
Towards Non-Interactive Zero-Knowledge for NP from LWE

Ron D. Rothblum∗ Adam Sealfon† Katerina Sotiraki‡

March 2, 2018

Abstract

Non-interactive zero-knowledge (NIZK) is a fundamental primitive that is widely used in the
construction of cryptographic schemes and protocols. Despite this, general purpose construc-
tions of NIZK proof systems are only known under a rather limited set of assumptions that are
either number-theoretic (and can be broken by a quantum computer) or are not sufficiently
well understood, such as obfuscation. Thus, a basic question that has drawn much attention is
whether it is possible to construct general-purpose NIZK proof systems based on the learning
with errors (LWE) assumption.

Our main result is a reduction from constructing NIZK proof systems for all of NP based on
LWE, to constructing a NIZK proof system for a particular computational problem on lattices,
namely a decisional variant of the Bounded Distance Decoding (BDD) problem. That is, we
show that assuming LWE, every language L ∈ NP has a NIZK proof system if (and only if)
the decisional BDD problem has a NIZK proof system. This (almost) confirms a conjecture of
Peikert and Vaikuntanathan (CRYPTO, 2008).

To construct our NIZK proof system, we introduce a new notion that we call prover-assisted
oblivious ciphertext sampling (POCS), which we believe to be of independent interest. This
notion extends the idea of oblivious ciphertext sampling, which allows one to sample ciphertexts
without knowing the underlying plaintext. Specifically, we augment the oblivious ciphertext
sampler with access to an (untrusted) prover to help it accomplish this task. We show that
the existence of encryption schemes with a POCS procedure, as well as some additional natural
requirements, suffices for obtaining NIZK proofs for NP. We further show that such encryption
schemes can be instantiated based on LWE, assuming the existence of a NIZK proof system for
the decisional BDD problem.

∗MIT and Northeastern University. Email: ronr@mit.edu. Research supported in part by NSF Grants CNS-
1413920 and CNS-1350619, by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Re-
search Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236, the SIMONS Investigator award agree-
ment dated 6-5-12 and the Cybersecurity and Privacy Institute at Northeastern University.
†MIT. Email: asealfon@mit.edu. Supported by a DOE CSGF fellowship, NSF MACS CNS-1413920, DARPA

IBM W911NF-15-C-0236, and a Simons Investigator award agreement dated 6-5-12.
‡MIT. Email: katesot@mit.edu.

1

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Related Works . 4
1.3 Technical Overview . 5
1.4 Organization . 9

2 Preliminaries 9
2.1 Public-key Encryption with Public Randomness . 10
2.2 Non-Interactive Zero-Knowledge Proofs . 10
2.3 Lattices and Learning With Errors . 12

3 From Prover-Assisted Oblivious Sampling to NIZKs 14
3.1 Definitions: Valid Public Keys, Ciphertexts and POCS 15
3.2 From POCS to NIZK . 18

4 Instantiating with LWE 22
4.1 Regev’s Encryption Scheme . 22
4.2 NIZKs for Validating Keys and Ciphertexts . 25
4.3 A POCS Procedure for Regev’s Scheme . 26
4.4 Putting it All Together (Proof of Theorem 2) . 31

2

1 Introduction

The learning with errors (LWE) problem, introduced by Regev [Reg09], has had a profound impact
on cryptography. The goal in LWE is to find a solution to a set of noisy linear equations modulo
a large integer q, where the noise is typically drawn from a discrete Gaussian distribution. The
assumption that LWE cannot be broken in polynomial time can be based on worst-case hardness
of lattice problems [Reg09, Pei09] and has drawn immense interest in recent years.

Immediately following its introduction, LWE was shown to imply the existence of many im-
portant cryptographic primitives such as public-key encryption [Reg09], circular secure encryption
[ACPS09], oblivious transfer [PVW08], chosen ciphertext security [PW08, Pei09], etc. Even more
remarkably, in recent years LWE has been used to achieve schemes and protocols above and beyond
what was previously known from other assumptions. Notable examples include fully homomor-
phic encryption [BV14], predicate encryption and certain types of functional encryption (see, e.g.,
[AFV11, GKP+13, GVW15]), and even obfuscation of certain expressive classes of computations
[WZ17, GKW17].

Despite this amazing list of applications, one major primitive that has resisted all LWE based
attempts is general purpose Non-Interactive Zero-Knowledge (NIZK) proof systems for NP.1 A
NIZK proof system for a language L ∈ NP, as introduced by Blum et al. [BFM88], is a protocol
between a probabilistic polynomial-time prover P and verifier V in the Common Random String
(CRS) model. The prover, given an instance x ∈ L, a witness w, and the random string r, produces
a proof string π which it sends to the verifier. Based only on x, the random string r and the proof
π, the verifier can decide whether x ∈ L. Furthermore, the protocol is zero-knowledge: the proof π
reveals nothing to the verifier beyond the fact that x ∈ L.

Non-interactive zero-knowledge proofs have been used extensively in cryptography, with ap-
plications ranging from chosen ciphertext security and non-malleability [NY90, DDN03, Sah99],
multi-party computation with a small number of rounds (see, e.g., [MW16]), low-round witness-
indistinguishability [DN07] to various types of signatures (e.g. [BMW03, BKM06]) and beyond.

Currently, general purpose NIZK proof systems (i.e., NIZK proof systems for all of NP) are only
known based on number theoretic assumptions (e.g., the hardness of factoring integers [FLS99]
or the decisional linear assumption or symmetric external Diffie-Hellman assumption over bilinear
groups [GOS12]) or from indistinguishability obfuscation [SW14, BP15] (see Section 1.2 for further
discussion). We remark that the former class of assumptions can be broken by a quantum com-
puter [Sho99] whereas the assumption that indistinguishability obfuscation exists is not yet well
understood. Thus, the following basic question remains open:

Can we construct NIZK proofs for all of NP based on LWE?

1.1 Our Results

Our main result is a completeness theorem reducing the foregoing question to that of constructing
a NIZK proof system for one particular computational problem. Specifically, we will consider a
decisional variant of the bounded distance decoding (BDD) problem.

Recall that in the BDD problem, the input is a lattice basis and a target vector which is very
close to the lattice. The problem is to find the nearby lattice point. This is very similar to the

1As a matter of fact, resolving this question carries a symbolic cash prize; see https://simons.berkeley.edu/

crypto2015/open-problems.

3

https://simons.berkeley.edu/crypto2015/open-problems
https://simons.berkeley.edu/crypto2015/open-problems

closest vector problem CVP except that here the vector is guaranteed to be within the λ1 radius of
the lattice, where λ1 denotes the length of the shortest non-zero lattice vector (more specifically,
the problem is parameterized by α ≥ 1 and the guarantee is that the point is at distance λ1/α
from the lattice). BDD can also be viewed as a worst-case variant of LWE and is known to be (up
to polynomial factors) equivalent to GapSVP [LM09].

In this work, we consider a decisional variant of BDD, which we denote by dBDD. The dBDDα,γ
problem, is a promise problem, parameterized by α ≥ 1 and γ ≥ 1, where the input is a basis B of
a lattice L and a point t. The goal is to distinguish between pairs (L, t) such that the point t has

distance at most λ1(L)
α from the lattice L from tuples in which t has distance at least γ · λ1(L)

α from
L.

Our main result can be stated as follows:

Theorem 1 (Informal; see Theorem 2). Suppose that LWE holds and that dBDDα,γ has a NIZK
proof system (where α and γ depend on the LWE parameters). Then, every language in NP has a
NIZK proof system.

Since dBDD is a special case of the well studied GapCVP problem, a NIZK for GapCVP would
likewise suffice for obtaining NIZKs for all of NP based on LWE.

Theorem 1 almost confirms a conjecture of Peikert and Vaikuntanathan [PV08]. More specifi-
cally, [PV08] conjectured that a NIZK proof-system for a specific computational problem related to
lattices would imply a NIZK proof-system for every NP language. The problem that Peikert and
Vaikuntanathan consider is GapSVP whereas the problem that we consider is the closely related
dBDD. While BDD is known to be no harder than GapSVP [LM09] (and the same can be shown
for dBDD, see Proposition 2.13), these results are shown by Cook reductions and so a NIZK for
one problem does not necessarily yield a NIZK for the other. In particular, we do not know how to
extend Theorem 1 to hold with respect to GapSVP.

Parameterization of Theorem 1. The tradeoff between α and γ and the LWE parameters is
quantified precisely in the technical sections (see Theorem 2). Roughly speaking, we need both
α and γ to be small relative to 1/β, where β is the magnitude of the LWE error divided by the
LWE modulus q. This tradeoff allows us to obtain NIZK proof systems for NP from a variety
of parameter regimes. In particular, given a NIZK proof system for dBDDα,γ where α and γ are
polynomial in the security parameter, we can instantiate Theorem 1 even assuming LWE with a
polynomial-size modulus. On the other hand, it suffices to have a NIZK for dBDDα,γ with respect
to a super-polynomial or even subexponential α or γ, assuming LWE with a super-polynomial or
subexponential modulus.

Furthermore, we emphasize that it suffices for us that dBDDα,γ has a non-interactive compu-
tational zero-knowledge proof-system under the LWE assumption. However, it is entirely plausi-
ble that dBDDα,γ has an (unconditional) non-interactive statistical zero-knowledge proof system
(NISZK).

1.2 Related Works

Non-Interactive Zero-Knowledge. Non-interactive zero-knowledge proofs were first introduced
by Blum, Feldman and Micali [BFM88], who also constructed a NIZK proof system for all of NP
based on the Quadratic Residuocity assumption. Later work by Feige, Lapidot and Shamir [FLS99]

4

gave a construction under (an idealized version of) trapdoor permutations. Together with addi-
tional contributions of Bellare and Yung [BY96] and Goldreich [Gol11], this yields NIZK proofs for
NP based on factoring (using a variant of Rabin’s [Rab79] trapdoor permutation collection).

Groth, Ostrovsky and Sahai [GOS12] construct a more efficient general purpose NIZK proof-
system based on hardness assumptions on groups equipped with bilinear maps. Groth and Sahai
[GS08] also construct a NIZK proof system for specific problems related to such bilinear groups.
Groth [Gro10] constructs highly efficient NIZK proofs assuming certain “knowledge of exponent”
assumptions (which in particular are not falsifiable, in the sense of [Nao03]). More recently, con-
structions of NIZK arguments and proofs based on indistinguishability obfuscation were given by
Sahai and Waters [SW14] and Bitansky and Paneth [BP15].

Another method for constructing non-interactive zero-knowledge proofs is via the Fiat-Shamir
heuristic [FS86], for reducing interaction in (public-coin) interactive proofs. Loosely speaking, the
Fiat-Shamir heuristic uses a cryptographic hash-function to compute the verifier’s messages, and
the resulting protocol is known to be secure in the random-oracle model [BR93]. However, replacing
the random oracle with a concrete hash function may lead to an insecure protocol [CGH04, GK03],
and so it is highly desirable to construct NIZK protocols whose security does not depend on random
oracles. In recent works, Kalai et al. [KRR17] and Canetti et al. [CCRR18] construct hash functions
for which the Fiat-Shamir heuristic is sound when applied to interactive proofs (i.e., with statistical
soundness). However, they use very strong assumptions such as the existence of encryption schemes
in which the success probability of a key-dependent message (KDM) key recovery attack succeeds
only with exponentially small probability.

As mentioned above, Peikert and Vaikuntanathan [PV08] conjecture that a NIZK proof-system
for GapSVP would suffice to obtain NIZK for all of NP based on LWE. [PV08] also suggest that one
approach to proving this conjecture is to translate the prior approach of Blum et al. [BDSMP91],
which referred to the quadratic residuosity problem, to lattices. Our approach differs from that
suggested by [PV08] and is more similar to the [FLS99] paradigm.

