
A New Approach to Deanonymization of
Unreachable Bitcoin Nodes

Indra Deep Mastan1 and Souradyuti Paul2

1 Indian Institute of Technology Gandhinagar
immastan@gmail.com

2 Indian Institute of Technology Bhilai
souradyuti.paul@gmail.com

Abstract. Mounting deanonymization attacks on the unreachable Bit-
coin nodes – these nodes do not accept incoming connections – residing
behind the NAT is a challenging task. Such an attack was first given by
Biryukov, Khovratovich and Pustogarov based on their observation that
a node can be uniquely identified in a single session by their directly-
connected neighbouring nodes (ACM CCS’15). However, the BKP15
attack is less effective across multiple sessions. To address this issue,
Biryukov and Pustogarov later on devised a new strategy exploiting cer-
tain properties of address-cookies (IEEE S&P’15). Unfortunately, the
BP15 attack is also rendered ineffective by the present modification to
the Bitcoin client.
In this paper, we devise an efficient method to link the sessions of un-
reachable nodes, even if they connect to the Bitcoin network over the
Tor. We achieve this using a new approach based on organizing the block-
requests made by the nodes in a Bitcoin session graph. This attack also
works against the modified Bitcoin client. We performed experiments on
the Bitcoin main network, and were able to link consecutive sessions with
a precision of 0.90 and a recall of 0.71. We also provide counter-measures
to mitigate the attacks.

1 Introduction

Bitcoin works in a peer-to-peer network over which users create transactions that
are stored in a distributed ledger known as the Blockchain [9]. All transactions
in the Bitcoin network can be publicly viewed and analyzed. One of the most
important properties of Bitcoin is its anonymity. If an adversary is able to link
the transactions to its owner, then she has broken the anonymity property; this
event is known as deanonymization.

Let U = {U1, U2, . . . , Un} be the set of addresses of the user u (note that Bit-
coin allows a user to have multiple addresses). If an adversary is able to find U ,
then she will be able to get the full transaction history of u from the Blockchain
(publicly available distributed ledger). In this setting, there are two main prob-
lems associated to deanonymization. First, how to link the bitcoin addresses (or
transactions) to determine U? Next, how to link U to the real identity u? Our

work is in the direction of the first problem.

Motivation Deanonymization attack is performed mainly in two ways: trans-
action graph analysis and Bitcoin network analysis. Several papers show how
to perform transaction graph analysis to link the transactions (and thus Bit-
coin addresses) of users [8,11]. Some papers even link real world entities such
as mtgox, silkroad with their Bitcoin addresses [8,10]. Biryukov, Khovratovich
and Pustogarov observed that deanonymization using transaction graph analysis
is less effective when a user makes multiple transactions using distinct bitcoin
addresses, since such transactions might not have any relations in the graph [4].

Now we concretely discuss the main challenges in deanonymization with re-
spect to Bitcoin network analysis. Suppose, a victim node v having the public
IP address IP creates a transactions tx. Even if the adversary discovers that tx
is related to IP , he is still not sure about the owner of tx, because there could
be multiple Bitcoin nodes (or users) having the same public IP IP behind the
NAT. Therefore, an adversary first needs to distinguish the nodes behind the
NAT, before linking the transactions. Another challenge in the deanonymization
is when a user connects to Bitcoin over Tor: the user can change its onion address
in a new session, making it difficult for the attacker to trace his activities.3

Many of the deanonymization problems in Bitcoin network have already been
solved in [4,5,7]. These attacks have the following limitations: attacks given in [7]
do not apply to unreachable Bitcoin nodes; attacks given in [4] are not performed
on the Bitcoin main network, and can not deanonymize nodes across the sessions;
the address-cookies method given in [5] is ineffective in the updated version of the
Bitcoin client. In short, it is not satisfactorily solved as to how to deanonymize
Bitcoin nodes, when the victim nodes behind the NAT are unreachable or are
using Bitcoin over Tor.

In this paper we solve this issue using a novel technique based on analysing
the sequence of block-header hashes (block-ids) requested across multiple ses-
sions by the unreachable nodes.

Related work Following are various attempts at deanonymization attacks and
their limitations, in chronological order.
2014: Koshy et al. have shown how to perform deanonymization by analyzing the
relay patterns of transactions [7]. They collected data over 5 months, and used
statistical analysis to determine the source IP addresses of the transactions. They
were able to deanonymize 1162 bitcoin addresses of reachable Bitcoin nodes.
However, in [4], it was pointed out that their attack applied to only reachable
nodes that constituted only 10% of all nodes.
2014: Biryukov, Khovratovich and Pustogarov gave the first attack to deanonymize
transactions of nodes that are unreachable and hidden behind the NAT [4]. They
performed experiments on the Bitcoin Testnet. Their attack was based on the
observation that a node can be uniquely identified by its direct connections (or

3 Tor is a circuit-based communication service which provides anonymity by relaying
traffic through routers as proxies (see Sect. 2).

2

entry-nodes). They gave a strategy to learn the entry-nodes; however, their so-
lution has an inherent limitation that the entry-nodes change in a new Bitcoin
session. Thus, their attack can not relate the transactions created in the multiple
sessions. This shows that the ability to identify a node across the sessions is an
essential step of any deanonymization attack.

2015: Biryukov and Pustogarov gave a fingerprinting technique for identifica-
tion of the nodes across the sessions [5]. The technique is as follows: adversary
sends unique address-cookies to his peers in ADDR messages, the peers store IP
addresses contained in address-cookies into their IP address tables (address-
cookies are created into peers IP address tables); after some time, adversary
sends GETADDR to query IP addresses in the peers IP address tables; the peers
respond using ADDR; now the adversary can analyse the responses received, and
check if it matches some address-cookies. The present modification to Bitcoin’s
inbuilt fingerprinting protection4 makes unreachable nodes ignore the GETADDR;
thus, the fingerprinting attack is prevented for unreachable nodes.

