
1 Introduction 
 

Marine  gas  hydrates  are  potential  huge  methane 
reservoirs (Milkov, 2004). Methanogenesis and anaerobic 
oxidation  of  methane  (AOM)  mediated  by 
microorganisms affect the formation and decomposition of 
gas  hydrates  (Boetius  et  al.,  2000).  Therefore,  many 
studies have focused on the microbial diversity in hydrate-
related sediments (Bidle et al., 1999; Niemann et al., 2006; 
Lösekann et al., 2007). Lee et al. (2013) suggested the 
dominance  of  marine  benthic  group-B  (MBG-B)  in 
archaeal communities and JS1 in bacterial communities in 
hydrate-bearing sediments of the Ulleung Basin, East Sea 
of Korea. Furthermore, Yanagawa et al. (2014) proposed 
that  microbial  communities  in  marine  sediments 
associated with gas hydrate were distinct from that in 
continental margin sediments in the eastern Japan Sea. Lin 

et al. (2014) suggested that in South China Sea (SCS), 
major microbial groups in core MD-178-3280, such as 
Chloroflexi, Planctomycetes, MBG-B and ANME-1, were 
involved in the cycling of methane and organic carbon. 
Subsequently, Jiao et al. (2015) reported the dominance of 
δ-Proteobacteria and miscellaneous crenarchaeotic group 
(MCG)  in  gas  hydrate-containing  sediments  from the 
Shenhu area of SCS; whereas Planctomycetes and MBG-
D were predominant in hydrate-free sediments. Microbial 
community structures vary greatly in different gas hydrate
-related sediments.  Hence,  it  is  essential  to study the 
microbial niche, environmental conditions (Kruger et al., 
2005;  Nauhaus  et  al.,  2005)  and  carbon  geochemical 
characteristics (Lin et al., 2014; Yanagawa et al., 2014; 
Jiao et al., 2015) affecting the microbial diversity.  

Most gas hydrates are formed from microbial methane 
generated by the microbial degradation of organic carbon 
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(Claypool and Kvenvolden, 1983). Kvenvolden (1985) 
suggested  that  gas  hydrate-bearing  sediments  on  the 
Atlantic passive margin and Pacific active accretionary 
margin  contained  >0.5  wt.%  of  total  organic  carbon 
(TOC). Based on the pore-water and box model data, 
Hong et  al.  (2013)  identified  25%–35% of  dissolved 
inorganic carbon (DIC) produced by AOM was consumed 
by CO2 reduction; furthermore, the fraction of sulfate 
consumed by AOM ranged from 70 to 90%, and thus, the 
estimation of methane flux solely based on sulfate data 
may be in error by as much as 30%. By monitoring the 
stable isotopic composition of methane and DIC pools 
over time during incubation experiments, Yoshinaga et al. 
(2014) found that residual methane became progressively 
enriched in 13C at sulfate concentrations above 0.5 mM 
and progressively depleted in 13C below the threshold 
during AOM. They attributed this to microbially mediated 
carbon isotope equilibration between methane and carbon 
dioxide.  Hiruta  et  al.  (2015)  suggested  that  the 
concentration of δ13CDIC at the sulfate–methane transition 
zone (SMTZ) correlated with methane δ13C; however, the 
rapid  SO4

2-  consumption  did  not  reduce  δ13CDIC. 
Collectively,  the  response  of  carbon  geochemical 
characteristics to the accumulation of gas hydrates is a 
topic of debate.       

The southwestern Taiwan Basin is the best gas hydrate 
prospect area of SCS (Lu Hongfeng et al., 2005; Su Ming 
et al., 2014; Fu Piaoer et al., 2016; Jia et al., 2016; Hao et 
al., 2017). Lin (2011) estimated approximately 2.7 × 1012 

m3 marine gas hydrate reserves in this basin, accounting 
for 84% of SCS (Wang et al., 2006). In the last ten years, 
several studies have covered the genesis of gas hydrates, 
the carbon isotopic composition of authigenic carbonates 
(Lu Hongfeng et al., 2005), the interface between sulfate 
and methane in the subsurface (Zhang Jie et al., 2014) and 
the coexistence of the elemental sulfur (ES) and authigenic 
pyrites (Lin et al., 2015). Besides, Lin et al. (2014) and 
Yang et  al.  (2015)  suggested  that  the  distribution of 
microbial  communities  was  closely  related  to  the 
evolution of gas hydrates in the southwestern Taiwan 
Basin.  In  this  study,  we  analyzed  the  geochemical 
characteristics of carbon and environmental conditions in 
sediments of core 973-3 from the southwestern Taiwan 
Basin.  Moreover,  we  displayed  the  relations  among 
environmental factors, archaeal communities and carbon 
geochemistry. 