Zero-Knowledge Proofs for Specific Lattice Problems. Highly relevant to our assumption
of a NIZK proof system for dBDDα,γ are several works on zero-knowledge of lattice problems.
Goldreich and Goldwasser [GG00] show that the complement of GapSVPγ and GapCVPγ , with
parameter γ = Θ(

√
n/ log n), has an honest-verifier SZK protocol. Combined with results on the

structure of SZK (see [Vad99]), this implies that GapSVPγ and GapCVPγ themselves are in SZK.
Subsequently, Micciancio and Vadhan [MV03] show that GapSVPγ and GapCVPγ are in SZK for the
same approximation factor even with an efficient prover (given the shortest or closest lattice point,
resp., as an auxiliary input). Building on the protocol of [MV03], Goldwasser and Kharchenko
[GK05] use the connection between Atjai-Dwork ciphertexts and GapCVP to construct a proof of
plaintext knowledge.

Peikert and Vaikuntanathan [PV08] construct non-interactive statistical zero-knowledge (NISZK)
protocols for a variety of lattice problems and in particular leave the question of whether GapSVPγ
has a NISZK proof system as an open problem. Most recently, Alamati et al. [APSD17] construct
NISZK and SZK protocols for approximating the smoothing parameter of a lattice.

1.3 Technical Overview

Let L ∈ NP be an arbitrary NP language. Our goal is to construct a NIZK proof system for L. The
starting point for our construction is an (unconditional) NIZK proof system for L in the hidden-bits

5

model, a framework introduced by Feige et al. [FLS99] and made explicit by Goldreich [Gol01]. In
the hidden-bits model, the prover P has access to a string of uniformly random bits r ∈ {0, 1}N .
Given the input x and a witness w, the prover can decide to reveal some subset I ⊂ [N] of the
bits to the verifier, and in addition sends a proof-string π. The verifier, given only the input x, the
revealed bits rI , and the proof π, decides whether x ∈ L. Note that the unrevealed bits remain
entirely hidden from the verifier. A hidden-bits proof is zero-knowledge if there exists a simulator
S that generates a view that is indistinguishable from that of the verifier (including in particular
the revealed bits rI).

Feige et al. [FLS99] show that every NP language has a NIZK proof system in the hidden bits
model. Furthermore, they show how to implement the hidden bits model, in a computational sense,
using (doubly enhanced) trapdoor permutations,2 thereby obtaining a NIZK proof system for NP
under the same assumption.

Following Goldreich’s presentation, we shall also aim to enforce the hidden-bits model using
cryptography. In contrast to [FLS99, Gol01], however, rather than using trapdoor permutations,
we shall use an encryption scheme that satisfies some strong yet natural properties. The main
technical challenge will be in constructing an LWE-based encryption scheme that satisfies these
properties.

We begin by describing the two most intuitive properties that we would like from our public-key
encryption scheme (G,E,D).

1. Oblivious Sampling of Ciphertexts: Firstly, we require the ability to sample ciphertexts
while remaining entirely oblivious to the underling messages. More precisely, we assume that
there exists an algorithm Sample that, given a public key pk, samples a random ciphertext
c ← Sample(pk) such that the plaintext value σ = Dsk(c) is hidden, even given the random
coins used to sample c.3 Encryption schemes that have OCS procedures are known in the
literature (see, e.g., [GKM+00, GR13]).

2. NIZK proof for Plaintext Value: Secondly, we require a NIZK proof for a specific task,
namely proving that a given ciphertext c = Epk(σ) is an encryption of the bit σ (with respect
to the public-key pk). Note that this is indeed an NP task, since the secret key sk is a witness
to the fact that c is an encryption of σ.4 In particular, we require that the honest prover
strategy can be implemented efficiently given access to this witness (i.e., the secret key sk).

With these two ingredients in hand we can describe the high-level strategy for implementing the
hidden-bits model. The idea is that the common random string will contain N sequences ρ1, . . . , ρN
of random coins for the OCS procedure. Our NIZK prover chooses a public-key/secret-key pair
(pk, sk) and generates the ciphertexts c1, . . . , cN , where ci = Sample(pk; ρi) (i.e., an obliviously
sampled ciphertext with respect to the public key pk and randomness ρi). The prover further
computes the corresponding plaintext bits σ1, . . . , σN , where σi = Decsk(ci) (which it can compute
efficiently, since it knows the secret key sk). The prover now runs the hidden-bits prover with respect
to the random bit sequence (σ1, . . . , σN) and obtains in return a subset I ⊆ [N] of coordinates and
a proof-string π. To reveal the coordinates (σi)i∈I , we use the second ingredient: our NIZK proof

2Doubly enhanced trapdoor permutations were actually introduced in [Gol11] (with the motivation of implementing
the hidden-bits model). See further discussion in [GR13, CL17].

3In particular, the naive algorithm that chooses at random b ∈ {0, 1} and outputs Epk(b) is not oblivious since its
random coins fully reveal b.

4For simplicity, we focus for now on schemes with perfect correctness.

6

for proving the plaintext value of the ciphertexts (ci)i∈I . Intuitively, the OCS guarantee allows the
other bits (σi)i/∈I to remain hidden.

Certifying Public Keys. An issue that we run into when trying to implement the blueprint
above is that a cheating prover may choose to specify a public key pk that is not honestly generated.
Given such a key, it is not clear a priori that the prover cannot control the distribution of the hidden
bits, or even equivocate by being able to claim that a single ciphertext ci is both an encryption
of the bit 0 and an encryption of the bit 1. This leads to actual attacks that entirely break the
soundness of the NIZK proof system.

A closely related issue actually affects the [FLS99] NIZK construction (based on doubly enhanced
trapdoor permutations) and was pointed out by Bellare and Yung [BY96].5 More specifically, in
the [FLS99] protocol the prover needs to specify the index of a permutation (which is analogous
to the public key in our setting). However, [BY96] observed that if the prover specifies a function
that is not a permutation, then it can violate soundness. They resolved this issue by constructing
a NIZK proof system for proving that the index indeed specifies a permutation.6

We follow the [BY96] approach by requiring conditions (1) and (2) above, as well as a NIZK
proof for certifying public keys. Thus, our NIZK prover also supplies a NIZK proof that the public
key that it provides is valid.

1.3.1 Instantiating our Approach with LWE

So far the approach outlined is basically the [FLS99] implementation of the hidden bits model
(where we replace the trapdoor permutations with a suitable encryption scheme). However, when
trying to instantiate it using LWE, we encounter significant technical challenges.

For our encryption scheme, we will use Regev’s [Reg09] scheme which uses n-dimensional vectors
over the integer ring Zq. The public key in this scheme consists of (1) a matrix A← Zn×mq , where

m = Θ(n · log(q)), and (2) a vector bT = sT ·A + eT , where s ← Znq is the secret key, and e is
drawn from an n-dimensional discrete Gaussian.

To instantiate the approach outlined above we require three procedures: (1) an oblivious ci-
phertext sampler (OCS), (2) a NIZK proof system for plaintext values, and (3) a NIZK proof system
for certifying public keys. We discuss these three requirements in increasing order of complexity.

NIZK proof for Validating Public Keys. Recall that a public key in this encryption scheme
is of the form (A,b) ∈ Zn×mq × Zmq , where bT = sT ·A + eT for error vector e ∈ Zmq drawn from
a discrete Gaussian and in particular having bounded entries (with all but negligible probability).
To validate the public key we shall construct a NIZK proof system that proves that for the input
public key (A,b), there exists a vector s ∈ Znq such that sT ·A is very close to bT .7

Producing such a NIZK proof system is where we need (for the first time) our additional as-
sumption that dBDD has a NIZK proof-system. Indeed, proving that there exists s ∈ Znq such that

5Further related issues were recently uncovered by Canetti and Lichtenberg [CL17].
6Actually, the [BY96] protocol only certifies that the index specifies a function that is close to a permu-

tation (i.e., they provide a non-interactive zero-knowledge proof of proximity, a notion recently formalized by
Berman et al. [BRV17]) which suffices in this context.

7Actually, it is important for us to also establish that s is unique. We enforce this by having the matrix A be
specified as part of the CRS (rather than by the prover). Indeed, it is not too difficult to show that a lattice spanned
by a random matrix A does not have short vectors and therefore b cannot be close to two different lattice points.

7

sT ·A is very close to bT is a dBDD instance: we must show that the distance of the vector b from
the lattice spanned by the rows of A is a lot smaller than the length of the shortest non-zero vector
of this lattice. We note that since the matrix A is random (it will part of the CRS), we know that
(with very high probability) the length of the shortest non-zero vector is large.

NIZK proof for Plaintext Value. The second procedure that we need is a NIZK proof-system
that certifies that a given ciphertext encrypts a bit σ. To see how we obtain this, we first need to
recall the encryption procedure in Regev’s [Reg09] scheme. To encrypt a bit σ ∈ {0, 1}, one selects
at random r← {0, 1}m and outputs the ciphertext (c, ω), where c = A · r and ω = bT · r + σ ·

⌊ q
2

⌋
.

Thus, given an alleged public key (A,b) ∈ Zn×mq × Zmq and ciphertext (c, ω) ∈ Znq × Zq, we

basically want to ensure that there exists a vector s ∈ Znq such that bT ≈ sT ·A and ω+σ·
⌊ q

2

⌋
≈ sT ·c,

where σ ∈ {0, 1} is the alleged plaintext value. Put differently, we want to ensure that the vector[
b,
(
ω + σ ·

⌊ q
2

⌋)]
is close to the lattice spanned by the rows of [A, c]. Thus, this problem can also

be reduced to an instance of dBDD.

Oblivious Sampling of Ciphertexts. The last ingredient that we need is a procedure for
obliviously sampling ciphertexts in Regev’s encryption scheme. This is the main technical challenge
in our construction.

A first idea for such an OCS procedure is simply to generate a random pair (c, ω), where c← Znq
and ω ← Zq. Intuitively, this pair corresponds to a high noise encryption of a random bit. The
problem though is precisely the fact that (c, ω) is a high noise ciphertext. That is, sT · c− ω will
be close to neither 0 nor bq/2c. In particular, the above NIZK proof for certifying plaintext values
only works for low noise ciphertexts.

This issue turns out to be a key one which we do not know how to handle directly. Instead,
we shall bypass it by introducing and considering a generalization of OCS in which the (untrusted)
prover is allowed to assist the verifier to perform the sampling. We refer to this procedure (or rather
protocol) as a prover-assisted oblivious ciphertext sampler (POCS). Thus, a POCS is a protocol
between a sampler S, which is given the secret key (and will be run by the prover in our NIZK
proof), and a checker C which is given the public key (and will be run by the verifier). The common
input to the protocol is a random string ρ. The sampler basically generates a sampled ciphertext
c and sends it to the checker, who runs some consistency checks. If the sampler behaves honestly
and ρ is sampled randomly, then the sampled ciphertext c should correspond to an encryption of a
random bit σ and the checker’s validation process should pass. Furthermore, the protocol should
satisfy the following (loosely stated) requirements:

• (Computational) Hiding: The value σ = Decsk(c) is computationally hidden from the
checker. That is, it is computationally infeasible to predict the value of σ from c and pk, even
given the random coins ρ.

• (Statistical) Binding: For any value of ρ there exists a unique value σ such that for every
(possibly cheating) sampler strategy S∗, with high probability either the checker rejects or
the generated ciphertext c corresponds to an encryption of σ.

With some care, such a POCS procedure can replace the OCS procedure (which did not use a
prover) in our original outline. The key step therefore is constructing a POCS procedure for Regev’s
encryption scheme, which we describe next.