Our contribution Our main contribution is launching a deanonymization at-
tack on unreachable Bitcoin nodes, even if they are behind the NAT, in both
direct connection and proxy connection settings (running Bitcoin over Tor). Most
importantly, unlike the previous attacks, our technique works against the new
version of Bitcoin client [3]. Our attack is fairly generic, and does not seem to
exploit any rectifiable mistake in the Bitcoin implementation. The crux of the at-
tack is an observation that a Bitcoin node requests for blocks following a specific
pattern, in particular, in the increasing order of Blockchain height. This pattern
is observable even in the following scenarios: when the node is connected via
Tor; and when the node is connected in multiple sessions with or without Tor.
Using this observation we linked the consecutive sessions (sessions that follow
each other continuously) of an unreachable node, which could then be used to
link majority of the sessions. Linked sessions help in linking the transactions
created in the different sessions.

The above attack has been experimentally verified in the Bitcoin main net-
work. We have performed experiments by running Bitcoin nodes on Amazon
EC2.

The main objective of the first experiment is to give a concrete measure of the
quality of the attack when the victim nodes are connected to Bitcoin network
directly. We ran eight sessions with the four unreachable nodes (therefore, a
total of 32 sessions). In this experiment, we link the consecutive sessions with a
precision of 0.90 and a recall of 0.71.

The objective of the second experiment is to show the performance of the
attack when victim nodes connect to Bitcoin network with Tor and without Tor
in different sessions. We ran six sessions with four nodes (therefore, a total of
24 sessions), where, in the first three sessions, nodes are connected to Bitcoin
network over Tor, and, in the next three sessions the nodes are connected di-

4 The modification that are done to provide inherent fingerprinting protection to Bit-
coin network.

3

rectly to Bitcoin network. In the experiment, we link consecutive sessions with
a precision of 1.0 and a recall of 0.75. To thwart this attack, we propose a
counter-measure, where the blocks are requested in a random fashion.

2 Background

Here we first give necessary background of Bitcoin network, nodes and Bitcoin
protocol messages. Next, we describe the Tor network.

2.1 Bitcoin network

Bitcoin network is a peer-to-peer network. A node in the Bitcoin network can
have at most 8 outgoing and 117 incoming connections. The nodes get connected
to each other by establishing a TCP connection.

Nodes. There are mainly two classes of Bitcoin nodes: (1) first one is based on
the reachability criterion, and (2) the second one is based on the existence of
proxy nodes in the connection. The first class of nodes is further divided into
two types: (1a) nodes that accept incoming connections, we call them reachable
nodes, and (1b) nodes that do not accept incoming connections, we call them
unreachable nodes. Both reachable and unreachable nodes can make outgoing
connections. The second class of nodes is also subdivided into three categories:
(2a) nodes that connect to Bitcoin network directly, (2b) nodes that connect to
Bitcoin network using Tor anonymity system, and (2c) nodes that connect to
Bitcoin network sometimes with Tor and sometimes without Tor.

Bitcoin protocol messages. Bitcoin protocol uses a large number of applica-
tion layer messages that are exchanged between the nodes for various purposes.
Below we describe the important messages.

– VERSION & VERACK: In the beginning of a connection, two nodes exchange
VERSION and VERACK messages. The VERSION message contains information
of the Bitcoin version, best-height5 of the sender, a random nonce, network
addresses of the sender and receiver, etc. The VERACK message sent from the
receiver denotes acknowledgement of VERSION message.

– GETADDR & ADDR: Every node normally holds a list of IP addresses that are
working as active nodes in the network in the recent past. Using GETADDR

message, a node X can request another node Y for the list of those IP ad-
dresses. This is done to help X find the potential active nodes in the network.
In response, Y returns the requested list of IP addresses using ADDR message.

– PING & PONG: The PING is sent to check the status of the connection is alive.
The PONG is sent in response to a PING message.

5 The best-height of a node is the height of the Blockchain of the node.

4

– INV: A node advertises suitably chosen transactions and blocks it possesses
to its peers using INV messages. It is a tuple (count,inventory), where count
is the size of inventory and inventory is a list of inventory vectors. Each
inventory vector is a tuple (type,hash), where type identifies the object type;
i.e. transaction or block, and hash denote transaction-id or block-id (block
header hash). The INV message can be issued by a node unsolicited.

– GETDATA: The GETDATA message is sent in the response to an INV message.
It is a request to retrieve the full content of specific transactions or blocks6.
Similar to INV, the GETDATA is also a tuple (count,inventory).

– TX: It describes a bitcoin transaction. When a Bitcoin user create a new
transaction, it broadcasts the transaction-id in INV message. The peers con-
nected to the user receive the INV messages and get the transaction-id of
new transaction, next, they request the transaction by sending the GETDATA

message for it. Then user sends transaction in TX message.
– BLOCK: It describes a block. The BLOCK message sent for two different reasons:

(1) sent as response to the GETDATA message, and (2) sent by miners to
broadcast newly-mined blocks.

– GETBLOCKS: A GETBLOCKS message is exchanged between peers to tell each
other the block-ids of the top block on their Blockchain, this helps in updat-
ing their Blockchain. For example, suppose node X and Y have exchanged
GETBLOCKS message, and Blockchain height of node X is more than Y. Since
GETBLOCKS sent from Y contains the block-id of the block at the top of
Blockchain of Y, X will determine the set of blocks that Y needs in-order
to update his Blockchain. Next, X sends INV message containing upto 500
block-ids to Y, and then Y can request the desired blocks using GETDATA

message. This way of synchronizing Blockchain is called Blocks-First Sync.
– GETHEADERS & HEADERS: These messages are exchanged between peers to

update the block headers7. The GETHEADERS message contains the block-id
from where the sender wants to receive the headers. When a peer sends
GETHEADERS message, it gets a HEADERS message as a response. The HEADERS

message contains up to 2000 block headers. Note that similar to GETBLOCKS,
the peer with higher Blockchain height sends HEADERS message. This way of
synchronizing Blockchain is called Headers-First Sync. After updating the
block headers a node can request the GETDATA message for the blocks.

2.2 The onion router (Tor)

Tor is a circuit-based communication service which provides anonymity by re-
laying traffic through routers in the Tor network as proxies [6]. Tor network is

6 Node X advertises blocks and transactions to node Y using INV, where INV contains
block header hashes (block-ids) or transaction-ids. Then Y requests specific trans-
actions or blocks from X using GETDATA; such a communication is called pull-based
communication

7 Each block has a 80-byte block header, which contains important information such
as the hash value of the previous block, the time of creation of the block, a nonce,
number of transactions etc.