 
2 Materials and Methods 
 
2.1 Regional settings and sample collection 

The geological settings of the southwestern Taiwan 
Basin in SCS are favorable for a widespread distribution 

of gas hydrates as described by Lin et al. (2014) and Su et 
al. (2017). The sediment core was recovered at the site of 
973-3 (22°00.8421′N, 118°47.4159′E, 1026m below sea 
level) from the potential gas hydrate-bearing area during 
the leg HY6-2011-1 in 2011 (Fig. 1). The core location is 
adjacent to the Jiulong methane reef, which is an area of 
methane seepage (Han et al., 2008). Core 973-3 was cut 
into 25 cm-long sections immediately after the retrieval. 
Sediment  samples  for  geochemical  analysis  were 
refrigerated  at  4° C  to  prevent  organic  material 
decomposition. Subsamples for the microbiological study 
were taken in sterile centrifuge tubes and stored at −20 °C 
for on-shore laboratory analysis. Pore water was extracted 
using the procedure described by Lin et al. (2014). 

2.2 Geochemical analysis of carbon  
Sediments for geochemical analysis were freeze-dried 

and ground. Prior to TOC analysis, inorganic carbon (IC) 
was removed with 1 N HCl. Total carbon (TC) and TOC 
and their isotopic compositions (δ13CTC and δ13CTOC) were 
determined  using  a  Carlo  Erba  NC  2500  elemental 
analyzer interfaced with a Thermo Finnegan Deltaplus XP 
isotope ratio mass spectrometer (EA-IRMS), as described 
by Selvaraj et al. (2015). IC was calculated from the 
difference between wt.% TC and TOC (IC = TC − TOC). 
Furthermore,  we  measured  the  carbon  isotopic 
composition of inorganic carbon (δ13CIC) using IRMS, 
detailed in Pohlman et al. (2013). 

The isotopic ratios (13C/12C) are expressed in the δ-
notation  relative  to  the  VPDB  standard.  DIC  was 
determined using a dissolved inorganic carbon analyzer 
(AS-C3, Apollo Scitech). The uncertainty associated with 
TC, TOC and DIC was ±5%, whereas the uncertainty for 
δ13C was ±0.5‰. 

 

Fig. 1. Regional map showing the study area in the south-
western Taiwan Basin.  
The red circle denotes the location of core 973-3. The purple box marks 
the Jiulong methane reef (Han et al., 2008). The blue triangle shows the 
location of core MD-178-3280 investigated by Lin et al. (2014).  
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2.3 Environmental factors analysis 
Pore-water pH and Eh were measured using a water 

quality analyzer (Multi 3430, WTW), and the salinity was 
analyzed using a master refractometer. Sediment grain size 
was determined using a Mastersizer Hydro 2000M/MU 
(Malvern) after removing carbonates and organic matter 
(OM) with 1 N HCl and 30% H2O2, respectively (Chen 
and Selvaraj, 2008).  

For the bivariate correlation analyses of the archaeal 
communities (Yang Yufeng et al., 2016), environmental 
factors and carbon geochemistry, we used the IBM SPSS 
Statistics 22 software package.  

 
3 Results 

 
3.1 Carbon variation 

In  core  973-3,  TC is  dominated  by IC.  The  most 
prominent aspect of the down-core variation is the broad 
increase and decrease of IC in the entire core (Fig. 2a). IC 
is high and variable (mean = 1.97%) from 500 to 850 cm, 
moderate from 40 to 430 cm (mean = 1.94%) and low and 
less variable below 900 cm (mean = 1.07%). TOC ranges 
from 0.36% to 0.71% (mean = 0.46%). The mean DIC 
increases with depth, e.g. 8.55 mM in 0–430 cm, 15.68 
mM in 550–840 cm and 17.79 mM in 900–1200 cm (Fig. 
2b). The δ13CTOC values generally fall between -24.8‰ 
and  -22.1‰  VPDB  (mean  =  -23.6‰ )  and  reach  a 
minimum at 630 cm (Fig. 2c). The δ13CIC values range 
between -2.3‰ and -1.0‰ VPDB in the entire core 973-
3, with δ13CIC decreasing at 210 cm and below 800 cm 
(Fig. 2c).  
3.2 Environmental factors 