8

A POCS Procedure for Regev’s Encryption Scheme. Fix a public key (A,b) and let s be
the corresponding secret key. The random input string for our POCS procedure consists of a vector
ρ ∈ Znq and a value τ ∈ Zq. The pair (ρ, τ) should be thought of as a (high noise) Regev encryption.

Denote by e = τ − sT · ρ the noise in this ciphertext.
As discussed above, since (ρ, τ) corresponds to a high noise ciphertext, we cannot have the

sampler just output it as is. Rather we will have the sampler output a value τ ′ = sT ·ρ+e′+σ′ ·
⌊ q

2

⌋
,

where e′ is drawn from the same noise distribution as fresh encryptions (i.e., low noise), and the
value of the encrypted bit σ′ will be specified next. Observe that (ρ, τ ′) corresponds to a fresh
encryption of σ′, and so we will need to make sure that σ′ is random and that the hiding and
binding properties hold.

To do so, we will define σ′ as follows: If |e′ − e| ≤ q/4, then set σ′ = 0, and otherwise set σ′ = 1.
Observe that in either case it must be that∣∣∣e′ + σ′ ·

⌊q
2

⌋
− e
∣∣∣ ≤ q/4 . (1)

We would like our checker to enforce that Eq. (1) holds. Initially this seems problematic since our
checker has access to none of e, e′, and σ′. However, the checker does have access to τ and τ ′, and
it holds that: ∣∣τ ′ − τ ∣∣ =

∣∣∣sT · ρ + e′ + σ′ ·
⌊q

2

⌋
− sT · ρ− e

∣∣∣ =
∣∣∣e′ + σ′ ·

⌊q
2

⌋
− e
∣∣∣

and so we simply have our checker verify that |τ ′ − τ | ≤ q/4.
It is not too hard to see that σ′ is an unbiased bit in this construction. Moreover, it is unbiased

even conditioned on ρ (since its value is entirely undetermined until τ is chosen). Thus, the checker
only sees a fresh encryption of a random bit σ′ which, by the hardness of LWE, hides the value of
σ′.

To see that the scheme is binding, observe that for most choices of ρ and τ the (cheating)
sampler cannot equivocate to two values τ ′ and τ ′′ which correspond to different plaintext bits, as
long as both have small noise. The problem however, is that the sampler could equivocate to two
different ciphertexts where at least one has high noise.

We resolve this final problem by also appending a NIZK proof that the sample (ρ, τ ′) is a low
noise Regev ciphertext (as described above). This concludes the overview of our construction.

1.4 Organization

In Section 2 we provide definitions and notation used throughout this work (defining in particular
NIZK and the hidden bits model, as well as giving sufficient background on lattices). In Section 3
we formalize our abstraction of “prover-assisted oblivious ciphertext sampling” (POCS) and show
that encryption schemes admitting such a procedure (as well as some specific NIZK proof systems)
imply NIZKs for NP. Finally, in Section 4 we show how to instantiate the foregoing framework
using LWE.

2 Preliminaries

We follow the notation and definitions as in [Gol01].

9

For a distribution µ, we use x ← µ to denote that x is sampled from the distribution µ, and
for a set S we use x ← S to denote that x is sampled uniformly at random from the set S. We

use X
c
≈ Y , X

s
≈ Y and X ≡ Y to denote that the distributions X and Y are computationally

indistinguishable, statistically close and identically distributed, respectively (where in the case of
computational indistinguishability we actually refer to ensembles of distributions parameterized by
a security parameter).

2.1 Public-key Encryption with Public Randomness

For simplicity we restrict our attention to bit-encryption schemes (where messages consist of single
bits). We will define a variant of public-key encryption in which all algorithms, including the
adversary, have access to some public randomness. We emphasize that this public randomness
is an additional input to the key generation algorithm and is revealed also to the adversary. In
addition to the public randomness, the key generation algorithm is allowed to toss additional private
random coins that are not revealed. To avoid cluttering notation, we will assume that the public
key includes the public randomness.

Definition 2.1 (Public-Key Encryption with Public Randomness). A public-key encryption scheme
with public randomness is a triple of PPT algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen(1κ, ρpk) on input public randomness ρpk (and while tossing
additional private random coins) outputs a pair of keys (pk, sk), where pk includes ρpk.

2. The encryption algorithm Enc(pk, σ), where σ ∈ {0, 1}, outputs a ciphertext c. We denote this
output by c = Encpk(σ).

3. The deterministic decryption algorithm Dec(sk, c) outputs a message σ′. We denote this output
by σ′ = Decsk(c).

We require that for every σ ∈ {0, 1}, except with negligible probability over the public randomness
ρpk, the keys (pk, sk) ← Gen(1κ, ρpk) and the randomness of the encryption scheme, we have that
Decsk(Encpk(σ)) = σ.

Semantic security [GM84] is defined as follows:

Definition 2.2 (Semantic Security with Public Randomness). A public-key encryption scheme
with public randomness is semantically secure if the distributions (pk, Epk(0)) and (pk, Epk(1)) are
computationally indistinguishable, where ρpk ← {0, 1}poly(κ) and (pk, sk)← Gen(1κ, ρpk).

Note that, clearly, any public-key encryption scheme is also a public-key scheme with public
randomness, where ρpk is null. Nevertheless, this notion will be useful in our constructions.

2.2 Non-Interactive Zero-Knowledge Proofs

Non-interactive Zero-knowledge Proofs are a fundamental cryptographic primitive introduced by
Blum et al. [BFM88].

Definition 2.3 (NIZK). A non-interactive (computational) zero-knowledge proof system (NIZK) for
a language L is a pair of probabilistic polynomial-time algorithms (P, V) such that:

10

• Completeness: For every x ∈ L and witness w for x, we have

Pr
R

[
V (x,R, P (x,R,w)) = 1

]
> 1− negl(|x|)

where R← {0, 1}poly(|x|). If the foregoing condition holds with probability 1, then we say that
the NIZK has perfect completeness.

• Soundness: For every x /∈ L and every (possibly inefficient) cheating prover P ∗, we have

Pr
R

[
V (x,R, P ∗(x,R)) = 1

]
< negl(|x|)

where R← {0, 1}poly(|x|).

• Zero-Knowledge: There exists a probabilistic polynomial-time simulator S such that the en-
sembles {(x,R, P (x,R,w))}x∈L and {S(x)}x∈L are computationally indistinguishable, where
R← {0, 1}poly(|x|).

The random input R received by both P and V is referred to as the common random string or CRS.

We extend the definition of NIZK to promise problems in the natural way.
We can further define a NIZK proof system with adaptive soundness by allowing the cheating

prover to specify the input x as well as the purported witness w.

Definition 2.4 (Adaptive Soundness for NIZK). A NIZK proof system (P, V) is adaptively sound
if it satisfies the following property. For any κ ∈ N and any (possibly inefficient) cheating prover
P ∗ producing output (x,w) ∈ {0, 1}κ, we have

Pr
R,

(x,w)←P ∗(1κ,R)

[V (x,R,w) = 1 and x /∈ L] < negl(κ) .

Remark 2.5 (Achieving Adaptive Soundness). By standard amplification techniques, any ordinary
NIZK proof may be transformed into one which is adaptively sound (see, e.g. [Gol01, Chapter 4]).

2.2.1 The Hidden Bits Model

The hidden-bits model was introduced by Goldreich [Gol01, Section 4.10.2] as an appealing ab-
straction of the NIZK proof system of Feige, Lapidot and Shamir [FLS99].

Definition 2.6 (Hidden Bits Proof-System). A hidden-bits proof system for a language L is a pair
of PPT algorithms (P, V) such that the following conditions hold:

• (Completeness) For all x ∈ L and witnesses w for x,

Pr[V (x,RI , I, π) = 1] > 1− negl(|x|) ,

where R is a uniformly random string of bits (of length poly(|x|)), (I, π)← P (x,R,w) for I
a subset of the indices of R, and RI is the substring of R corresponding to the indices in I.

• (Soundness) For all x /∈ L and any computationally unbounded cheating prover P ∗, we have

Pr[V (x,RI , I, π) = 1] < negl(|x|)

where R again is a uniformly random string of bits and (I, π)← P ∗(x,R).

11

• (Zero-knowledge) There exists a probabilistic polynomial-time simulator S such that the en-
sembles {(x,RI , I, π)}x∈L and {S(x)}x∈L are computationally indistinguishable, where R is a
uniformly random string of bits and (I, π)← P (x,R).

Feige et al. [FLS99] and Goldreich [Gol01] showed that every NP language has a hidden-bits
proof system unconditionally (where the hidden-bits string is of polynomial length and the prover
strategy is implemented efficiently given the NP witness).

Lemma 2.7 (See [Gol01, Section 4.10.2]). For any language L ∈ NP, there exists a zero-knowledge
hidden-bits proof system for L. Moreover, the proof-system has perfect completeness.

2.3 Lattices and Learning With Errors

In this section we give some basic definitions and lemmata about lattices and the Learning With
Errors (LWE) assumption.

Standard Notation. We let the elements of the ring Zq be identified with the representatives{
−
⌊ q

2

⌋
, . . . ,

⌈ q
2

⌉
− 1
}

.
We denote by [x, y] the concatenation of vectors or matrices. For example, if x ∈ Znq and y ∈ Zq,

then [x, y] is a vector in Zn+1
q , whose first n components correspond to the n components of x and

whose last component is y. Similarly, if X ∈ Zn×mq and y ∈ Znq , then [X,y] is a matrix in Zn×(m+1)
q ,

whose last column is y.[
0,
⌊ q

2

⌋]
such that |x| = x if x < q/2 and |x| = q−x otherwise. Namely, |x| is the distance from

0 in Zq. Similarly, for x ∈ Znq we denote by ‖x‖ the `2 norm, namely ‖x‖ =
√∑

|xi|2, where xi
are the coordinates of x and |·| is as defined above.

Lastly, we denote by b·eq : Zq → {0, 1} the function:

bxeq =

{
0 if x ∈ [−bq/4c , dq/4e]
1 otherwise

.

2.3.1 Lattices

We start by giving some definitions and standard facts about lattices.
A lattice Λ is an additive subgroup of Zm. Every lattice is finitely generated as all integer linear

combinations of a set of linearly independent row vectors8 B. We call this set a basis for the lattice
and its cardinality the rank of the lattice.

We will denote by Λ(A) the lattice that is generated by the rows of A (which might or might
not be a basis) and by B(A) a basis of the lattice Λ(A).

We denote by λ1(Λ) the length of the shortest nonzero lattice vector:

λ1(Λ) = min
x∈Λ\{0}

‖x‖ .

We note the following standard lemma about lattice bases.

8In the literature, typically B is defined as a set of column vectors. However, for our applications it will be more
convenient to use row vectors.

12

Lemma 2.8. Let A ∈ Zn×m with m ≥ n, there is an efficient algorithm to compute B(A). Namely,
given a generating set of a lattice, we can efficiently compute a basis for the same lattice.

For the rest of the paper, we will need the generalization of the above definitions over Zq.

Definition 2.9. A lattice Λ is called a q-ary lattice if qZm ⊆ Λ. This means that Λ is q-ary if it
holds that x ∈ Λ if and only if (x mod q) ∈ Λ.

We denote a q-ary lattice by Λq. More specifically, if A ∈ Zn×mq then we denote by Λq(A) the
lattice:

Λq(A) = {y ∈ Zm : ∃s ∈ Znq s.t. yT = sTA}+ qZm.

The length of the shortest nonzero vector over Zq for q-ary lattices similarly to the above defini-
tions.

2.3.2 Decisional Bounded Distance Decoding Problem

In this section, we formally define some well-studied lattice problems as well as the decisional
Bounded Distance Decoding (dBDD) variant which we use extensively in this work. We will also
present a reduction from dBDD to the GapSVP problem, showing that dBDD is (up to polynomial
loss in the parameters) at most as hard as GapSVP.