5

a distributed overlay network, which consists of approximately 7,000 volunteer-
operated routers or onion routers (ORs) or relays.

When a user runs Tor client, it creates a Tor circuit to route the traffic
through the Tor network by choosing three relays – namely entry, middle and
exit – and establishes a session key with each relay. Suppose, Alice is using a
Tor client to connect to Bob. When Alice starts the Tor client in her machine,
it creates the following three-hop circuit.

Alice↔ entry relay↔ middle relay↔ exit relay.

Next, the Tor client sends data to Bob by encapsulating it in three layers of
encryption, using the session keys established with the relays. Each relay in the
circuit removes its layer by performing decryption, and finally Bob receives data
in the unencrypted form.

Each relay in the circuit knows the IP addresses of its predecessor and suc-
cessor. The entry relay knows the IP address of Alice, but does not know the
data Alice is sending. Exit relay knows the data sent by Alice, but does not know
the IP address of Alice. Therefore, none of the relays (as well as Bob) can relate
the data with the IP address of Alice.

The three-hop Tor circuit does not provide anonymity to Bob, because the IP
address of Bob is known to Alice; however, using Tor Hidden Service (THS) Bob
can hide its IP address from Alice while offering a TCP service, e.g. a Bitcoin
server.

The THS is accessed through its onion address rather than IP address, which
is of the form “x.onion”, where x is the base-32 encoded THS identifier.8 The
onion address – as opposed to IP address – does not reveal geographical infor-
mation. The Tor client routes data to and from THS using the onion address.
For example, suppose Bob is running a THS, and suppose Alice wants to use it.
They construct the following circuit to exchange data, where RP is a Tor relay,
also known as Rendezvous Point [6].

Alice ↔ Relay ↔ Relay ↔ RP ↔ Relay ↔ Relay ↔ Relay ↔ Bob

RP connects Alice’s circuit to Bob’s circuit; it does not know the IP address of
Alice and Bob and the data they exchange.

3 Peer-Representations and Sessions

Here we give important definitions required to formalise our deanonymization
attack. Our main focus is to give a strategy to link the sessions of an identical
node. Linking sessions of a node enables the attackers to trace the activities of
the user and monitor its transactions.

In our attack model, victim nodes are assumed to be inside the NAT, whereas
the adversarial nodes are outside of it. Nodes inside the NAT connect to Bitcoin

8 Base-32 encoding is done using 32-character: twenty-six letters A to Z and six digits
2 to 7.

6

network mainly in two ways: Direct connection and Proxied connection (Bitcoin
over Tor). The directly connected nodes share the same public IP, making dis-
tinguishing difficult outside the NAT. The Bitcoin nodes over Tor may not share
the same onion address; however, they could change their onion addresses (e.g.
opening new Bitcoin sessions), making tracing difficult.

Let A = {ai}i∈[n] and V = {vi}i∈[m] denote the sets of adversarial and victim
nodes. Two nodes are called peers of each other, if they are connected. In the
Bitcoin network, an attacker node aj identifies a peer victim node vi by assigning
it a peer-id pij . Note that a victim node may be assigned different peer-ids by
different attacker nodes, making it harder for the attacker to determine whether
the peer-ids actually are of a single node or of multiple nodes behind the NAT.

To represent the victim by a single representation outside the NAT in one
session, we provide a peer-representation based on the time at which a victim
is disconnected. Let Tv denote the set of all disconnect times of the victim v
from the Bitcoin network (Suppose, v comes online k times; therefore, Tv =
{t1v, t2v, . . . , tkv}). Also, let addr(v) be the set of public addresses by which v is
identified outside the NAT. (Suppose, IP is the public IP address of the victim
node v. Also, suppose that o1v, o

2
v . . . o

k
v are the onion addresses of v. Therefore,

addr(v) = {IP, o1v, o2v . . . okv}.)
The set of all peer-representations of all victim nodes is defined as follows.

A.peers = {(a, t) : v ∈ V, t ∈ Tv, a ∈ addr(v), a disconnects at t}.

Note that A.peers contains the peer-representations different from peer-ids; how-
ever, to compute A.peers, adversary needs peer-ids. The technical details of how
A.peers is computed is provided in Appendix A. In the Figure 1 a pictorial
representation of relation between A.peers and V is given.

A session (or Bitcoin session) is the collection of the Bitcoin protocol mes-
sages exchanged between the times a node connects to Bitcoin network and
disconnect from it. Suppose, a victim represented by x ∈ A.peers comes online
and exchanges various Bitcoin protocol messages, let Sx be the set of messages
exchanged with x; therefore, Sx is a session. We define A.data as follows:

A.data = {Sx : x ∈ A.peers}.

The set A.data contains all the sessions of the victims. For example, the set
S(IP,t1v1

) contains Bitcoin protocol messages exchanged with victim v1; thus,

S(IP,t1v1
) is a session of v1. It is easy to establish a bijection S : A.peers →

A.data, which shows that for a victim x ∈ A.peers, its session S(x) is contained
in A.data. We shall use S(x) and Sx synonymously. The technical details of how
Sx is computed is provided in Appendix A.

4 A New Form of Deanonymization: Linking the Sessions

Here we give the necessary background for our deanonymization attack using the
definitions of the peer-representation and session as described in Sect. 3. First

7

(IP, t1v1)

(IP, t2v2)

(o1v1 , t
i
v1)

(IP, tjv1)

(IP, tkv2)

(o1vr , t
l
vr)

v1

v2

vr

vm

A.peers
(Outside the NAT)

V
(Behind the NAT)

Fig. 1: Representations of victim nodes behind and outside the NAT. For exam-
ple, the node v1 is identified as (IP, t1v1) in one session (direct connection) and
(o1v1 , t

j
v1) in another session (a Bitcoin over Tor connection), here IP and o1v1

denote the public IP address and onion address of v1; t1v1 and tjv1 denote the
disconnect times.

we describe why linking the sessions is a deanonymization attack, and then we
outline the major steps.

