒岩相变质作用的岩石类型主要包括基性麻粒 岩、泥质麻粒岩和超镁铁岩等,这些岩石在峰期变质 之后都经历了近等温降压和近等压冷却的过程,构 成了顺时针的 P-T 轨迹(刘平华等, 2015).其中,不 同研究者在基性麻粒岩中都识别出了 4 期矿物组合 (Tam et al., 2012a; Liu et al., 2013a):M1 为进变 质阶段,主要矿物组合为石榴子石核部及其中的单 斜辉石、斜长石和石英包体; M2 阶段为高压麻粒岩 相峰期变质阶段,主要矿物组合包括基质中的石榴 子石(高 Ca 核部)、单斜辉石(高 Al)、斜长石(高 Na)和石英; Ma 阶段为中低压麻粒岩相退变质阶 段,主要矿物组合为在石榴子石斑晶发生减压反应 在其周围形成的呈蠕虫状后成合晶的斜方辉石、单



图 11 华北东南缘五河杂岩中镁铁质高压麻粒岩的变质 P-T-t 轨迹

Fig.11 Generalized P-T-t path for the HP mafic granulites in the Wuhe complex, southeastern margin of the North China Craton

Am.角闪岩相;Gn.麻粒岩相;E-HPG.榴辉岩一高压麻粒岩相,据 Brown(2014);*P-T*轨迹1和2.胶北地体1.85~1.90 Ga镁铁质麻 粒岩;线1据 Tam *et al.*(2012a);线2 据 Liu *et al.*(2013a);线3 为 本文结果

斜辉石和斜长石; M4 阶段为晚期角闪岩相退变质 阶段,一些石榴麻粒岩在该阶段完全退变为石榴斜 长角闪岩,主要矿物组合为角闪石、斜长石和石英. 用传统地质温压计计算的 4 个阶段的温压条件分别 为 740~770 ℃、0.9~1.0 GPa,850~880 ℃、1.45~ 1.65 GPa, 780~830 ℃, 0.65~0.85 GPa 和 590~ 650 ℃、0.62~0.82 GPa (图 11, Liu et al., 2013a); 变质相平衡模拟得到的 4 个阶段的温压结果分别为 690~702 °C,0.94~0.98 GPa,780~890 °C,1.31~ 1.51 GPa, 820~880 ℃、0.78~0.84 GPa 和 690~ 760 ℃、0.64 ~ 0.72 GPa (图 11, Tam et al., 2012b),虽然与地质温压计结果略有差异,但整体 演化趋势基本一致,本文石榴二辉麻粒岩峰期高压 麻粒岩相变质条件为 T=850~890 ℃、P=1.45~ 1.65 GPa, 与胶北地区基本一致. 然而, 与胶北地体 和华北中部带古元古代基性麻粒岩明显不同的是, 五河杂岩基性麻粒岩中压麻粒岩相变质阶段主要表 现为富钛角闪石分解形成单斜辉石、斜方辉石、石榴 子石和长石冠状体,主要反应过程可能为 Amp+ Qtz = Grt + Cpx + melt  $\pi Amp + Qtz = Opx +$ Grt+Pl±melt,说明峰期后减压麻粒岩相阶段产生 的石榴子石、单斜辉石和斜方辉石可能是转熔矿物.

该阶段计算的温度结果多高于 900 ℃,利用 Grt-Cpx-Pl-Qtz 和 Grt-Opx-Pl-Qtz 压力计计算的结果 大致为 1.2 GPa,说明富钛角闪石在 900 ℃、1.2 GPa 发生分解,形成峰期后麻粒岩相矿物组合和熔体.这 与角闪石脱水熔融的实验结果(850 ~ 900 ℃) (Weinberg and Hasalová, 2015) 一致.该阶段压力 条件略高于胶北地体和中部带由石榴子石减压分解 产生的单斜辉石、斜方辉石和斜长石所计算的压力 条件(<1.0 GPa).五河杂岩和胶北地体中镁铁质麻 粒岩矿物组成(主要是角闪石)的差异可能与原岩成 分不同有关.