Definition 2.10. For a given parameter γ > 1, the promise problem GapSVPγ = (YES,NO) is
defined as follows. An input to the problem consists of a basis B ∈ Zn×m and parameter r > 0 and

• (B, r) ∈ YES if λ1(Λ(B)) < r, and

• (B, r) ∈ NO if λ1(Λ(B)) > γr.

Definition 2.11. For a given parameter α ≥ 1, the promise search problem BDDα is defined as
follows: Given a basis B ∈ Zn×m, a target vector t ∈ Rm such that dist(Λ(B), t) < λ1(B)

α , output a
lattice vector v ∈ Λ(B) such that ‖t− v‖ = dist(Λ(B), t).

Now, we define the computational problem dBDD that we use in this work.

Definition 2.12. For two given parameters α ≥ 1 and γ > 1, the promise problem dBDDα,γ =
(YES,NO) is defined as follows. The input to the problem is a basis B ∈ Zn×m, a target vector
t ∈ Rm, and r ∈ Q, and

• (B, t, r) ∈ YES if dist(t,Λ(B)) ≤ λ1(Λ(B))
α ; and

• (B, t, r) ∈ NO if dist(t,Λ(B)) > γ · λ1(Λ(B))
α .

We conclude this section with a reduction from dBDD to GapSVP.

Proposition 2.13. The problem dBDDα,γ is Cook-reducible to GapSVPmin(
√
γ,α/2) where γ and α

are polynomially-bounded.

Proof. Let (B, t) be an input of dBDDα,γ . First, using binary search and a GapSVP√γ oracle, we

compute an r such that λ1(B)√
γ ≤ r ≤

√
γ · λ1(B).

13

From [LM09] we know that BDDα is reducible to GapSVPα/2, where α is polynomially-bounded.
So, using this reduction and our oracle access to GapSVP, we can find an alleged closest vector, v,
to t. If v ∈ Λ(B) and ‖t− v‖ ≤ √γ · rα , then we output 1. Else, we output 0.

Indeed, if dBDDα,γ(B, t) ∈ YES, then there is a vector v ∈ Λ(B) such that ‖t− v‖ ≤ λ1(B)
α ≤

γ · rα and BDD will return this vector. On the other hand, if dBDDα,γ(B, t) ∈ NO, then for every

vector v ∈ Λ(B) it holds that ‖t− v‖ > γ · λ1(B)
α ≥ √γ · rα , so there is no vector v for which we

output 1.

We remark that even though we have a reduction from dBDD to GapSVP, a NIZK proof system
for GapSVP does not automatically imply a NIZK proof system for dBDD since it is a Cook reduction
(rather than a Karp reduction). In particular, we do not know whether a NIZK for GapSVP implies
a NIZK for dBDD.

2.3.3 Learning with Errors

We proceed to define the main cryptographic assumption we use: Learning With Errors (LWE).
First, we define the (one-dimensional) discrete Gaussian distribution:

Definition 2.14. For q ∈ N\{0} and parameter β > 0, the discrete Gaussian probability distribution
χβ is simply the Gaussian distribution restricted to Zq:

χβ(x) ∝
{

exp(−π|x|2/(βq)2) if x ∈ [−bq/2c , dq/2e] ∩ Z
0 otherwise

With the definition of the Discrete Gaussian distribution in hand, we are ready to define LWE:

Definition 2.15. The (Decisional) Learning With Error (LWE) assumption with parameters n, q, β,
denoted by LWEn,q,β, states that:

(A,b)
c
≈ (A, r)

where A← Zn×mq where m = poly(n, log(q)), bT = sTA + eT , with s sampled uniformly from Znq ,
each coordinate of e sampled independently from χβ, and r sampled uniformly from Zmq .

In our proof, we use the fact that if A ← Zn×mq with m large enough, then there is a unique

s such that bT ≈ sTA. We can show this by bounding the shortest vector in the lattice, since if
s1, s2 are such that sT1 A ≈ sT2 A, then (sT1 − sT2)A ≈ 0. The following lemma can be shown by a
standard argument with a union bound over all nonzero vectors s ∈ Znq .

Lemma 2.16. Let n, q ∈ N, and m ≥ 2n log(q). Then

Pr
A←Zn×mq

[
λ1(Λq(A)) ≤ q/4

]
≤ q−n .

3 From Prover-Assisted Oblivious Sampling to NIZKs

In this section we introduce the abstraction of a prover-assisted procedure for oblivious ciphertext
sampling (POCS) for a public-key encryption scheme (as outlined in the introduction), and show
how to combine this notion with NIZK proofs of the validity of public keys and plaintext values to
obtain NIZK proofs for any NP language.

14

3.1 Definitions: Valid Public Keys, Ciphertexts and POCS

The first definition we will consider is the notion of a valid set PK of public keys. Intuitively,
we would like this set to correspond precisely to public keys in the support of the key-generation
algorithm. However, due to specifics of our instantiation with LWE, we will need to be more lenient
and allow public keys that are not quite in the support of the key-generation algorithm but are
nevertheless sufficiently well-formed (e.g., keys with a higher level noise).

Loosely speaking, a valid public key pk is associated with two sets C
(0)
pk and C

(1)
pk , which corre-

spond to “valid” ciphertexts with respect to that key of messages 0 and 1, respectively. We first
require that honestly sampled public keys be valid. We further require that for all valid public keys

(i.e., even those not in the support of the key generation algorithm), the associated sets C
(0)
pk and

C
(1)
pk are disjoint (i.e. no ciphertext is a valid encryption both of 0 and of 1).9

Definition 3.1 (Valid Public Keys). Let (Gen,Enc,Dec) be a public-key encryption scheme with
public randomness. For a given security parameter κ, let VPK = (VPKκ)κ∈N be an ensemble of

sets, where for each κ ∈ N, each pk ∈ VPKκ is associated with a pair of sets
(
C

(0)
pk , C

(1)
pk

)
and public

randomness ρpk. We say that VPK is valid if it satisfies the following properties.

1. For all (pk, sk) ∈ Gen(1κ, ·), we have pk ∈ VPKκ.

2. For every b ∈ {0, 1} we have that cb ∈ C
(b)
pk with all but negligible probability over the choice

of public randomness ρpk, keys (pk, sk)← Gen(1κ, ρpk), and ciphertext cb ← Encpk(b).

3. With all but negligible probability over the public randomness ρpk, we have that for all pk ∈
VPKκ with public randomness ρpk, it holds that C

(0)
pk ∩ C

(1)
pk = ∅.

We next formalize the notion of a prover-assisted oblivious ciphertext sampler (POCS). This
is an extension of oblivious ciphertext samplers (OCS), which (to the best of our knowledge) were
introduced by Gertner et al. [GKM+00]. An OCS procedure allows one to sample a ciphertext so
that the underlying plaintext remains hidden. In this work we introduce a relaxation of this notion
in which the sampling is assisted by an untrusted prover.

More specifically, a POCS protocol consists of two procedures, a sampler and a checker, which
both have access to a shared random string ρ. The sampler also receives as input the secret-key of
the scheme and generates a ciphertext c. The checker receives c, as well as the random string ρ and
the public-key (but not the secret-key) and performs a test to ensure that c encodes an unbiased
bit depending on the randomness ρ. Jumping ahead, we remark that the role of the sampler will
be played by the prover in our NIZK, whereas the role of the checker is played by the verifier.

We require that the POCS procedure satisfy the following loosely stated properties:

1. For honestly sampled ciphertexts c, the checker should accept with overwhelming probability.

2. Given pk, ρ and an honestly sampled ciphertext c, the corresponding plaintext bit Decsk(c) is
computationally hidden.

9Note that in the actual definition we only require the latter to hold with high probability over the choice of the
public randomness for every valid public key. The notion of encryption schemes with public randomness is discussed
in Section 2.1.

15

3. For a given random string ρ, there should not exist both an encryption c0 of 0 and an encryp-
tion c1 of 1 that pass the checker’s test. Thus, for any given ciphertext (even a maliciously
generated one) that passes the test, the corresponding plaintext bit is fully determined.

4. The sampled plaintext bit should be (close to) unbiased. The latter should hold even with
respect to a malicious sampler. In our actual instantiation of POCS (via LWE, see Section 4),
the plaintext bit will have a small but noticeable (i.e., inverse polynomial) bias. Thus, our
definition of POCS leaves the bias as a parameter, which we denote by ε.

5. The procedure satisfies the following “zero-knowledge like” simulation property: given only
the public-key pk and plaintext bit σ, it should be possible to generate the distribution (ρ, c)
of the sampling procedure, conditioned on Decsk(c) = σ.

In our actual formalization we only require that this property holds in a computational sense
(i.e., the simulated distribution should only be computationally indistinguishable from the
actual sampling procedure). While a statistical requirement may seem like a more natural
choice here, we use a computational notion due to a technical consideration in the LWE
instantiation. See Section 4.3 for details.

We proceed to the formal definition of a POCS encryption scheme.

Definition 3.2 (Prover-assisted Oblivious Ciphertext Sampler (POCS)). For a parameter ε =
ε(κ) ∈ [0, 1], a (1 − ε(κ))-binding prover-assisted oblivious ciphertext sampler (POCS), with respect
to a valid set of public keys VPK = {VPKκ}κ∈N for an encryption scheme (Gen,Enc,Dec) with
public randomness, is a triple of PPT algorithms Sample, Check, and EncryptAndExplain satisfying
the following properties:

• Complete:

Pr
ρpk,ρ←{0,1}poly(κ)

(pk,sk)←Gen(1κ,ρpk)

[
Check

(
pk, ρ,Sample(sk, ρ)

)
= 1
]
> 1− negl(κ).

• Unbiased: For any κ ∈ N, pk ∈ VPKκ and any b ∈ {0, 1}, we have that:

Pr
ρ←{0,1}poly(κ)

[
∃c ∈ C(b)

pk such that Check(pk, ρ, c) = 1
]
≥ 1/2− negl(κ).

• Statistically binding: With probability 1−negl(κ) over the public randomness ρpk, we have
for all pk ∈ VPKκ with public randomness ρpk that

Pr
ρ←{0,1}poly(κ)

[
∃c0 ∈ C(0)

pk , c1 ∈ C(1)
pk such that Check(pk, ρ, c0) = 1 and Check(pk, ρ, c1) = 1

]
< ε(κ).

We emphasize that ε(κ) is a parameter and is not necessarily negligible.

• Simulatable: For every N = poly(κ) it holds that:(
pk, (ρi)

N
i=1, (ci)

N
i=1, (σi)

N
i=1

)
c
≈
(
pk, (ρ′i)

N
i=1, (c

′
i)
N
i=1, (σ

′
i)
N
i=1

)
,

where ρpk ← {0, 1}poly(κ), (pk, sk) ← Gen(1κ, ρpk), and for i ∈ [N], it holds that ρi ←
{0, 1}poly(κ), ci ← Sample(sk, ρi), and σi = Decsk(ci), σ

′
i ← {0, 1} and (ρ′i, c

′
i)← EncryptAndExplain(pk, σ′).

16

• Computationally hiding: Let ρpk, ρ ← {0, 1}poly(κ), (pk, sk) ← Gen(1κ, ρpk), and c ←
Sample(sk, ρ). Then, for all probabilistic polynomial-time adversaries A,

Pr
[
A(pk, ρ, c) = Decsk(c)

]
≤ 1

2
+ negl(κ).

Remark 3.3 (Relaxing the Hiding Property). We remark that for our construction of NIZK a
weaker hiding property suffices, in which the adversary is only given the random string ρ (but not
the ciphertext c). Although this definition is strictly weaker, we find it less natural and choose to
define the hiding property as specified above.