Why linking sessions is a deanonymization attack The first deanonymiza-
tion attack of nodes behind the NAT was given in [4], where the adversary logs
the first 10 nodes broadcasting the transaction-ids in INV messages, and then
assigns the transactions to a node behind the NAT; however, their attack fails
to link transactions created in different sessions.

We now give an example of how linking of sessions helps in deanonymizing
transactions. Suppose, a user creates transactions T1 and T2 in sessions s1 and
s2. After creating the transactions, he broadcasts them to his peers. Suppose,
the user is connected to adversarial nodes; therefore, they receive T1 and T2. The
adversary determines that T1 was first broadcast in s1, and T2 in s2. Next, the
adversary checks if s1 and s2 are of identical victim. If so, she then concludes that
T1 and T2 were created by the same user; this way he is able to link transactions
created in different sessions.

8

Let γi ⊆ A.data contains the sessions (sets of Bitcoin protocol messages) of
a victim vi. If adversary is able to link sessions of vi and compute γi, then he
will be able to link transactions of vi.

Linking of sessions also gives an additional interesting result. If adversary is
able to compute γi, then he can also get the set of peer-representations αi of the
victim vi outside the NAT. For example, in Figure 1, the node v1 is represented
by the set of peer-representations α1 = {(IP, t1v1), (o1v1 , t

i
v1), (IP, tjv1)}. Suppose,

the adversary is able to link the sessions of v1, and to compute γ1, where

γ1 = {S(IP, t1v1), S(o1v1 , t
i
v1), S(IP, tjv1)}.

Each session S(x) ∈ γ1 is a set of Bitcoin protocol messages, that contains in-
formation on IP address or onion address of the victim, and also the time of
disconnect (see Sect. 2); thus, the adversary can determine peer-representations
x from the Bitcoin protocol messages in S(x). The adversary can compute α1

using γ1. Hence, by linking sessions of v1, it is also possible to achieved iden-
tification of v1 when it is connected to Bitcoin network directly, and when it is
connected to Bitcoin network over Tor.

Major steps In our attack, we analyse the GETDATA messages sent by the vic-
tims. Below are the major steps of the attack.

1. Extracting the Block-ids: We compute the block-ids requested by the victims
in each session using the GETDATA messages sent by them.

2. Linking consecutive sessions: We take two sequences of block-ids, and de-
termine if they are requested in the consecutive sessions of a node (linking
consecutive sessions).

3. Linking sll the sessions: To link all the sessions of a victim, we define a
Bitcoin session graph, where each vertex represents a sequence of block-ids
requested by the victim in a session; and two vertices have an edge if they are
related to the consecutive sessions. The vertices of the maximally connected
component of the graph gave the sequences of block-ids requested by the
victim; which in turn gives all the sessions of the victim node.

In what follows, we describe above steps in detail.

4.1 Step 1: extracting the block-ids

Here we describe the first step of our attack. We focus on the analysing the
block-ids (block header hashes) requested by the victims. We first give the mo-
tivation for extracting block-ids, and then show how to extract them.

Motivation The Bitcoin protocol messages sent by a victim contain GETDATA

messages. A GETDATA message contains the list of block-ids the victim does not
have at a specific time (see Sect. 2). Each block-id is associated with a unique
block, and each block has a unique height in the Blockchain. By analysing the
block-ids in GETDATA messages issued by the victim, adversary can get two pieces

9

of important information: First, estimate of the Blockchain height of victim at
a specific time; second, the block-ids of the blocks that the victim has updated
into its Blockchain. Below we describe how they are useful for adversary.

The estimate of Blockchain height of a node can help in linking the consecu-
tive sessions of the node: if adversary gets the Blockchain height of the victim vi
when it disconnects, then, in the new session, vi starts requesting blocks from the
height achieved in previous session; the height achieved in previous session and
starting height of new session of vi are equal. Therefore, the height of the blocks
requested by vi in the beginning of a new session will be close to the height of
requested blocks, when vi disconnected in previous session; thus, adversary can
compare the block-requests, and identify victim vi in the new session.

The block-ids requested by the victims can help in distinguishing their ses-
sions: a node does not request blocks after they are updated into its Blockchain;
however, two nodes can request same blocks; thus, by comparing the block-ids
requested in the two sessions, adversary can determine if sessions correspond to
a single (or two different) victim node(s).

Extracting block-ids The set Sx contains the GETDATA messages issued by a
victim whose peer-representation is x. When a victim sends GETDATA message to
retrieve a block, the adversary sends BLOCK message in the response. A GETDATA

message may contain a maximum of 50,000 entries for blocks or transaction ids
[1]. Let E denote the algorithm that, given the element S ∈ A.data, outputs the
multiset E(S) containing the block-ids of the blocks requested in S. We define
the set A.SessionBid as follows:

A.SessionBid = {E(S) : S ∈ A.data}. (1)

Another way of formalization is:

A.SessionBid = {E(Sx) : x ∈ A.peers}

= {E(Sx) : x ∈
⋃

i∈[m]

αi}.

Here, α1|α2| . . . |αm is a disjoint partition of A.peers, where αi is the set of peer-
representations of victim vi. Let E(Sx) be denoted by βx. One should observe,
if there are multiple GETDATA messages for an identical block, then there are
multiple entries of one block-id in βx (therefore, βx is a multiset!). A node sends
multiple GETDATA messages for an identical block, if the response of GETDATA is
not received.

The set A.SessionBid can be computed inside the NAT (from the nodes
in V) because the GETDATA messages are known to both victims (nodes in V)
and the adversary (who is the set A). For example, suppose αi is the set of
peer-representations of a victim vi outside the NAT, when a GETDATA message
sent by vi comes out of NAT, it appears that it is sent by a peer-representation
contained in αi; therefore, the block-ids requested by node vi is same as those

10

requested by the set of peers in αi. Let β̂vi contain the sets of block-ids requested

in various sessions by victim vi. We define β̂vi as follows:

β̂vi = {βx : x ∈ αi}.