五河杂岩中部分变基性岩发生了较大规模的部 分熔融和混合岩化作用,形成了透镜状和条带状浅 色体(图 3b~3d),但确定其精确时代还需要进一步 工作.围岩不纯大理岩的岩相学证据如方解石中的 钾长石+石英包体说明其至少经历了显微尺度的部 分熔融作用(Liu et al., 2017b).石榴斜长角闪岩在 (近)峰期变质过程中也发生了部分熔融,在石榴子 石和斜长石中形成了多相矿物包裹体,如(1)斜长 石+钾长石+石英+角闪石(图 12a);(2)钾长石+ 钠长石(图 12b);(3)钾长石+斜长石+石英+黑云 母(刘贻灿等, 2015b);(4)钾长石+石英+钠长石 (图 12c)等.一些变基性岩因受到含碳酸盐的钙质 熔流体交代作用,其中的石榴子石被方解石包围呈 筛状,并且显著富集 CaO(>30%,图 12d).此外,凤 阳花岗片麻岩中的~1.83 Ga 深熔锆石(Wang et



- 图 12 高压麻粒岩相变基性岩中多相矿物包体(a~c)和 高钙石榴子石(d)
- Fig.12 Multiphase mineral inclusions in HP granulite facies meta-basic rocks (a-c) and garnet with high CaO contents (d)

al.,2017)及在邻近霍邱杂岩中报道的1.82~ 1.91 Ga的高钾花岗岩(Liu et al.,2015a)说明研究 区在峰期变质作用之后地壳抬升过程中发生了更大 规模的部分熔融作用.在胶北地体乃至整个胶-辽-吉带中,1.83~1.86 Ga峰期后减压阶段发生了 大规模部分熔融作用,在基性和泥质麻粒岩、角闪岩 和TTG片麻岩中形成了大量浅色体(Liu et al., 2014,2017a).并且,太古代TTG片麻岩在1.86 Ga 部分熔融形成了高钾和高钠的浅色花岗岩(Li et al.,2017).因此,以五河杂岩为代表的华北东南缘 前寒武纪基底的变质演化过程与胶北地体基本-致,进一步证明五河杂岩属于胶-辽-吉带的西延.

### 7 结论

(1)首次在华北东南缘五河杂岩的镁铁质高压 麻粒岩中识别出中压麻粒岩相变质叠加的岩相学和 矿物学证据,重建了古元古代变质演化的 3 个阶段 及其顺时针的 *P-T-t* 轨迹:①峰期高压麻粒岩相变 质阶段,代表性矿物组合为基质中的石榴子石(富 Ca 核部)+单斜辉石(富 Al)+斜长石+石英+金 红石±角闪石(富 Ti),所记录的温压条件为 850~ 900 ℃、1.5 GPa;②峰期后近等温减压(中压麻粒岩 相)变质阶段,富 Ti 角闪石分解在周围形成石榴子 石+斜方辉石+斜长石±单斜辉石后成合晶,限定 的温压条件为~900 ℃、1.1~1.2 GPa;③晚期角闪 岩相退变质阶段,主要矿物是角闪石+斜长石,所记 录的温压条件为 600~680 ℃、0.65~0.75 GPa.

(2) 锆石 LA-ICP-MS 定年结果表明,镁铁质麻 粒岩的峰期高压麻粒岩相变质时代为~1.90 Ga (1.88~1.95 Ga)、中压麻粒岩相变质叠加时代为 ~1.85 Ga,以及角闪岩相退变质时代为~1.78 Ga.

(3)五河杂岩镁铁质麻粒岩的古元古代变质演 化过程类似于胶北地体,结合 2.1 Ga 花岗质岩石的 成因和锆石年代学等方面研究成果,进一步证明五 河杂岩属于胶一辽一吉带的西延,二者共同构成了 华北克拉通东部一条古元古代碰撞造山带.

致谢:感谢中国科学技术大学地空学院 LA-ICP-MS 实验室侯振辉老师以及合肥工业大学资环 学院电子探针实验室石永红老师和王娟同学在实验 测试和数据处理过程中的帮助,对魏春景教授和两 位审稿人提出的修改意见和建议表示衷心的感谢!