Figure 3 shows the variations of pH, Eh, salinity and 
grain size with depth in core 973-3. The pH in pore water 

increases with depth, ranging from 8.40 to 9.18 (Fig. 3). In 
contrast, Eh values in pore water are high (-103.20 to -
80.00 mV) above 500 cm, but low (-126.00 to -113.30 
mV) below 500 cm. Salinity in pore water ranges from 
19.04‰ to 46.27‰, with a sharp increase between 550 
and 840 cm. The grain size of the sediments in core 973-3 
varies from 6.64 to 10.64 μm, suggesting mostly fine silty 
sediments.  

 
3.3 Correlation analysis 

The Pearson’s correlation coefficients of environmental 
factors, archaeal communities (Fig. 4; Yang Yufeng et al., 
2016) and geochemical parameters of carbon are listed in 
Table 1. The pH correlates positively with DIC (r = 0.56, 
P < 0.05) and negatively with δ13CIC (r = −0.57, P < 0.05). 
In contrast, Eh correlates negatively with DIC (r = −0.57, 
P < 0.05) and positively with δ13CIC (r = 0.56, P < 0.05). 
Grain size is positively correlated with TC, IC and δ13CIC 
(P < 0.05). Methanosaeta is positively correlated with 
δ13CIC (r = 0.79, P < 0.01). Other archaea are negatively 
correlated with δ13CIC (r = -0.69, P < 0.05).  

 
4. Discussion 
 
4.1  Carbon  geochemical  characteristics  and  gas 
hydrates 

The formation of gas hydrates primarily depends on the 
accumulation of particulate organic carbon on the seafloor 
(Kvenvolden, 1985; Wallmann et al., 2012). The mean 
TOC of core 973-3 is 0.46 wt.%, which is above the 
threshold  TOC  of  0.4% -0.5%  for  significant 
methanogenesis  in  situ  and  gas  hydrate  formation 
(Waseda, 1998; Klauda and Sandler, 2005). Based on the 
δ13C of -22‰ to -20‰ for marine OM and -27‰ for 

 

Fig. 2. Carbon parameters vs depth in core 973-3. 
(a), TC, TOC and IC; (b), DIC; (c), δ13CTOC and δ13CIC  
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terrigenous  OM  (Meyers,  1997;  Mckay  et  al.,  2004; 
Kaneko et al., 2010), the mean δ13CTOC of -23.6 ± 0.8‰, 
which is consistent with the mean δ13CTOC of -24.9 ± 
0.9‰ (Kao et al., 2014) of particulate organic carbon in 
suspended  sediments  from  major  rivers  in  Taiwan, 
suggests that the OM in core 973-3 is mostly derived from 
terrigenous  sources,  such  as  episodic,  huge  riverine 
sediment transport from the high mountains in Taiwan 
(Selvaraj et al., 2015). Although the terrestrial OM in core 
973-3 is potentially less liable to decomposition (Kastner, 
2001), the high sedimentation rates greatly reduce the 
amount of time that TOC spends in the sulfate reduction 
zone and thus enhance the delivery of labile TOC to the 
methanogenic zone (Chen Fang et al., 2014; Solomon et 
al.,  2014).  Therefore,  the  abundant  methanogen 

communities in core 973-3 (Fig. 4; Yang Yufeng et al., 
2016) could utilize the products of OM fermentation and 
decomposition to produce sufficient methane up to 6.2 
mmol/L below 800 cm (Zhang Bidong et al., 2015).    