Putting the βvi in the definition of A.SessionBid we get

A.SessionBid =
⋃

vi∈V
β̂vi . (2)

We have computed the setA.SessionBid from the files contained in the Bitcoin’s
application data folder of victim nodes.9

4.2 Step 2: linking consecutive sessions

After extracting the block-ids, our next step is to link the consecutive sessions.
The consecutive sessions of a node follow each other continuously. The phrase
“consecutive sessions” is only meaningful for a single node.

Let us take two sequences of block-ids βx and βy in A.SessionBid. If the
adversary determines that they are requested in the consecutive sessions of a
victim node; then using the inverse of extract operation, she can determine that
Sx and Sy are consecutive sessions, where E−1(βx) = Sx and E−1(βy) = Sy.10

Since Sx and Sy contain information of IP address or onion address of the victim,
and also the time of disconnect, the adversary can determine peer-representations
x and y of the victim in two consecutive sessions.

We run the Algorithm 1 (also called consecutive), which returns True iff
the inputs βx and βy are requested in consecutive sessions. The algorithm uses
a fixed parameter th, which is a threshold of the number of common block-
requests sent in the consecutive sessions. The correctness of the algorithm and
the parameter threshold th are described in Appendices B and C. The function
H(b) used in consecutive returns the Blockchain height of the input block-id
b.

4.3 Step 3: linking all sessions

In Sect. 4.2, we already described how to link the consecutive sessions. In this
section, we describe how to link all the sessions – not necessarily consecutive –
of a victim. We achieve it by constructing a Bitcoin session graph, and, finally,
extracting the connected components in it. First, we define the Bitcoin session

9 Bitcoin’s application data folder: A set of data files containing the following informa-
tion of the Bitcoin client: Private keys, Peer IP addresses, and various information
related to the current Blockchain.

10 E is a bijection from A.data to A.SessionBid. It shows that the sequence of block-
ids requested in a session is unique, which we found to be true in our experiments
(see Sect. 5).

11

1 consecutive(βx, βy)

2 hsx = min{H(b) : b ∈ βx}
3 hex = max{H(b) : b ∈ βx}
4 hsy = min{H(b) : b ∈ βy}
5 hey = max{H(b) : b ∈ βy}
6 if |βx

⋂
βy| < th then

7 if max{|hey − hsx|, |hex − hsy|} < |βx|+ |βy| then

8 return True

9 return False

Algorithm 1: consecutive(βx, βy) determines, if block-ids in βx and βy
are requested in consecutive sessions.

graph, and then we show how it will help in linking all the sessions of nodes.

Bitcoin session graph A Bitcoin session graph G(S, E) is defined as follows:
(1) S = {E(S) : S ∈ A.data}, where E is an algorithm, which, given a session
S, outputs certain data; (2) for all (a, b) ∈ S × S, there is an undirected edge
between a and b, iff a and b are data contained in the consecutive sessions of an
identical node.

In our setting, E(S) is a sequence of block-ids requested in GETDATA con-
tained in the session S ∈ A.data; therefore, S = A.SessionBid; two vertices a
and b have an edge, if consecutive(a,b) = True, where consecutive is the
Algorithm 1.

Linking all sessions of victim nodes Here we describe a procedure that links
all the sessions of the victim nodes and finally gives the set of peer-representations
of a victim. Since the set A.SessionBid contains the sequences of block-ids
extracted from all the sessions of all the victim nodes, therefore, there exists a
subset of vertices in S corresponding to the sequences of block-ids requested by
a victim in all its sessions.

A path in Bitcoin session graph is a sequence of edges, where each edge gives
information of two vertices related to a victim; therefore, if two vertices have
path between them, then they correspond to an identical victim. To determine
the vertices related to a victim, adversary can compute the set of vertices of
a maximally connected component of the Bitcoin session graph.11 The graph

11 A maximally connected component of a graph G = (V,E) is a subgraph C = (V ′, E′)
such that: C is connected, and, for all vertices u ∈ V \ V ′, there is no vertex v ∈ V ′

such that (u, v) ∈ E.

12

G(S, E) can have more than one maximally connected component, where each
of them gives the set of vertices related to a victim node.

Let M contain the sets of vertices of the maximally connected components in
the Bitcoin session graph G(S, E). The details of the constructions of the sets
γi and αi for i ∈ [|M|] are as follows:

The following are the sessions and peer-representations of a victim node.

γi = {E−1(βx) : βx ∈ ci; ci ∈M}, (3)

αi = {S−1(E−1(βx)) : βx ∈ ci; ci ∈M}. (4)

5 Experiments

Precision and recall We ran experiments to evaluate the performance of Algo-
rithm 1 (a.k.a consecutive). In particular, we compute two parameters, namely,
precision and recall, whose definitions are given below. Suppose, G = (S, E) is
a Bitcoin session graph (see Sect. 4.3 for definition). Let G∗ = (S∗, E∗) denote
the Bitcoin session graph obtained from our experiment.

1. precision: This captures a measure of correct linking of the vertices.

precision =
|E
⋂
E∗|

|E∗|

(The precision of 1 menas that the edges we have guessed are all correctly
linked.)

2. recall: It captures a measure of how much the result is close to the best case
of linking all the vertices related to consecutive sessions.

recall =
|E
⋂
E∗|
|E|

(The recall of 1 means that, for each victim node, we have linked all its
consecutive sessions. Note that, unlike precision, recall does not capture
the scenario of linking sessions of two different nodes.)

Details of the experimental set-up We have done two sets of experiments to
measure the performance of consecutive procedure. Experiment 1 had 4 victim
bitcoin nodes, and each node had 8 sessions (this implies that the experiment
included a total of 4 x 8 = 32 sessions); Experiment 2 had 4 victim nodes and
each node had 6 sessions, implying that we experimented with a total of 4 x 6
= 24 sessions. In Experiment 1, the victims are directly connected to Bitcoin
network, and in the Experiment 2, victims connect to Bitcoin network with (and
without) Tor in different sessions. We believe that 32 and 24 sessions are good
enough to demonstrate the proof of concept, which is the main purpose of this
paper. Also, we would like to point out that, in order to obtain more realistic
results, our experiments were performed on the Bitcoin main network, rather

13

than on the Bitcoin Testnet (unlike the attack in [4]). We constructed Bitcoin
session graph G∗1 = (S∗1 , E∗1) in Experiment 1, and G∗2 = (S∗2 , E∗2) in Experiment
2. Before giving our experimental results, below we provide the technical details
of the experimental set-up.