#### References

- Anovitz, L.M., 1991. Al Zoning in Pyroxene and Plagioclase: Window on Late Prograde to Early Retrograde P-T Paths in Granulite Terranes. American Mineralogist, 76 (7-8):1328-1343.
- Bhattacharya, A., Krishnakumar, K. R., Raith, M., et al., 1991.An Improved Set of A-X Parameters for Fe-Mg-Ca Garnets and Refinements of the Orthopyroxene-Garnet Thermometer and the Orthopyroxene-Garnet-Plagioclase-Quartz Barometer.*Journal of Petrology*, 32 (3): 629 - 656. https://doi.org/10.1093/petrology/ 32.3.629
- Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4):553-569. https:// doi.org/10.1016/j.gsf.2014.02.005
- Duan, Z. Z., Wei, C. J., Qian, J. H., 2015. Metamorphic P-T Paths and Zircon U-Pb Age Data for the Paleoproterozoic Metabasic Dykes of High-Pressure Granulite Facies from Eastern Hebei, North China Craton. Precambrian Research, 271: 295 - 310. https://doi.org/10.1016/j. precamres.2015.10.015
- Eckert, J. O., Newton, R. C., Kleppa, O. J., 1991. The ΔH of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry. American Mineralogist, 76(1-2):148-160.
- Ellis, D.J., Green, D.H., 1979. An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria. Contributions to Mineralogy and Petrology, 71 (1): 13 - 22. https:// doi.org/10.1007/ bf00371878
- Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 97 (4): 435 - 450. https://doi.org/10.1086/629321
- Guo, J. H., O'Brien, P. J., Zhai, M. G., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741 - 756. https:// doi. org/10. 1046/j. 1525-1314. 2002.00401.x
- Guo, S.S., Li, S.G., 2009. SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton. Science in China (Series D), 39 (6): 694 - 699 (in Chinese). https://doi.org/10.1007/s11430-009-0099-7
- Harley, S.L., 1989. The Origins of Granulites: A Metamor-

phic Perspective. *Geological Magazine*, 126(3): 215. https://doi.org/10.1017/s0016756800022330

- Jin, S. Q., 1991. Composition Characteristics of Calc-Amphiboles in Different Regional Metamorphic Facies. Chinese Science Bulletin, 36(11):851-854 (in Chinese).
- Krogh, E. J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer—A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology, 99 (1): 44 - 48. https:// doi. org/10. 1007/ bf00399364
- Li, Y.L., Zhang, H.F., Guo, J.H., et al., 2017. Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton: A Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation. *Chemical Geology*, 450:165-182. https://doi.org/10. 1016/j.chemgeo.2016.12.029
- Liu, F.L., Liu, L.S., Cai, J., et al., 2017a. A Widespread Paleoproterozoic Partial Melting Event within the Jiao-Liao-Ji Belt, North China Craton: Zircon U-Pb Dating of Granitic Leucosomes within Pelitic Granulites and Its Tectonic Implications. *Precambrian Research* (in Press). https://doi.org/10.1016/j.precamres.2017.10.017
- Liu, Y.C., Zhang, P.G., Wang, C.C., et al., 2017b. Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton. *Lithos*, 290-291:189-209. https://doi.org/10.1016/ j.lithos.2017.08.011
- Liu, F. L., Liu, P. H., Wang, F., et al., 2014. U-Pb Dating of Zircons from Granitic Leucosomes in Migmatites of the Jiaobei Terrane, Southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the Timing and Nature of Partial Melting. *Precambrian Research*, 245: 80 - 99. https://doi.org/10.1016/j.precamres.2014.01.001
- Liu, L., Yang, X.Y., Santosh, M., et al., 2015a. Neoarchean to Paleoproterozoic Continental Growth in the Southeastern Margin of the North China Craton: Geochemical, Zircon U-Pb and Hf Isotope Evidence from the Huoqiu Complex. Gondwana Research, 28 (3): 1002 - 1018. https://doi.org/10.1016/j.gr.2014.08.011
- Liu, Y.C., Deng, L.P., Gu, X.F., et al., 2015b. Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 27(1):410-423.https://doi.org/10.1016/j.gr. 2013.10.011
- Liu, P.H., Liu, F.L., Liu, C.H., et al., 2013a. Petrogenesis, *P*-*T*-*t* Path, and Tectonic Significance of High-Pressure