We next prove two useful propositions showing that the computational hiding property of the
POCS implies a hiding property resembling semantic security for the EncryptAndExplain sampling
algorithm. Specifically, we show that the encrypted bit remains hidden given both the cipher-
text and the explaining randomness produced by the EncryptAndExplain algorithm. The intuition
is analogous to the usage of the double enhancement property of trapdoor permutations in the
construction of NIZKs (see, e.g., [GR13]).

Proposition 3.4. Suppose (Gen,Enc,Dec) has a (1− ε)-binding POCS with respect to an ensemble
of valid public keys VPK. Then, for all probabilistic polynomial-time adversaries A,

Pr
[
A(pk, ρ, c) = σ

]
≤ 1

2
+ negl(κ),

where ρpk, ρ← {0, 1}poly(κ), (pk, sk)← Gen(1κ, ρpk), σ ∈ {0, 1}, and (ρ, c)← EncryptAndExplain(pk, σ).

Proof. This follows immediately from the simulatable and computationally hiding properties of the
POCS.

Proposition 3.5. Suppose (Gen,Enc,Dec) has a (1− ε)-binding POCS with respect to an ensemble
of public keys VPK. It holds that

(pk, ρ0, c0)
c
≈ (pk, ρ1, c1),

where ρpk ← {0, 1}poly(κ), (pk, sk)← Gen(1κ, ρpk), (ρ0, c0)← EncryptAndExplain(pk, 0) and (ρ1, c1)←
EncryptAndExplain(pk, 1).

Proof. This follows from Proposition 3.4 by a standard argument, similar to the equivalence of
semantic security and indistinguishability of encryptions (see, e.g. [Gol04]).

We now define two promise problems for which we will later assume the existence of suitable
NIZKs. The first problem that we consider is that of distinguishing public keys which are in the
support of the key-generation algorithm (i.e., were honestly generated) from ones which are invalid
(i.e., not in the set of valid public keys).

Let (Gen,Enc,Dec) be a public-key encryption scheme and let VPK be an ensemble of valid
public-keys. We define the promise problem GoodPK = (GoodPKYes,GoodPKNo) where:

GoodPKYes =
{
pk : pk ∈

⋃
κ

Gen(1κ)
}

GoodPKNo =
{
pk : pk /∈

⋃
κ

VPKκ
}
.

17

We also define a related promise problem GoodCT, which corresponds to triplets containing a
public key, ciphertext and a single-bit message. Formally, the problem is defined as GoodCT =
(GoodCTYes,GoodCTNo), where:

GoodCTYes =
{

(pk, c, b) : pk ∈
⋃
κ

Gen(1κ) and c ∈ Encpk(b)
}

GoodCTNo =
{

(pk, c, b) : pk ∈
⋃
κ

VPKκ and c /∈ C(b)
pk

}
.

3.2 From POCS to NIZK

In this section we state and prove our transformation of encryption schemes that support POCS
and suitable NIZKs for GoodPK and GoodCT, to general purpose NIZKs for NP. This is captured
by the following lemma:

Lemma 3.6. Let (Gen,Enc,Dec) be a public-key encryption scheme with public randomness, and
VPK be a valid set of public keys (as in Definition 3.1). Suppose the following conditions hold.

• (Gen,Enc,Dec) has a (1− ε)-binding POCS with respect to VPK, for some sufficiently small
ε = 1/poly(κ).

• There is a NIZK for GoodPK.

• There is a NIZK for GoodCT.

Then, there exists a NIZK for every language L ∈ NP.

Proof. Let L ∈ NP. By Lemma 2.7, there exists a hidden-bits zero knowledge proof system
(Phb, Vhb) for L (with perfect completeness). We shall use this proof-system to construct a NIZK
for L, using the assumptions in the theorem’s statement.

We first give a proof system satisfying a weak notion of soundness. Specifically, we shall weaken
soundness by assuming that the cheating prover is constrained to choose a public-key pk before
reading the CRS. To be more precise, since the public randomness of the pk comes from the
CRS, the prover must choose the public key pk before reading any other part of the CRS. Also, the
verifier is only required to reject inputs x /∈ L only with inverse polynomial probability (rather than
with all but negligible probability). Using standard amplification techniques, we will subsequently
transform this into a full-fledged NIZK (achieving the standard notion of soundness).

We assume without loss of generality that the NIZK proof systems that we have for GoodPK
and GoodCT have adaptive soundness (see Remark 2.5). Our base NIZK protocol, achieving only
the aforementioned weak soundness notion, is given in Protocol 1.

Protocol 1. Let L ∈ NP. Let (Ppk, Vpk) and (Pct, Vct)) be adaptively sound NIZK proof systems for
the promise problems GoodPK and GoodCT, respectively, and let (Phb, Vhb) be a hidden-bits proof
system for L that uses N = N(n) hidden bits for inputs of length n ∈ N. Consider the following
non-interactive proof system.

• Input x ∈ {0, 1}n.

• Common random string ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN).

18

• Prover’s witness w ∈ {0, 1}poly(n).

• Prover P , given x, w and ρ, performs the following:

1. Let (pk, sk)← Gen(1n, ρpk).

2. Let πpk ← Ppk(pk, rpk, sk).

3. For i ∈ [N], let ci ← Sample(sk, ρi) and let bi = Decsk(ci).
10

4. Let (I, πhb)← Phb(x, (b1, . . . , bm), w).

5. For i ∈ I, let πi ← Pct((pk, ci, bi), ri, sk).

6. Let cI = (ci)i∈I , bI = (bi)i∈I , πI = (πi)i∈I .

7. Output π = (pk, I, πpk, πhb, cI , bI , πI).

• Verifier V performs the following:

1. Verify NIZK proofs by running Vpk(pk, rpk, πpk) and Vct((pk, ci, bi), ri, πi) for every i ∈ I.
Reject if any of these tests rejects.

2. Check that Check(pk, ρi, ci) = 1 for every i ∈ I. Reject if any of these checks fail.

3. Invoke Vhb(x, bI , I, πhb), and accept if and only if it accepts.

Observe that both the verifier and prover are PPT algorithms. Thus, to show that Protocol 1
is a (weak) NIZK, we need to establish completeness, (weak) soundness and zero-knowledge.

Completeness. From the completeness of the NIZKs (Ppk, Vpk) and (Pct, Vct), we have that the
verifiers Vpk and Vct (for each i ∈ [N]) accept with all but negligible probability. By the completeness
property of the POCS, we have that with all but negligible probability, the verifier’s invocation of
Check outputs 1 for each i ∈ I.

By the perfect completeness of the hidden-bits proof system, verifier Vhb accepts for x ∈ L.11

Consequently, with probability 1 − negl(n), all of the verifier’s tests pass for x ∈ L and a proof
produced by the honest prover.

Zero-Knowledge. We first define the simulator S. Let Shb be the simulator for the hidden bits
proof-system (Phb, Vhb), let Spk be the simulator for the NIZK (Ppk, Vpk), and let Sct be the simulator
for the NIZK (Pct, Vct). On input x ∈ {0, 1}n, simulator S performs the following.

1. Sample public randomness ρpk, and let (pk, sk)← Gen(1n, ρpk).

2. Sample (πpk, rpk) ← Spk(pk) (recall that πpk is the simulated proof string and rpk is the
simulated CRS).

3. Sample (I, πhb, bI)← Shb(x), where bI = (bi)i∈I . Set bi = 0 for every i ∈ [N] \ I.

4. For i ∈ [N], sample (ρi, ci)← EncryptAndExplain(pk, bi).

10Jumping ahead, we note that for our final NIZK protocol, achieving standard soundness, we will need to repeat
steps 3–6 for ` = poly(κ) times for the same pk to amplify soundness.

11Here we are utilizing the fact that the hidden-bits proof-system has perfect completeness to save us the effort of
arguing that the hidden bits are indeed (sufficiently) unbiased.

19

5. For i ∈ I, sample (πi, ri)← Sct(pk, ci, bi).

6. For i ∈ [N] \ I, let ri ← {0, 1}poly(n).

7. Let cI = (ci)i∈I , πI = (πi)i∈I

8. Output simulated proof π = (pk, I, πpk, πhb, cI , bI , πI) and simulated common random string
ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN).

Let x ∈ L and fix a witness w. We now show that the simulated proof and CRS are computa-
tionally indistinguishable from those in a real interaction with the honest prover. We do so via a
sequence of hybrids:

Hybrid 1. Sample CRS ρ randomly and proof π = (pk, I, πpk, πhb, cI , bI , πI) ← P (x,w; ρ) using
the honest prover. Note that this corresponds to the real protocol.

Hybrid 2. As in Hybrid 1, but sample (πpk, rpk)← Spk(pk).

Hybrid 3-(j) (for j ∈ {0, . . . , N}). As in Hybrid 2, but sample (πi, ri) ← Sct(pk, ci, bi) for each
i ∈ I with i ≤ j.

Hybrid 4. As in Hybrid 3-(N), but for each i ∈ [N], sample bi ← {0, 1} and (ρi, ci)← EncryptAndExplain(pk, bi).

Hybrid 5 As in Hybrid 4, but resample (ρi, ci) ← EncryptAndExplain(pk, 0) after running P for
each i ∈ [N] \ I.

Hybrid 6. As in Hybrid 5, but sample (I, πhb, bI = (bi)i∈I)← Shb(x). This is exactly the behavior
of the simulator S.

Claim 3.6.1. Hybrids 1 and 2 are computationally indistinguishable.

Proof. Follows directly from the zero knowledge of (Ppk, Vpk).

Claim 3.6.2. For j ∈ [N], Hybrids 3-(j − 1) and 3-(j) are computationally indistinguishable.

Proof. This follows from the zero knowledge of the NIZK (Pct, Vct). If j ∈ I, the distributions of the
two hybrids are indistinguishable by the zero knowledge of (Pct, Vct). If j /∈ I, the two distributions
are identical.

Claim 3.6.3. Hybrids 3-(N) and 4 are computationally indistinguishable.

Proof. This follows from the simulatable property of the POCS.

Claim 3.6.4. Hybrids 4 and 5 are computationally indistinguishable.

Proof. This follows from Proposition 3.5 and a straightforward hybrid argument.

Claim 3.6.5. Hybrids 5 and 6 are computationally indistinguishable.

Proof. This follows from the zero knowledge of the hidden bits proof system (Phb, Vhb).

Note that Hybrid 2 is identical to Hybrid 3-(0). Consequently, it follows that the real and
simulated worlds are computationally indistinguishable, so the protocol is zero knowledge.

20

Weak soundness. We first prove a weak notion of soundness with respect to provers that are
constrained to choose the public key pk before reading the CRS, other than the public randomness
for generating the public-key. Subsequently we will apply an amplification argument to achieve full
soundness.

Fix x /∈ L and a cheating prover P ∗, and sample a CRS ρ = (ρpk, rpk, ρ1, . . . , ρN , r1, . . . , rN).
Let π = (pk, I, πpk, πhb, cI , bI , πI) be the proof produced by P ∗ on input ρ, where P ∗ is first given
only ρpk and produces pk, and subsequently is given the full CRS ρ and produces the rest of the
proof π. By the adaptive soundness of the NIZKs (Ppk, Vpk) and (Pct, Vct), unless pk ∈ VPK and

ci ∈ C(bi)
pk for each i ∈ I, the verifier V will reject with all-but-negligible probability. Additionally,

with all-but-negligible probability, the public randomness ρpk in the CRS is such that the statistical
binding property of the POCS holds. In the sequel we condition on these events occurring.

For a given valid public key pk ∈ VPK and σ ∈ {0, 1}, define U
(σ)
pk to be the set of randomnesses

ρ (for the POCS procedure) that correspond to a ciphertext c ∈ C(σ)
pk but no ciphertext in C

(1−σ)
pk .