In our experiment, we have used the following components: (a) Amazon Elas-
tic Compute Cloud (a.k.a Amazon EC2), (b) a software container platform
Docker [2], (c) a Bitcoin client Bitcoind, and (d) Tor client. See Figure 2 for
the layers in which the components reside. Amazon EC2 is a web service that
provides a cloud server on which Ubuntu runs. In the cloud server, we ran Docker
to create multiple instances of the container, and each container had Bitcoind
and Tor client in it. We used Docker because it allowed us to run instances of
Bitcoind in the same EC2 machine, so that we had the same connection speed for
all the Bitcoin nodes. The nodes running at the same speed are less vulnerable
to fingerprinting attack (more on that later). The Tor client is used to connect
to Bitcoin network over Tor.

Docker

Ubuntu

EC 2 Instance

Fig. 2: Setup for Experiment 1 and 2

After we ran Bitcoin nodes, they connect to the Bitcoin network and started
requesting blocks from other running peers to update their Blockchain. The ses-
sion timings vary from 5 minutes to 160 minutes. Figure 3 shows the height of
Blockchain at the start of each session we ran, we can see that the height of the
nodes are close to each other. The nodes were running in the same EC2 instance
for approximately the same time in each experiment, making their Blockchain
growth very close to each other. This way of running Bitcoin nodes is a chal-
lenging scenario for deanonymization. After checking the block-ids requested in
the sessions, we found that each victim requests a unique sequence of block-ids
in its sessions.

Experiment 1 The main objective of the first experiment is to measure the
performance when victim nodes are connected to Bitcoin network directly. We
ran eight sessions for each victim in V1 = {v1, v2, v3, v4} (total 32 sessions), then
constructed the Bitcoin session graph to see if block-ids requested by a victim
in different sessions can be linked. The major steps are as follows:

14

Fig. 3: This graph shows how the blockchain (best) height of a victim node
(y-axis) varies with session number (x-axis). We ran nodes {v1, v2, v3, v4} in
Experiment 1 and nodes {v5, v6, v7, v8} in Experiment 2.

1. We extract sequence of block-ids of the blocks requested in each session to
compute A.SessionBid = {β1, β2, . . . , β32}. (see Sect. 4.1).

2. We ran consecutive(βi, βj) for each βi, βj ∈ A.SessionBid. If it returns
True, then the inputs βi and βj are related to the consecutive sessions of a
victim node. (see Sect. 4.2).

3. We construct a Bitcoin session graph G∗1 = (S∗1 , E∗1) using the output we got
by running consecutive procedure, see Figure 4.

(a) For each βi in A.SessionBid, we have a vertex in S∗1 ; thus, S∗1 =
{β1, β2, . . . , β32}. (see Sect. 4.3).

(b) The edges {βi, βj} ∈ E∗1 , if consecutive(βi, βj) = True.

We got a precision of 0.90 and recall of 0.71. The high precision value shows
that if an edge is present in the Bitcoin session graph, then it has a good chance
of being a correct edge; however, the recall value shows that we have missed
some edges.

Experiment 2 The main objective of the second experiment is to measure the
performance when victim nodes connect to Bitcoin network, with and without
Tor, in different sessions.

We ran six sessions for each victim in V2 = {v5, v6, v7, v8} (total 24 sessions);
in the first three sessions they are connected to Bitcoin netowrk over Tor, and, in
the next three sessions, they are connected directly to the Bitcoin network. We
have executed all the steps mentioned in Experiment 1 to compute the Bitcoin
session graph G∗2 = (S∗2 , E∗2), see Figure 5. We found that the consecutive links
the sessions with a precision of 1.0 and recall of 0.75.

15

Fig. 4: This figure shows the Bitcoin session graph G∗1 = (S∗1 , E∗1). There are
32 vertices representing 32 sessions we ran. The vertices related to an identical
victim node have the same color.

To get more insight of the graph G∗2 = (S∗2 , E∗2), we have partitioned S∗2
according to the six sessions of each victim, S∗2 = g1|g2| . . . |g6 (shown by dotted
regions in the figure), where gi contains the sequence of block-ids requested by
the victims in ith session. For example, g1 contains the sequences of block-ids
requested by victims in their first session.

The edges between the vertices contained in g1
⋃
g2
⋃
g3 show that we could

link the Bitcoin over Tor sessions, and the edges between the vertices contained
in g4

⋃
g5
⋃
g6 show that we could link the sessions when victims connect to

Bitcoin network directly.

An edge between a vertex from g3 to a vertex in g4 is important, because g3
contains the sequences of block-ids requested when the victims connect to the
Bitcoin network over Tor, and g4 contains the sequences of block-ids requested
when they connect to Bitcoin network directly. An edge between a vertex from
g3 and a vertex from g4 confirms that we can link the sessions of victims when
they ran Bitcoin over Tor and Bitcoin without Tor (direct connection).

Discussion We got a high precision, because initially the nodes request blocks
at a faster rate; thus, in a short period of time, the differences of best-heights
of the nodes become significant, allowing the attacker to distinguish between
the sessions of different nodes. The recall value is also high because the heights
of the consecutive sessions achieved at the end of the first session and at the
beginning of the other session are close.

16

Fig. 5: This figure shows the Bitcoin session graph G∗2 = (S∗2 , E∗2). There are
24 vertices representing 24 sessions we ran. The vertices related to an identical
victim node have the same color. (The set of vertices is partitioned into subsets
g1|g2| . . . |g6, see Exepriment 2 for more details.)

Another interesting observation is that when nodes are running Bitcoin over
Tor then Algorithm 1 performed better. We found the rate of blockchain update
is comparatively slower for proxied connections than for direct connections, it
is because of the additional number of proxy nodes (onion routers) between the
sender and the receiver. We believe that a slower rate of blockchain update could
be one of the reasons why nodes did not catch up heights close to each other.