Based on the high pyrite content of up to 17% and most 
depleted δ13C of -2.03‰ in foraminifera, Chen et al. 
(2014) suggested that AOM was active at 550-820 cm 
depth in core 973-3. Lin et al. (2015) also came to the 
same conclusion based on ES in SMTZ as the obvious 
evidence of AOM owing to cold seep activities. Consistent 
with these interpretations, the δ13CIC of -6.1‰ to -1.0‰ 
in core 973-3 are substantially more δ13C-depleted than 
the regional range for biogenic carbonate (-1‰ to -0.4‰) 
(Zhang Bidong et al., 2015), indicating the high authigenic 
carbonate  content  attributed  to  AOM.  The  gradually 

 

Fig. 3. pH, Eh, salinity and grain size vs depth in core 973-3 
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increasing TOC from 0.37% to 0.71% in 430–630 cm, 
coupled  with  the  depletion  in  δ13CTOC  values  in  this 
interval (Fig. 2a and 2c), is consistent with the TOC and 
δ13CTOC variations in Hyrate Ridge (Valentine et al., 2005) 
and Dongsha area of SCS (Yu Xiaoguo et al., 2013). This 
suggests  the  active  methane  oxidation  driven  by  the 
upward diffusion of deep methane and is consistent with 
the predominance of Methanosarcinales/ANME in 542–
870 cm (Fig. 4). Moreover, there is a significant negative 
correlation between DIC and δ13CIC values (Table 1; P< 
0.05)  (Figures  2b  and  2c).  Even  though  the  classic 
mechanism for generating the observed DIC and δ13CIC 
values in methane-rich marine sediments is the oxidation 
of  13C-depleted  methane  by  AOM  (Malinverno 
and Pohlman, 2011; Pohlman et al., 2013), TC and IC are 
positively correlated with δ13CIC (Table 1; P< 0.05). This 
suggests  that  microbial  communities  mediate 

methanogenesis by CO2 reduction and internal carbon 
cycling in SMTZ in the study site (Hong et al., 2013; 
Yoshinaga et al., 2014). IC is positively correlated with TC 
(Table 1; P< 0.01), which is consistent with the study of 
Johnson  et  al.  (2014)  in  the  Kerala-Konkan  Basin, 
suggesting IC affects TC but not TOC.    

                                                     

4.2 The effect of environmental factors 
Environmental  traits  are  important  for  methane 

production and oxidation (Wang et al., 1993; Chmura et 
al., 2011; Ramírez-Pérez et al., 2015; Wilson et al., 2015). 
The significant correlations among pH, DIC and δ13CIC 

suggest that DIC comprising mass HCO3
− may increase 

the pH, whereas δ13CIC decreases owing to the hydrolysis 
and fermentation of OM (Froelich et al., 1979), together 
with microbial methane oxidation (Boetius et al., 2000). 
This agrees with the positive correlation between DIC and 

 

Fig. 4. Archaeal community structure in core 973-3 (modified from Yang Yufeng et al., 2016).  
Yang et al. (2016) investigated the archaeal diversity in 20, 243, 455, 542, 630, 870, 1075 and 1162 cm of core 973-3, using 
the Power Soil DNA Isolation Kit for DNA extraction, and 355F/1068R as the primer for PCR amplification.  
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Alk in sediments (Solomon et al., 2014). However, the 
details are complicated owing to the various DIC sources 
(Hong et al., 2013; Hiruta et al., 2015). Eh values suggest 
the anoxic and anerobic conditions, and the effect of Eh on 
DIC and δ13CIC is opposite to that of pH (Table 1). 

The sharp increase of salinity from 19.04‰ at 430 cm 
to 46.27‰ at 760 cm in core 973-3 agrees with the salinity 
anomalies  at  Sites  1249  and  1250  of  Hydrate  Ridge 
(Torres et al., 2004) and Qiongdongnan Basin of SCS 
(Yang Tao et al., 2013), suggesting the brine intrusion 
during gas hydrate formation.  There is  no correlation 
between salinity and carbon parameters in the present 
study (Table 1). This is consistent with the study of Jiao et 
al. (2015) of hydrate-bearing sediments in the Shenhu area 
of SCS that found no correlation between salinity and the 
carbon metabolism of microbial communities in methane-
rich sediments (Wilson et al., 2015).  

In contrast to pH and Eh, there is a positive correlation 
between grain size and IC (Table 1). Furthermore, the 
profile of grain size is similar to that of IC (Figures 2a and 
3). These results are consistent with the study of Chen et 
al. (2015) in the Shenhu area of SCS. Thus, we infer that 
the silty sediments contribute to the formation of IC. The 
best explanation for it is that the IC fractions comprise 
abundant authigenic carbonates (from 8 to 10 μm) owning 
to AOM (Chen Fang et al., 2014; Chen et al., 2015). 
Furthermore, the correlation coefficient of grain size and 
δ13CIC (r = 0.86) is much larger than that of grain size and 
IC (r  = 0.62) in Table 1,  with a positive correlation 
between IC and 13CIC. This suggests the coarser sediments 
contain 13C-enriched carbonate (Valentine, 2001). 
 