That is,

U
(σ)
pk =

{
ρ ∈ {0, 1}poly(κ) : ∃c ∈ C(σ)

pk s.t. Check(pk, ρ, c) = 1 and ∀c′ ∈ C(1−σ)
pk ,Check(pk, ρ, c′) = 0

}
.

The set U
(σ)
pk consists of randomness that can be uniquely interpreted as an encryption of σ and

not of 1− σ. Consequently, we have that U
(0)
pk ∩ U

(1)
pk = ∅. By the unbiased and stastically binding

properties of the POCS, we have that

Pr
ρ

[
ρ ∈ U (σ)

pk

]
≥ 1/2− ε− negl(κ),

where ε = ε(κ) is the binding parameter of the POCS.

Note that U
(0)
pk ∩ U

(1)
pk = ∅. Arbitrarily fix a set Upk consisting half of elements of U

(0)
pk and half

of elements of U
(1)
pk such that

Pr
ρ

[ρ ∈ Upk] ≥ 1− 2ε− negl(κ).

Recall that we first constrain the prover to choosing pk before reading any part of the CRS
other than the public randomness ρpk. Let Upk be the set defined above. Then, with probability
1− 2εN the strings ρ1, . . . , ρN are all in Upk Conditioning on this event, we have that the sequence
b1, . . . , bN is unbiased and uniquely determined by ρ1, . . . , ρN . Consequently, by the soundness of
the hidden bits proof system (Phb, Vhb) we have that with all but negligible probability, in this event
Vhb will reject since x /∈ L. Therefore, it follows that the verifier V will reject with probability at
least 1− 2εN − negl(n). Weak soundness follows by setting ε = 1/N2.

Amplification. We will now transform Protocol 1 into a protocol with full soundness.
We modify Protocol 1 as follows. After choosing the public key pk, the prover runs steps 3–6 of

Protocol 1 ` = poly(n) times on different portions of the CRS, generating ` independently sampled
(I, πhb, CI , bI , πI). The verifier checks each of these separately, rejecting if any test fails.

Completeness and zero-knowledge of the new protocol follow immediately from the same argu-
ment as before. It remains to prove (full-fledged) soundness. As before, we have that the verifier
will reject with probability 1 − negl(n) unless pk ∈ VPK and the public randomness ρpk in the
CRS satisfies the statistical binding property of the POCS, so we can condition on these events.

21

For a fixed pk, we have from the soundness of Protocol 1 that on a single iteration of steps 3–6,
the verifier will reject with probability at least 1/3 − negl(n) on x /∈ L. Since the public key pk
has polynomial size, applying a union bound over public keys, we can take ` = poly(n) sufficiently
large that with probability 1− negl(n), the verifier will reject for every public key.12 Consequently
soundness holds in the amplified protocol.

4 Instantiating with LWE

In this section we show that, assuming the hardness of LWE and the existence of a NIZK proof
system for dBDD, Regev’s [Reg09] LWE-based encryption scheme satisfies the conditions of Lemma
3.6 and therefore yields NIZK proof-systems for all of NP:

Theorem 2. Let κ be the security parameter. Let n = n(κ) ∈ N, q = q(κ) ∈ N, β = β(κ),

α = α(κ) ≥ 1 and γ = γ(κ) > 1, such that n = poly(κ) and β = o

(
1

log(κ) max(α,γ)
√
n log(q)

)
.

Assume that the following conditions hold:

• The LWEn,q,β assumption holds; and

• There exists a NIZK proof system for dBDDα,γ.

Then, there exists a NIZK proof system for every language L ∈ NP.

Section Organization. In Section 4.1, we present Regev’s [Reg09] encryption scheme. In Sec-
tion 4.2, we present the NIZK proof systems for certifying public keys and plaintext values for this
encryption scheme (based on the NIZK proof system for dBDD in the hypothesis of Theorem 2).
In Section 4.3, we show that Regev’s encryption has a POCS procedure. Finally, in Section 4.4, we
use the tools developed in the prior subsections to prove Theorem 2.

4.1 Regev’s Encryption Scheme

A public-key encryption scheme based on the LWE assumption was introduced in [Reg09]. We will
present the scheme of [Reg09], phrased as an encryption scheme with public randomness in the
sense of Definition 2.1.

Construction 4.1. Let κ be the security parameter. Let n = n(κ) ∈ N, q = q(κ) ∈ N, m =
2n log(q), β = β(κ) ∈ [0, 1] such that n = poly(κ) and β = o(1/

√
m). We define the encryption

scheme (Gen,Enc,Dec) with public randomness as follows:

• Public Randomness: The public randomness is a matrix A← Zn×mq . We assume without
loss of generality that λ1(A) > q/4 13.

12The argument here resembles the standard argument for obtaining adaptively sound NIZKs from NIZKs that only
have non-adaptive soundness.

13From Lemma 2.16 this happens with overwhelming probability.

22

• Key Generation Gen(1κ,A): Sample s ← Znq \ {0}, and e ← χmβ , where χβ is a discrete

Gaussian with parameter β (see Definition 2.14). Let bT = sT ·A + eT . We assume without
loss of generality that

∥∥sT ·A− bT
∥∥ =

∥∥eT∥∥ ≤ `√mβq, where ` = ω(log(κ)).14

Set the public key to be (A,b) and the secret key to be s.

• Encryption Enc(A,b) (σ): On input a message σ ∈ {0, 1}, sample r ← {0, 1}m and output

(c, ω), where c = A · r and ω = bT · r + σ ·
⌊ q

2

⌋
. We assume without loss of generality15 that∥∥∥∥sT · [A, c]−

[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2`
√
mβq,

where ` = ω(log(κ)).

• Decryption Decs
(
(c, ω)

)
: Output σ =

⌊
sT · c− ω

⌉
q
.

Regev [Reg09] proved that the above scheme is semantically secure (under the LWE assumption).

Proposition 4.2 (c.f. [Reg09]). Let n = n(κ) ∈ N, q = q(κ) ∈ N and β = β(κ) ∈ [0, 1] such
that β = o(1/

√
m) and n = poly(κ). If the LWEn,q,β assumption holds, then Construction 4.1 is

semantically secure.

In order to use the results of Section 3, we need to show that Construction 4.1 admits a POCS
procedure. As our first step, we define a valid set of public keys. Later, we shall show NIZK
proofs for the related promise problems GoodPK and GoodCT as well as a POCS procedure for
Construction 4.1.

Fix a security parameter κ. Let n = poly(κ), q = q(κ), and β = β(κ) be parameters and set
m = 2n log(q). In the sequel, we omit κ from the notation to avoid cluttering. In addition, we set
` = ω(log(κ)), emax = `

√
mβq, 1 ≤ α < q

8emax
and γ > 1. We assume that the following hold:

• β < 1
16`γ
√
m

;

• the LWEn,q,β assumption holds; and

• there exists a NIZK proof system for dBDDα,γ/4.

Now, we define a set (of alleged public keys) VPK for (Gen,Enc,Dec). Later we will argue that
it is in fact a valid set of public keys as per Definition 3.1. Let

VPK =
{

(A,b) ∈ Zn×mq × Zmq : ∃ s ∈ Znq such that
∥∥sT ·A− bT

∥∥ ≤ γemax

}
. (2)

We note that the noise level allowed in Eq. (2) is larger by a multiplicative γ factor than the
noise level that exists in honestly generated public keys.

For each pk = (A,b) ∈ VPK and σ ∈ {0, 1}, define C
(σ)
pk as follows:

C
(σ)
pk =

{
(c, ω) ∈ Znq × Zq : ∃ s′ ∈ Znq such that

∥∥∥∥s′T · [A, c]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax

}
,

(3)

14Since the complementary event happens with negligible probability in κ, in case it does happen we choose the
public-keys to have zero noise.

15Again, the complementary event happens with negligible probability, in which case we can output a ciphertext
with zero noise.

23

The noise level allowed in Eq. (3) is also larger by a multiplicative γ factor than the noise level
that exists in honestly generated ciphertexts.

Remark 4.3. As noted in the introduction, we would have liked for VPK to contain only the

honestly generated public keys and C
(σ)
pk to contain only the honestly generated encryptions of σ

with respect to pk. However, introducing a gap in the definitions allows us to rely on NIZKs for
suitable approximation problems.

We conclude this section by showing that VPK is indeed a valid set of public keys.

Proposition 4.4. The set VPK is a valid set of public keys.

Proof. We show that the set VPK satisfies the three properties of Definition 3.1.

1. Honestly generated keys are in VPK: Let A← Zn×mq and
(
(A,b), s

)
← Gen(1κ,A), then as

defined in Construction 4.1,
∥∥sT ·A− bT

∥∥ ≤ emax. Hence, (A,b) ∈ VPK.

2. Honestly generated ciphertexts are in C
(σ)
pk : Let A ← Zn×mq ,

(
(A,b), s

)
← Gen(1κ,A) and

(c, ω)← Enc(A,b)(σ). Then, from Construction 4.1, with probability 1, we have∥∥∥∥sT · [A, c]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2emax.

3. Ciphertext sets do not intersect for valid keys: Let A ← Zn×mq and b be such that (A,b) ∈
VPK. By our assumption on A it holds that λ1(A) > q/4 and so, for all v ∈ Znq \ {0} it
holds that ∥∥vTA

∥∥ > q

4
> 4γ`

√
mβq = 4γemax. (4)

Assume that there exists (c, ω) ∈ C(0)
pk ∩ C

(1)
pk . Then, there exist s1, s2 ∈ Znq such that(∥∥∥sT1 · [A, c]− [b, ω]T

∥∥∥ ≤ 2γemax

)
and

(∥∥∥∥sT2 · [A, c]−
[
b,
(
ω −

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax

)
.

First, assume that s1 6= s2. Then∥∥(s1 − s2)TA
∥∥ ≤ ∥∥∥∥(s1 − s2)T [A, c]−

[
0,
⌊q

2

⌋]T∥∥∥∥
≤
∥∥∥sT1 · [A, c]− [b, ω]T

∥∥∥+

∥∥∥∥sT2 · [A, c]−
[
b,
(
ω −

⌊q
2

⌋)]T∥∥∥∥
≤ 4γemax,

which contradicts Equation (4). If s1 = s2, then⌊q
2

⌋
=

∥∥∥∥(sT1 · [A, c]−
[
b,
(
ω −

⌊q
2

⌋)]T)
−
(
sT1 · [A, c]− [b, ω]T

)∥∥∥∥ ≤ 4γemax = 4γ`
√
mβq.

But, by assumption β < 1
16`γ
√
m

, so this is again a contradiction.

Therefore, for (A,b) ∈ VPK it holds that C
(0)
pk and C

(1)
pk are disjoint.

24

4.2 NIZKs for Validating Keys and Ciphertexts

Now that we have defined a valid set of public keys VPK, we prove that Construction 4.1 satisfies
the conditions of Lemma 3.6. To do so we will assume the existense of a NIZK proof system for
dBDD. Using this NIZK, we obtain NIZK proof systems for the promise problems GoodPK and
GoodCT (with respect to VPK).

Lemma 4.5. Assume there exists a NIZK proof system for dBDDα,γ/4. Then, there exists a NIZK
proof system for the promise problem GoodPK (with respect to VPK).

Proof. We will show a Karp reduction from GoodPK to dBDDα,γ . The reduction maps the input
(A,b) for GoodPK to the input

(
B(A),b

)
for dBDDα,γ/4.