One might ask how precision and recall change when we increase the num-
bers of nodes and sessions. Theoretically, increasing the numbers of victim nodes
and sessions could result in the following situation: suppose s1 and s2 are the
sessions of two distinct nodes, such that the blockchain height at the end of ses-
sion s1 is close (i.e., the height difference is less than the threshold th described
inC) to the starting blockchain height of the session s2. In this scenario, our al-
gorithm will incorrectly link s1 and s2, thereby, will decrease the experimentally
obtained precision. However, we emphasize that such events will be infrequent,
even in large-scale experiments. For concreteness, such event occurred only once
in our 56 sessions conducted across two experiments. Moreover, it is worth not-
ing that a node requests for blocks from his peers in the increasing order of
blockchain height, and such a pattern does not change even in large-scale ex-
periments. Therefore, our algorithm that crucially relies on the aforementioned
pattern will still be able to correctly link them; as a result, the recall is unlikely
to be significantly affected. We leave it as a future work as to how to appropri-

17

ately design a large-scale experimental set-up to test Algorithm 1 that also takes
into consideration the ethical issues.

6 Countermeasure

If the victim nodes request blocks in an unordered fashion, then it will not be
possible for an adversary to estimate their Blockchain height, and, therefore, he
cannot link sessions. Below we describe it in more detail.

Nodes exchange information on their Blockchains using VERSION, GETBLOCKS,
and GETHEADERS messages (see Sect. 2). Using this information, the peers com-
pare their Blockchain heights. A peer with higher height sends INV or HEADERS

to the one with lower height.12 Instead of sending the actual information of
Blockchain, if a node sends height-values chosen uniformly from 1 to best-height,
and if the block-id is chosen uniformly, then the other peers will not be able
to deduce the Blockchain height. Similarly, if a node chooses a point uniformly
from the entire Blockchain, and starts requesting the GETDATA from there in ev-
ery session, then it will result in requesting blocks which are already updated
into the Blockchain. Therefore, the number of common block-requests of con-
secutive sessions might not be bonded by a threshold th. As a result, adversary
would not be able to get a fixed value th to determine the consecutive sessions,
ruling out the attack. However, due to requesting blocks already updated into
the Blockchain, the node’s Blockchain growth will become slow.

7 Conclusion

In this paper, we have shown that, in the Bitcoin main network, linking of the
consecutive sessions is possible by analysing the block-requests the victim makes.
Our approach relies on the observation that a node requests blocks in the in-
creasing order of height; this observation leads to linking consecutive sessions
of the node. Once consecutive sessions are linked, all others could be linked as
well. We were able to link (consecutive) sessions with a high success rate in
three settings: (1) when nodes connect directly; (2) when nodes connect using
the Tor; and (3) when nodes connect with Tor and then without Tor. We have
also suggested countermeasures against our attacks.

Acknowledgments The authors are grateful to the reviewers of CANS 2017
for their constructive comments. We also thank Sherman Chow for his insight-
ful remarks regarding the experimental setup used in our work; the paper has
benefitted immensely from them.

12 The Blocks-First Sync and Headers-First Sync methods are two ways to update the
Blockchain as described in Sect. 2.

18

References

1. Bitcoin wiki (2017), https://en.bitcoin.it/wiki/
2. Docker project code (2017), https://github.com/docker/docker
3. v0.13.2, bitcoin code project (2017), https://github.com/bitcoin/bitcoin
4. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-

coin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2014)

5. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In: 2015 IEEE
Symposium on Security and Privacy. pp. 122–134. IEEE (2015)

6. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. Tech. rep., DTIC Document (2004)

7. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using p2p
network traffic. In: International Conference on Financial Cryptography and Data
Security. pp. 469–485. Springer (2014)

8. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M.,
Savage, S.: A fistful of bitcoins: characterizing payments among men with no names.
In: Proceedings of the 2013 conference on Internet measurement conference. pp.
127–140. ACM (2013)

9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
10. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security

and privacy in social networks, pp. 197–223. Springer (2013)
11. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:

International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

A Peer Representation and Session

Suppose a victim node vi is connected to adversarial nodes {aj}j∈[k]. The node
vi gets assigned multiple peer-ids pij outside the NAT making it difficult for aj ’s
to determine if they are connected to a single or multiple victim(s). The attacker
nodes can check the time of disconnect of vi to relate all the peer-ids assigned
to vi, and get a single representation (a, t), where a is the public address of vi
and t is the time of disconnect.13

The representation (a, t) is achieved as follows: the ping and pong protocol
messages are exchanged periodically between peers to get the status of the con-
nection; after node vi goes offline at time t, it is not able to respond to the ping
messages sent by aj ’s; as a result, all the aj ’s will detect at the same time t that
pong messages are not coming from peer pij (aj continues to identify vi by pij
even when it is disconnected); therefore, they conclude a victim is disconnected
at time t enabling them to associate pi1, pi2, . . . , pik with a victim node, and
get the peer-representation (a, t). Note that (a, t) is a peer-representation of the
victim vi outside the NAT.

After getting a single peer-representation (a, t) of vi, the adversary can com-
bine the Bitcoin protocol messages exchanged with the peers in {pi1, pi2, . . . , pik}
to compute the session S(a, t).

13 The public address can be either public IP address or the onion address.

19

https://en.bitcoin.it/wiki/
https://github.com/docker/docker
https://github.com/bitcoin/bitcoin

B Correctness of Algorithm 1

B.1 Background

Let βx, βy ∈ A.SessionBid. The pair βx and βy can be related to three types:
(1) consecutive sessions of an identical node, (2) non-consecutive sessions of an
identical node, and (3) two different nodes. Below we describe the three cases in
detail.

Related to consecutive sessions of an identical node A Bitcoin node con-
tinuously sends GETDATA messages to update its Blockchain. When the node
disconnects, it misses response (BLOCK messages) of some GETDATA messages.
Then in the new session, the node starts from the Blockchain height achieved
at the end of the previous session, and again sends the GETDATA for the blocks
it has missed in the previous session. Thus, there are repeated block-requests in
the consecutive sessions of an identical node. This is an important observation
for our attack, because it helps in defining a threshold th, below which if two
sessions have the common block-requests, then they could correspond to consec-
utive sessions of an identical node.14 More formally, if |βx

⋂
βy| ≤ th, then they

may correspond to an identical node.