4.3 The effect of archaeal communities 

The distribution of archaeal communities in core 973-3 
is  closely  related  to  methanogenesis  and  methane 
oxidation (Fig. 4), suggesting the presence of gas hydrates 
in  marine  sediments  (Yang  Yufeng  et  al.,  2016). 
Methanosaeta (32.9%) dominates the shallow part of core 
973-3 (20-450 cm), and Methanosarcinales (28.3%) is 
dominant  in  the  middle  part  (542-870  cm)  and 
Methanomicrobiales is abundant (20.7%) in 1075–1162 
cm (Fig. 4). The archaeal community structure in core 973
-3 is obviously distinct from those in gas hydrate-bearing 
and hydrate-free sediments from the Japan Sea (Yanagawa 
et al., 2014) or Shenhu area of SCS (Jiao et al., 2015). Lin 
et al. (2014) suggested that the metabolic capabilities of 
microbial  communities  in  core MD-178-3280 (Fig.  1) 
were directly related with the methane cycle. Hence, we 
analyzed the correlation between archaeal communities 
and carbon geochemical characteristics. 

The distribution of archaeal communities in core 973-3 
obviously affects the carbon geochemistry. DIC, IC and 

δ13CTOC increase from the sediment surface to 430cm, 
whereas  TOC  and  δ13CIC  decrease  (Fig.  2),  and 
Methanosaeta  dominates in 20–450 cm (Fig.  4).  This 
suggests OM decomposition, because Methanosaeta uses 
acetate to form methane (Purdy et al., 2003; Banning et 
al.,  2005).  Furthermore,  the  significant  correlation 
between Methanosaeta and δ13CIC (P < 0.01; Table 1) 
suggests that Methanosaeta may affect the IC transform.     

The levels of DIC in 550–840 cm are much higher, 
more than twice the DIC concentrations above 500 cm 
(Fig.  2),  whereas  Methanosarcinales/ANME  is 
predominant  in  542–870  cm  (Fig.  4).  This  suggests 
methane oxidation driven by Methanosarcinales/ANME 
for energy acquisition (Hinrichs et al., 1999; Knittel et al., 
2005), which is consistent with the IC increase and δ13CIC 
depletion in sediments (Fig. 2). Methanomicrobiales uses 
energy from CO2 + H2 for methane formation (Dojka et 
al., 1998; Falz et al., 1999; Purdy et al., 2002). Hence, 
Methanomicrobiales and DIC from OM fermentation are 
high in 1075–1162 cm (Fig. 4). 

Methanomicrobiales and  Methanosarcinales have no 
effect on carbon geochemical characteristics (Table 1). 
This  might  result  from  the  mismatching  of  archaeal 
communities and substrate availability (CO2 and CH4) and 
gene  abundance.  Although  we  analyze  the  DIC 
concentrations, it is impossible to distinguish the fractions 
of CO2 derived from OM mineralization and the DIC 
produced by CH4 oxidation (Hong et al., 2013). Therefore, 
it is necessary to investigate gene abundance because of 
the additional constraints on the distribution of specific 
archaeal  lineages  related  to  the  cycling  of  organic 
degradation and methane (Lin et al., 2014).    

Interestingly, other archaea are significantly correlated 
negatively with δ13CIC (P < 0.05; Table 1). However, the 
physiological  characteristics  of  other  archaea  are 
unknown.  Hence,  the  known  methanogens  and 
methanotrophs may be a small fraction of the microbial 
community found in hydrate-bearing conditions (Biddle et 
al., 2008; Valentine, 2011). 

 
5 Conclusions 
 

Carbon geochemical characteristics in pore water and 
sediments from core 973-3 suggest gas hydrate formation 
and decomposition process. 

(1) The methanogenesis is characterized by high DIC 
and TOC originated from terrigenous OM driven by the 
methanogens. 

(2)  The  carbon  geochemical  characteristics  suggest 
AOM with increasing DIC and IC and depleted δ13CIC 
driven by the methanotrophs in 430–840 cm.  

(3) Environmental factors, such as pH, Eh and grain 
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size,  and  Methanosaeta  greatly  affect  the  carbon 
geochemistry of gas hydrate-associated sediments. 
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