Mafic Granulites from the Jiaobei Terrane, North China Craton. *Precambrian Research*, 233:237-258. https:// doi.org/10.1016/j.precamres.2013.05.003

- Liu, Y. C., Wang, A. D., Li, S. G., et al., 2013b. Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton. *Gondwana Research*, 23(3):1021-1039. https://doi. org/10.1016/j.gr.2012.06.009
- Liu, P. H., Liu, F. L., Wang, F., et al., 2015. P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton; Impication for Formation and Evolution of the JLJB. Acta Petrologica Sinica, 31 (10); 2889-2941 (in Chinese with English abstract).
- Liu, Y. C., Zhang, P. G., Wang, C. C., et al., 2016. Paleoproterozoic Multistage Metamorphic Ages Registered in the Precambrian Basement Rocks at the Southeastern Margin of the North China Craton and Their Geological Implications. *Acta Geologica Sinica (English Edition)*, 90 (6): 2265 2266. https:// doi. org/10. 1111/1755-6724.13038
- Liu, Y.C., Wang, A.D., Rolfo, F., et al., 2009. Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 27(2):125-138. https://doi.org/10.1111/j. 1525-1314.2008.00810.x
- Liu, Y.C., Wang, C.C., Zhang, P.G., et al., 2015a. Granulite Facies Metamorphism, Partial Melting and Metasomatism in the Wuhe Complex at the Southeastern Margin of the North China Block. Journal of Earth Sciences and Environment, 37(1):1-11 (in Chinese with English abstract).
- Liu, Y.C., Wang, C.C., Zhang, P.G., et al., 2015b. Growth and Metamorphic Evolution of the Precambrian Lower Crust at the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 31(10):2847-2862 (in Chinese with English abstract).
- Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. *Chemical Geology*, 257 (1-2): 34-43. https://doi. org/10.1016/j.chemgeo.2008.08.004
- Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. *Chinese Science Bulletin*, 55 (15): 1535 - 1546. https://doi.org/10.1007/

s11434-010-3052-4

- Molina, J. F., Moreno, J. A., Castro, A., et al., 2015. Calcic Amphibole Thermobarometry in Metamorphic and Igneous Rocks: New Calibrations Based on Plagioclase/ Amphibole Al-Si Partitioning and Amphibole/Liquid Mg Partitioning. Lithos, 232: 286 - 305. https://doi. org/10.1016/j.lithos.2015.06.027
- Pattison, D. R. M., 2003. Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44 (5): 867 – 900.https://doi.org/10.1093/petrology/44.5.867
- Powell, R., 1985. Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration: The Garnet-Clinopyroxene Geothermometer Revisited. Journal of Metamorphic Geology, 3 (3): 231 - 243. https://doi.org/10.1111/j.1525-1314.1985.tb00319.x
- Ravna, E. K., 2000a. The Garnet-Clinopyroxene Fe<sup>2+</sup>-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 18(2): 211 - 219. https://doi. org/10.1046/j.1525-1314.2000.00247.x
- Ravna, E. K., 2000b. Distribution of Fe<sup>2+</sup> and Mg between Coexisting Garnet and Hornblende in Synthetic and Natural Systems: An Empirical Calibration of the Garnet-Hornblende Fe-Mg Geothermometer. *Lithos*, 53 (3-4): 265 - 277. https:// doi. org/10. 1016/s0024-4937(00)00029-3
- Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. *Chemical Geology*, 184(1-2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
- Spear, F.S., Florence, F.P., 1992. Thermobarometry in Granulites: Pitfalls and New Approaches. Precambrian Research, 55(1-4): 209-241. https://doi.org/10.1016/ 0301-9268(92)90025-j
- Tam, P.Y., Zhao, G.C., Liu, F.L., et al., 2011. Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton. Gondwana Research, 19 (1): 150 - 162. https://doi.org/10.1016/j.gr.2010.05.007
- Tam, P. Y., Zhao, G. C., Sun, M., et al., 2012a. Petrology and Metamorphic P-T Path of High-Pressure Mafic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton, Lithos, 155:94-109. https://doi. org/10.1016/j.lithos.2012.08.018
- Tam, P.Y., Zhao, G.C., Zhou, X. W., et al., 2012b. Metamorphic P-T Path and Implications of High-Pressure Pelit-