Indeed, if
(
(A,b), s

)
∈ Gen(1κ,A), then∥∥sTA− bT

∥∥ ≤ emax ≤
q

4α
≤ λ1

α
,

since α < q
8emax

, and so dBDDα,γ/4
(
B(A),b

)
= 1. On the other hand, if

(
A,b

)
6∈ VPK, then for

every vector s ∥∥sTA− bT
∥∥ > γemax = γ

q

4α
≥ γ λ1

4α

and so dBDDα,γ/4
(
B(A),b

)
= 0. Therefore, a NIZK proof system for dBDDα,γ/4 gives us a NIZK

proof system for GoodPK.

Lemma 4.6. Assume there exists a NIZK proof system for dBDDα,γ/4. Then, there exists a NIZK
proof system for the promise problem GoodCT (with respect to VPK).

Proof. Similarly to the previous proof, we show a Karp reduction from GoodCT to dBDDα,γ/4. The
reduction maps the input

(
(A,b), (c, ω), σ

)
for GoodCT to the input

(
B
(

[A, c]
)
,
[
b,
(
ω − σ ·

⌊ q
2

⌋)])
for dBDDα,γ/4.

We need to show that(
(A,b), (c, ω), σ

)
∈ GoodCTYes =⇒ dBDDα,γ/4

(
B
(

[A, c]
)
,
[
b,
(
ω − σ ·

⌊q
2

⌋)])
= 1

and (
(A,b), (c, ω), σ

)
∈ GoodCTNo =⇒ dBDDα,γ/4

(
B
(

[A, c]
)
,
[
b,
(
ω − σ ·

⌊q
2

⌋)])
= 0.

If
(
(A,b), s

)
← Gen(1κ,A) and (c, ω) ∈ Enc(A,b)(σ), then∥∥∥∥sT · [A, c]−

[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2emax =
q

4α
≤ λ1

α
,

since α = q
8emax

, and so dBDDα,γ/4
(
B
(

[A, c]
)
,
[
b,
(
ω − σ ·

⌊ q
2

⌋)])
= 1.

Similarly, if (A,b) ∈ VPK but (c, ω) 6∈ C(σ)
pk , then for every vector s∥∥∥∥sT · [A, c]−

[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ > 2γemax = γ
q

4α
≥ γ λ1

4α

and so dBDDα,γ/4
(
B
(

[A, c]
)
,
[
b,
(
ω − σ ·

⌊ q
2

⌋)])
= 0.

25

4.3 A POCS Procedure for Regev’s Scheme

The last and most challenging condition that we need is to prove that Construction 4.1 has a POCS
procedure.

Lemma 4.7. Construction 4.1 has a (1− 4γ`
√
mβ)-binding POCS procedure with respect to VPK.

The rest of Section 4.3 is devoted to the proof of Lemma 4.7.

Proof of Lemma 4.7. For technical convenience and simplicity, we assume for now that q ≡ 2
(mod 4). The case that q 6≡ 2 (mod 4) adds some mild complications in order to avoid introducing
a small, but noticeable bias (i.e., roughly 1/q) in the obliviously sampled bits. We describe how to
extend our approach to general q in Section 4.3.1.16

Let us first describe the algorithms Sample and Check. The Sample algorithm takes as input a
secret key sk = s and randomness (ρ, τ) ∈ Znq × Zq, and outputs a ciphertext.

The algorithm Sample transforms a high noise ciphertext (ρ, τ) into a valid Regev’s ciphertext
under the secret key s.

Sample
(
s, (ρ, τ)

)
:

1. Sample e← χ√mβ. Let ω0 = sT · ρ + e and ω1 = ω0 +
⌊ q

2

⌋
.

2. If |τ − ω0| < |τ − ω1|, set σ = 0. Otherwise, set σ = 1.

3. Output (ρ, ωσ), which is a valid ciphertext for the message σ.

The Check algorithm takes as input a public key pk = (A,b), randomness (ρ, τ) ∈ Znq ×Zq, and
an alleged ciphertext (ρ′, ω′) ∈ Znq × Zq, and outputs a single bit denoting acceptance or rejection.

Check
(
pk, (ρ, τ), (ρ′, ω′)

)
:

If ρ′ = ρ and |ω′ − τ | ≤ q
4 , accept. Otherwise, reject.

Finally, we describe the EncryptAndExplain algorithm, which takes as input a public key pk =
(A,b) and a message σ ∈ {0, 1} and produces randomness and a ciphertext that are close to the
distribution induced by Sample.

EncryptAndExplain
(
(A,b), σ

)
:

1. Sample r ← {0, 1}m. Compute ρ′ = A · r and ω′ = bT · r + σ ·
⌊ q

2

⌋
. Note that (ρ′, ω′) is a

fresh encryption of σ.

2. Sample τ ′ ← Zq subject to |τ ′ − ω′| < q
4 .

3. Output
(
(ρ′, τ ′), (ρ′, ω′)

)
.

We now show that these algorithms satisfy each of the conditions of Definition 3.2.

16Alternatively, we could reduce the bias to be negligible using Von Neumann’s trick [VN61] for transforming a
biased source to an almost unbiased source.

26

Complete. Let (ρ, τ) ← Znq × Zq and (ρ′, ω′) ← Sample(s, (ρ, τ)). By construction ρ′ = ρ and
|τ − ω′| ≤ q

4 , and so Check always accepts.

Unbiased. Let pk = (A,b) ∈ VPK. Then, there exists an s such that
∥∥sT ·A− bT

∥∥ ≤ γemax.
Let σ ∈ {0, 1}. Then we have

Pr
ρ,τ

[
∃(c, ω) ∈ C(σ)

pk s.t. Check(pk,ρ, τ, (c, ω)) = 1
]

=

= Pr
ρ,τ

[
∃(c, ω) ∈ C(σ)

pk s.t. c = ρ and |ω − τ | ≤ q

4

]
= Pr

ρ,τ

[
∃ s′ ∈ Znq , ∃ω ∈ Zq s.t.

∥∥∥∥s′T · [A,ρ]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax and |ω − τ | ≤ q

4

]
≥ Pr

ρ,τ

[
∃ω ∈ Zq s.t.

∥∥∥∥sT · [A,ρ]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax and |ω − τ | ≤ q

4

]
≥ Pr

ρ,τ

[
∃ω ∈ Zq s.t.

∣∣∣sT · ρ− (ω − σ · ⌊q
2

⌋)∣∣∣ ≤ γemax and |ω − τ | ≤ q

4

]
≥ Pr

ρ,τ

[∣∣∣sT · ρ + σ ·
⌊q

2

⌋
− τ
∣∣∣ ≤ q

4

]
≥ Pr

τ

[
|τ | ≤ q

4

]
≥ 1/2.

The first equality follows from the description of Check and the second from the definition of

C
(σ)
pk . The next inequality follows by setting s′ = s. Then, we use the fact that

∥∥sT ·A− bT
∥∥ ≤

γemax. Finally, we conclude the proof by setting ω = sT · ρ + σ ·
⌊ q

2

⌋
.17

Statistically Binding. Let pk = (A,b) ∈ VPK with public randomness A ← Zn×mq . By

construction λ1(A) > q/4, so there exists a unique s such that
∥∥sT ·A− bT

∥∥ ≤ γemax. We assume
that the above holds for A.

Therefore, it holds that:

C
(σ)
pk =

{
(c, ω) ∈ Znq × Zq :

∥∥∥∥sT · [A, c]−
[
b,
(
ω − σ ·

⌊q
2

⌋)]T∥∥∥∥ ≤ 2γemax

}
.

We remark that in this case, (c, ω) ∈ C(0)
pk if and only if

(
c, ω +

⌊ q
2

⌋)
∈ C(1)

pk . Furthermore,

17Observe that the foregoing proof shows that Construction 4.1 actually is perfectly unbiased (i.e., does not have
even negligible bias as allowed in Definition 3.2).

27

Pr
ρ,τ

[
∃ (c0, ω0) ∈ C(0)

pk , ∃ (c1, ω1) ∈ C(1)
pk s.t.

Check(pk, (ρ, τ), (c0, ω0)) = 1,
Check(pk, (ρ, τ), (c1, ω1)) = 1

]

= Pr
ρ,τ

∃ω0,∃ω1 ∈ Zq s.t.

∣∣sT · ρ− ω0

∣∣ ≤ γemax,∣∣sT · ρ− ω1 −
⌊ q

2

⌋∣∣ ≤ γemax,
|ω0 − τ | ≤ q/4,
|ω1 − τ | ≤ q/4


≤ Pr

ρ,τ

[(∣∣sT · ρ− τ ∣∣ ≤ γemax +
q

4

)
and

(∣∣∣sT · ρ− (τ +
⌊q

2

⌋)∣∣∣ ≤ γemax +
q

4

)]
≤ Pr

r

[(
|r| ≤ γemax +

q

4

)
and

(∣∣∣r +
⌊q

2

⌋∣∣∣ ≤ γemax +
q

4

)]
≤ Pr

r

[
r ∈

[q
4
− γemax,

q

4
+ γemax

]
∪
[
−q

4
− γemax,−

q

4
+ γemax

]]
≤ 4γ`

√
mβ.

The first equality follows from the definition of C
(0)
pk and C

(1)
pk and the description of Check. More

specifically, the conditions
∣∣sT · ρ− ω0

∣∣ ≤ γemax and
∣∣sT · ρ− ω1 −

⌊ q
2

⌋∣∣ ≤ γemax follow from the

fact that (c0, ω0) ∈ C
(0)
pk and (c1, ω1) ∈ C

(1)
pk , respectively. The conditions |ω0 − τ | ≤ q/4 and

|ω1 − τ | ≤ q/4 follow from Check(pk, (ρ, τ), (c0, ω0)) = 1 and Check(pk, (ρ, τ), (c1, ω1)) = 1 respec-
tively. The next inequality follows from the triangle inequality. Next, we replace sT · ρ − τ by a
uniformly random element r of Zq. Then, we note that r has to belong to a set of size at most
4γemax ≤ 4γ`

√
mβq. The last inequality then follows.

Simulatable. Let N = poly(κ). Sample A← Zn×mq and (pk, sk) =
(
(A,b), s

)
← Gen(1κ,A) and

consider the following two experiments:

• For i ∈ [N], let (ρi, τi)← Znq × Zq, (ρi, ωi)← Sample(s, (ρi, τi)), σi = Decs((ρi, ωi)). Output(
pk, (ρi, τi, ωi, σi)i∈[N]

)
.

• For i ∈ [N], let σ′i ∈R {0, 1}. Set
(
(ρ′i, τ

′
i), (ρ

′
i, ω
′
i)
)
← EncryptAndExplain(pk, σ′i). Output(

pk, (ρ′i, τ
′
i , ω
′
i, σ
′
i)i∈[N]

)
.

We need to show that the outputs of the two experiments are computationally indistinguishable.
As observed above, all outputs (ρi, ωi) and (ρ′i, ω

′
i) of Sample and EncryptAndExplain, respectively,

are ciphertexts of Regev’s encryption scheme and are therefore indistinguishable from each other.18

However, the main challenge that we need to dead with, is that we need to show that these dis-
tributions are indistinguishable even given the random strings that “explain them” (i.e., (ρi, τ)i∈N
and (ρ′i, τ

′)i∈N , respectively).
Toward proving the simulatability property, it will be useful to consider an intermediate distribu-

tion sampled similarly to the second distribution, except that instead of producing the ciphertext
according to Regev’s public-key encryption scheme as in EncryptAndExplain, we instead produce
the ciphertext according to the secret-key variant of the scheme. Consider an experiment in which
(ρ′′i , τ

′′
i , ω

′′
i , σ

′′
i)i∈[N] are sampled as follows for each i ∈ [N]:

18More precisely, the output of Sample is a ciphertext of the secret-key variant of Regev’s encryption scheme,
whereas the output of EncryptAndExplain is a ciphertext of the public-key version. Still, under the (decisional) LWE
assumption, these ciphertexts are both indistinguishable from random and therefore also from each other.

28

1. Let σ′′i ∈R {0, 1}.

2. Sample e′′i ← χ√mβ, ρ′′i ← Znq , and let ω′′i = sT · ρ′′i + e′′i + σ′′i ·
⌊ q

2

⌋
.

3. Finally, sample τ ′′i ← Zq subject to |τ ′′i − ω′′i | <
q
4 .

We now show the that this experiment is identically distributed to the output of the first
experiment defined above.

Claim 4.7.1. Let pk, (ρi, τi, ωi, σi)i∈[N], and (ρ′′i , τ
′′
i , ω

′′
i , σ

′′
i)i∈[N]

)
be sampled as described above.

Then we have that (
pk, (ρi, τi, ωi, σi)i∈[N]

)
≡
(
pk, (ρ′′i , τ

′′
i , ω

′′
i , σ

′′
i)i∈[N]

)
.

Proof. Let δi = ωi−σi·
⌊ q

2

⌋
be the intermediate value computed by Sample, and let δ′′i = sT ·ρ′′i +e′′i =

ω′′i −σ′′i ·
⌊ q

2

⌋
. Note that (pk,ρi, δi) and (pk,ρ′′i , δ

′′
i) are sampled from exactly the same distribution.

Also, ωi and ω′′i are deterministically computed from (δi, σi) and (δ′′i , σ
′′
i), respectively, using the

same process. Therefore, it suffices to show that the distibution of (τi, σi) conditioned on (pk,ρi, δi)
is identical to the distribution of (τ ′′i , σ

′′
i) conditioned on (pk,ρ′′i , δ

′′
i). These distributions correspond

to the experiments:

1. Given (pk,ρi, δi), sample τi ← Zq. If |τi − δi| < q/4, set σi = 0. Else, set σi = 1.

2. Given (pk,ρ′′i , δ
′′
i), sample σ′′i ∈R {0, 1}. If σ′′i = 0, sample τ ′′i ← Zq subject to |τ ′′i − δ′′i | < q/4.

If σ′′i = 1, sample τ ′′i ← Zq subject to |τ ′′i − ω′′i | < q/4 (which is equivalent to |τ ′′i − δ′′i | > q/4).

In the first case, we have that the distribution on (τi, σi) conditioned on (pk,ρi, δi) is given by the
following equation. For every τ̂ ∈ Zq and σ̂ ∈ {0, 1}:

Pr
τi,σi

[
τi = τ̂ , σi = σ̂

∣∣ (pk,ρi, δi)
]

=


1/q if |τ̂ − δi| < q/4 and σ̂ = 0
1/q if |τ̂ − δi| > q/4 and σ̂ = 1
0 otherwise

In the second case we have exactly the same distribution on (τ ′′i , σ
′′
i) conditioned on (pk,ρ′′i , δ

′′
i).

The claim follows.

It remains to argue that the distribution (ρ′′i , τ
′′
i , ω

′′
i , σ

′′
i)i∈[N]

)
is computationally indistinguish-

able from the second distribution (ρ′i, τ
′
i , ω
′
i, σ
′
i)i∈[N]. The only difference between these two dis-

tributions is whether the ciphertexts are sampled according to Regev’s public-key scheme or its
secret-key variant. It is here that we will invoke the LWE assumption.

Claim 4.7.2. Let (ρ′′i , τ
′′
i , ω

′′
i , σ

′′
i)i∈[N]

)
and (ρ′i, τ

′
i , ω
′
i, σ
′
i)i∈[N], be sampled as described above. Then

assuming the hardness of LWE, we have that(
pk, (ρ′′i , τ

′′
i , ω

′′
i , σ

′′
i)i∈[N]

) c
≈
(
pk, (ρ′i, τ

′
i , ω
′
i, σ
′
i)i∈[N]

)
.

Proof. The only difference between the two experiments is that (ρ′′i , ω
′′
i) is sampled as a ciphertext

in the secret-key variant of Regev’s encryption scheme, while (ρ′i, ω
′
i) is sampled as a ciphertext of

the public-key scheme.
The LWE assumption implies that ciphertexts in Regev’s secret-key scheme are computationally

indistinguishable from random elements of Zn+1
q . It is a standard fact that the LWE assumption

together with the Leftover Hash Lemma imply the same about ciphertexts in Regev’s public key
scheme (see [Reg09]). Consequently the two distributions are computationally indistinguishable.

29

Computationally Hiding. Given public key pk = (A,b) and randomness (ρ, τ), the procedure
Sample simply computes a fresh encryption (ρ, ω) using the secret-key variant of Regev’s scheme.
Let σ = Decs((ρ, ω)). Then similarly to the above proof(

pk,ρ, τ, ω, σ
)
≡
(
pk,ρ, τ ′, ω′, σ

)
where ω′ = sT ·ρ+σ ·

⌊ q
2

⌋
+ e, with e← χ√mβ and τ ′ sampled uniformly such that |τ ′ − ω′| < q/4.

Then, since τ ′ is a randomized function of ω′, the computational hiding property of the POCS
follows immediately from the semantic security of Regev’s encryption scheme.

This concludes the proof of Lemma 4.7 for q ≡ 2 (mod 4). We describe how to extend the proof
to general q in the next section.

4.3.1 Handling General q

We now describe how to extend this argument to general q and not just q ≡ 2 (mod 4). We first
modify the algorithms Sample,Check and EncryptAndExplain to correctly handle the boundary. The
main difficulty or challenge is to sample the boundary points with the correct probability.

Recall that Sample transforms a high noise ciphertext (ρ, τ) into a valid Regev ciphertext under
secret key s. The Sample algorithm described in the previous section has a small bias of O(1/q)
when q is odd or a multiple of four. We now modify the algorithm slightly to remove this bias
(observe that when q ≡ 2 (mod 4) these algorithms coincide with those described in Section 4.3).

Sample′
(
s, (ρ, τ)

)
:

1. Sample e← χ√mβ. Let ω0 = sT · ρ + e and ω1 = ω0 +
⌊ q

2

⌋
.

2. If |τ − ω0| < |τ − ω1|, set σ = 0.

3. If |τ − ω0| > |τ − ω1|, set σ = 1.

4. If |τ − ω0| = |τ − ω1|, sample σ ← {0, 1}.

5. Output (ρ, ωσ), which is a valid ciphertext for the message σ.

For odd q, the last component of ciphertexts sampled by Sample′ may now be slightly more
than q/4 away from the last component of the corresponding randomness. We now modify the
Check algorithm to tolerate this small discrepancy. Recall that Check takes as input a public key
pk = (A,b), randomness (ρ, τ) ∈ Znq ×Zq, and an alleged ciphertext (ρ′, ω′) ∈ Znq ×Zq, and outputs
a single bit denoting acceptance or rejection.

Check′
(
pk, (ρ, τ), (ρ′, ω′)

)
:

If ρ′ = ρ and |ω′ − τ | ≤ q+1
4 , accept. Otherwise, reject.

Finally, we modify the EncryptAndExplain algorithm to produce the correct distribution over
randomness for general q. Recall that EncryptAndExplain takes as input a public key pk = (A,b) and
a message σ ∈ {0, 1} and produces randomness and a ciphertext that are close to the distribution
induced by Sample.

EncryptAndExplain′
(
(A,b), σ

)
:

30

1. Sample r ← {0, 1}m. Compute ρ′ = A · r, and let ω′0 = bT · r and ω′1 = bT · r +
⌊ q

2

⌋
. Note

that (ρ′, ω′σ) is a fresh encryption of σ.

2. Let `← {0, 1}.

3. If ` = 0, sample τ ′ ← Zq subject to |τ ′ − ω′σ| <
∣∣τ ′ − ω′1−σ∣∣.

4. If ` = 1, sample τ ′ ← Zq subject to |τ ′ − ω′σ| ≤
∣∣τ ′ − ω′1−σ∣∣.

5. Output
(
(ρ′, τ ′), (ρ′, ω′σ)

)
.

Using these slightly more complicated algorithms Sample′,Check′, and EncryptAndExplain′, the anal-
ysis of Section 4.3 goes through essentially unchanged, providing a proof of Lemma 4.7 for general
q.

4.4 Putting it All Together (Proof of Theorem 2)

We now complete the proof of Theorem 2. We have shown that all of the conditions of Lemma 3.6
hold, as follows.

1. By Proposition 4.4, Construction 4.1 has a valid set of public keys VPK.

2. By Lemma 4.7, Construction 4.1 has a POCS with respect to VPK.

3. By Lemma 4.5, there is a NIZK for GoodPK.

4. By Lemma 4.6, there is a NIZK for GoodCT.

Theorem 2 then follows immediately by Lemma 3.6.

Acknowledgments

We thank Akshay Degwekar, Shafi Goldwasser and Vinod Vaikuntanathan for illuminating conver-
sations. We also thank the anonymous reviewers for useful comments.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems.
In CRYPTO, 2009.

[AFV11] Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. In ASIACRYPT,
2011.

[APSD17] Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and old) proof
systems for lattice problems. Cryptology ePrint Archive, Report 2017/1226, 2017.

[BDSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

31

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In STOC, 1988.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. In TCC. Springer, 2006.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based on general
assumptions. In Eurocrypt, 2003.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In TCC, 2015.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS, 1993.

[BRV17] Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-knowledge proofs
of proximity. IACR Cryptology ePrint Archive, 2017:114, 2017.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptology, 9(3):149–166, 1996.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and cor-
relation intractability from strong kdm-secure encryption. Cryptology ePrint Archive,
Report 2018/131, 2018.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

[CL17] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited.
IACR Cryptology ePrint Archive, 2017:631, 2017.

[DDN03] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Review, 45(4):727–784, 2003.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput.,
36(6):1513–1543, 2007.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, 1986.

[GG00] Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of lattice
problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In FOCS, 2003.

32

[GK05] Shafi Goldwasser and Dmitriy Kharchenko. Proof of plaintext knowledge for the ajtai-
dwork cryptosystem. In TCC, 2005.

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In FOCS, 2000.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In STOC,
2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. IACR
Cryptology ePrint Archive, 2017:274, 2017.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[Gol11] Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: The state of the art. In Studies in Complexity and Cryptography. 2011.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. J.
Cryptology, 26(3):484–512, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, 2010.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT, 2008.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from lwe. In CRYPTO. Springer, 2015.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of fiat-shamir for proofs. In CRYPTO, 2017.

[LM09] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In CRYPTO, 2009.

[MV03] Daniele Micciancio and Salil Vadhan. Statistical zero-knowledge proofs with efficient
provers: Lattice problems and more. CRYPTO, 2003.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In EUROCRYPT, 2016.

33

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, 2003.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, 1990.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, 2009.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge
proofs for lattice problems. In CRYPTO, 2008.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In CRYPTO, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, 2008.

[Rab79] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. Technical report, Cambridge, MA, USA, 1979.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS, 1999.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

[Vad99] Salil P. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1999.

[VN61] J Von Neumann. Various techniques used in connection with random digits, paper
no. 13 in Monte Carlo method. NBS Applied Mathematics Series, (12), 1961.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs un-
der LWE. IACR Cryptology ePrint Archive, 2017:276, 2017.

34

	Introduction
	Our Results
	Related Works
	Technical Overview
	Organization

	Preliminaries
	Public-key Encryption with Public Randomness
	Non-Interactive Zero-Knowledge Proofs
	Lattices and Learning With Errors

	From Prover-Assisted Oblivious Sampling to NIZKs
	Definitions: Valid Public Keys, Ciphertexts and POCS
	From POCS to NIZK

	Instantiating with LWE
	Regev's Encryption Scheme
	NIZKs for Validating Keys and Ciphertexts
	A POCS Procedure for Regev's Scheme
	Putting it All Together (Proof of Theorem 2)