ic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. *Gondwana Research*, 22(1): 104-117.https://doi.org/10.1016/j.gr.2011.09.006

- Taylor, W.R., 1998. An Experimental Test of Some Geothermometer and Geobaro-Meter Formulations for Upper Mantle Peridotites with Application to the Thermobarometry of Fertile Lherzolite and Garnet Websterite. Neues Jahrbuch für Mineralogie-Abhandlungen, 172 (2):381-408.
- Wang, A. D., Liu, Y. C., Gu, X. F., et al., 2012. Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications. *Precambrian Research*, 220-221:65 - 79. https://doi.org/10.1016/j.precamres.2012.07.011
- Wang, A.D., Liu, Y.C., Santosh, M., et al., 2013. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex: Implications for Neoarchean Active Continental Margin along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids. *Geoscience Frontiers*, 4(1):57-71. https://doi.org/10. 1016/j.gsf.2012.05.001
- Wang, C.C., Liu, Y.C., Zhang, P.G., et al., 2017. Zircon U-Pb Geochronology and Geochemistry of Two Types of Paleoproterozoic Granitoids from the Southeastern Margin of the North China Craton: Constraints on Petrogenesis and Tectonic Significance. *Precambrian Research*, 303: 268 – 290. https:// doi. org/10. 1016/j. precamres. 2017.04.015
- Wang, J., Sheng, Y., Pu, X. P., et al., 2014. The Investigation on Metamorphic Petrology and P-T Conditions of Wuhe Complex Rocks: Evidences from Drill ZK02 in the South of Mengcheng Area. Chinese Journal of Geology, 49 (2): 556 - 575 (in Chinese with English abstract). https:// doi. org/10. 3969/j. issn. 0563- 5020. 2014.02.015
- Wang, J., Song, C. Z., 2016. Analysis of Metamorphic P-T Conditions and Zircon U-Pb Age for Garnet Pyroxenite in Bengbu Uplift Tectonic. Chinese Journal of Geology, 51(4): 1223-1245 (in Chinese with English abstract).https://doi.org/10.12017/dzkx.2016.056
- Wei, C. J., Qian, J. H., Zhou, X. W., 2014. Paleoproterozoic Crustal Evolution of the Hengshan-Wutai-Fuping Region, North China Craton. *Geoscience Frontiers*, 5(4): 485-497.https://doi.org/10.1016/j.gsf.2014.02.008
- Weinberg, R.F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212 - 215:

158-188.https://doi.org/10.1016/j.lithos.2014.08.021

- Wells, P. R. A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62 (2): 129 - 139. https://doi.org/10.1007/ bf00372872
- Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese).https://doi. org/10.1007/bf03184122
- Xu, W.L., Yang, D.B., Pei, F.P., et al., 2006. Age of the Wuhe Complex in the Bengbu Uplift: Evidence from LA-ICP-MS Zircon U-Pb Dating. *Geology in China*, 33 (1): 132-137 (in Chinese with English abstract).
- Zhai, M. G., 2009. Two Kinds of Granulites (HT-HP and HT-UHT) in North China Craton: Their Genetic Relation and Geotectonic Implications. Acta Petrologica Sinica, 25 (8): 1753 – 1771 (in Chinese with English abstract).
- Zhai, M. G., 2015. Precambrian Geology of China. Spring-Verlag, Berlin. https:// doi. org/10. 1007/978-3-662-47885-1
- Zhai, M.G., Guo, J.H., Li, Y.G., et al., 1995. The Discovery of Archean Retrograde Eclogites in the North China Craton. Chinese Science Bulletin, 40 (17): 1590 - 1594 (in Chinese).
- Zhai, M.G., Guo, J. H., Yan, Y. H., et al., 1992. Discovery and Preliminary Study of Archean High-Pressure Basic Granulites in North China. Science in China (Series B), (12):1325-1330 (in Chinese).
- Zhang, J., Zhao, G. C., Sun, M., et al., 2006. High-Pressure Mafic Granulites in the Trans-North China Orogen: Tectonic Significance and Age. Gondwana Research, 9 (3): 349 - 362. https:// doi. org/10. 1016/j. gr.2005.10.005
- Zhao, G.C., 2014. Precambrian Evolution of the North China Craton. Elsevier, New York. https://doi.org/10.1016/ c2012-0-02689-0
- Zhao, G. C., Cawood, P., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93 (2-3): 181-199. https://doi. org/10.1016/s0301-9268(98)00090-4
- Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2000. Petrology and P-T Path of the Fuping Mafic Granulites: Implications for Tectonic Evolution of the Central Zone of the North China Craton. Journal of Metamorphic Geology, 18(4): 375 - 391. https://doi.org/10.1046/j.1525-1314.2000.00264.x

- Zhou, L.G., Zhai, M.G., Lu, J.S., et al., 2017. Paleoproterozoic Metamorphism of High-Grade Granulite Facies Rocks in the North China Craton: Study Advances, Questions and New Issues. *Precambrian Research*, in Press. https://doi.org/10.1016/j.precamres.2017.06.025
- Zou, Y., Zhai, M. G., Santosh, M., et al., 2017. High-Pressure Pelitic Granulites from the Jiao-Liao-Ji Belt, North China Craton: A Complete P-T Path and Its Tectonic Implications. Journal of Asian Earth Sciences, 134: 103-121. https://doi.org/10.1016/j.jseaes.2016.10.015

#### 附中文参考文献

- 郭素淑,李曙光,2009.华北克拉通东南缘古元古代变质和岩 浆事件的锆石 SHRIMP U-Pb 年龄.中国科学(D辑), 39(6):694-699.
- 靳是琴,1991.不同区域变质相中钙质角闪石的成分特征.科 学通报,36(11):851-854.
- 刘平华,刘福来,王舫,等,2015.胶北地体多期变质事件的 P-T-t 轨迹及其对胶-辽-吉带形成与演化的制约.岩 石学报,31(10):2889-2941.
- 刘贻灿,王程程,张品刚,等,2015a.华北板块东南缘五河杂 岩的麻粒岩相变质、部分熔融与交代作用.地球科学与

环境学报,37(1):1-11.

- 刘贻灿,王程程,张品刚,等,2015b.华北东南缘前寒武纪下 地壳的生长和变质演化.岩石学报,31(10): 2847-2862.
- 王娟,盛勇,卜香萍,等,2014.五河杂岩的变质岩石学及 P-T 条件分析——来自蒙城南 ZK02 钻孔的研究.地质科 学,49(2):556-575.
- 王娟,宋传中,2016.蚌埠隆起区石榴辉石岩变质 PT 轨迹及 年代学研究.地质科学,51(4):1223-1245.
- 吴元保,郑永飞,2004.锆石成因矿物学研究及其对 U-Pb 年 龄解释的制约.科学通报,49(16):1589-1604.
- 许文良,杨德彬,裴福萍,等,2006.蚌埠隆起区五河杂岩的形成时代:锆石 LA-ICP-MS U-Pb 定年证据.中国地质, 33(1):132-137.
- 翟明国.2009.华北克拉通两类早前寒武纪麻粒岩(HT-HP 和 HT-UHT)及其相关问题.岩石学报,25(8): 1753-1771.
- 翟明国,郭敬辉,李永刚,等,1995.华北太古宙退变质榴辉岩的发现及其含义.科学通报,40(17):1590-1590.
- 翟明国,郭敬辉,阎月华,等,1992.中国华北太古宙高压基性 麻粒岩的发现及初步研究.中国科学(B辑),(12): 1325-1330.