Related to non-consecutive sessions of an identical node A node re-
quests and receives blocks in each session; thus, the sessions between the two
non-consecutive sessions update blocks into the Blockchain. Therefore, if we
combine the block-ids requested in two non-consecutive sessions, the output will
not have ids of blocks that lie between the heights achieved at the end of first
session and at the start of the other session; these are the blocks updated be-
tween the two non-consecutive sessions. Since a node does not request the blocks
after it is updated into the Blockchain, it requests disjoint sets of blocks in the
non-consecutive sessions. More formally, if |βx

⋂
βy| = 0, then they may corre-

spond to non-consecutive sessions.

Related to two different nodes Two nodes can request common blocks or
disjoint sets of blocks depending upon their Blockchain height. Therefore, if βx
and βy are from two different nodes, then we could get the following cases:

1. |βx
⋂
βy| = 0. This happens when the sessions related to βx and βy contain

block-requests for disjoint sets of blocks.
2. 0 < |βx

⋂
βy| ≤ th. When the sessions related to βx and βy have Blockchain

heights similar to consecutive sessions, then the numbers of common block-
requests contained in them could be bounded by the threshold th.

3. |βx
⋂
βy| > th: The sessions related to βx and βy can contain the numbers of

common block-requests greater than the threshold th. It happens when the
first node achieves the height of the other in some session and then requests
common blocks greater than th.

14 In our experiments, we take the maximum number of repeated block-requests in the
consecutive sessions to be the threshold th (see Sect. C for more details).

20

To determine if two sessions are of identical node or two different nodes, the case 3
as described above could be useful. This is explained using the following example.
Suppose, two nodes vi and vj , where height of vj is significantly large (greater
than th) before they start the session. In the new session, the node vi will make
block requests for the blocks which are already requested and received by vj ,
whereas vj will not make repeated block requests for the blocks it has. Therefore,
the previous session of vj and the current session of vi could have common
block-requests much greater than th, whereas two sessions of vj have common
block-requests bounded by a threshold th. This shows that, if two sessions have
common block-requests more than th then they are of different nodes, otherwise
of an identical node. More formally, if |βx

⋂
βy| ≥ th, then βx and βy are of two

different nodes.

B.2 On the correctness of Algorithm 1

We note that Algorithm consecutive requires two checks (two if conditions)
to conclude whether the inputs are of consecutive sessions of an identical node.
Below we describe the two conditions.

1. We compare the intersection of βx and βy with a value th, where th is the
threshold of the number of common block-ids a node requests in the consecutive
sessions (see B.1). If we have number of common block-ids in βx and βy greater
than than the threshold th, then they are related to different nodes and the
algorithm return False (see B.1).

2. Let us denote the sessions related to βx and βy by Sx and Sy. As we can
see, the second if condition makes use of parameters hsx, hex, hsy, and hey. Since
the blocks are requested in the increasing order of height, hsx is close to the
Blockchain height at the start of the session Sx and hex is close to the height at
end of Sx, same holds for hsy and hey. Following are the reasons why the condition
is true for consecutive sessions.
• Without loss of generality, assume that session Sx happens before Sy. If Sx

and Sy are consecutive, then we have |hey − hsx| as the output of max. Since
the consecutive sessions have common block-requests from the same blocks (see
B.1), we get |βx|+ |βy| greater than |hey−hsx|. Thus, the algorithm returns True.
•Without loss of generality, assume that session Sx happens before Sy. If Sx and
Sy are non-consecutive, then we have |hey−hsx| as the output of max. The sessions
between Sx and Sy update blocks into Blockchain (see B.1); thus, there are blocks
between heights hex and hsy whose block-ids are not contained in βx

⋃
βy. Thus,

|hey − hsx| is greater then the value |βx|+ |βy| and the algorithm returns False.
• The third case is when Sx and Sy are of different nodes but have common block-
requests less than th. This could be further divided into two cases |βx

⋂
βy| = 0

and 0 < |βx
⋂
βy| ≤ th (see B.1). When intersection is empty then correctness

is proved as follows: without loss of generality assume that the output of max
is |hey − hsx|; the output of max is greater than |βx| + |βy| because of missing
requests for the blocks between the heights hey and hsx; thus, the algorithm returns

21

False. (When intersection is non-empty and less than th, the correctness holds
because it is unlikely that two different nodes have heights similar to consecutive
sessions.)

C Determining Threshold th

The value th is the threshold for the number of common block-requests sent in
the consecutive sessions. It is used in the Algorithm 1, namely, consecutive, to
determine: if two sets of block-ids correspond to consecutive sessions.

We have set th at 200 in our experiments, because we found the value 200
to be close to the number of common block-ids exchanged in the consecutive
sessions. We now describe how the th is related to consecutive procedure.

Difficulty in setting th very high Let us define a random variable Xij =
|βi
⋂
βj | (that denote the number of common block-requests). Note that Xij is

uniformly distributed over all integers between zero and the current best-height of
Blockchain, because we assume that the block-requests issued by a node inside
the NAT is independent of the block-requests made by others. Using Markov
inequality we get.

Pr(Xij ≥ th) ≤ E(Xij)

th
. (5)

Let us define a random variable consecutive(βi,βj) as follows:

consecutive(βi, βj) =

{
1 if Xij < th.

0 if Xij ≥ th.

From the definition above, we get

Pr
(
consecutive(βi, βj) = 0

)
= Pr(Xij ≥ th).

By putting values from Eq. 5, we get

Pr(consecutive(βi, βj) = 0) ≤ E(Xij)

th
.

Let p be the probability that consecutive(βi, βj) returns “1”, we get

p = 1− Pr(consecutive(βi, βj) = 0)

≥ 1− E(Xij)

th

The expected number of common block requests E(Xij) is a constant. Therefore,
if the value of th is set to be high, then the probability that consecutive(βi, βj)
returns “1” increases; thus, the attack might end up linking the sessions which
correspond to different nodes (wrong linking).

22

	A New Approach to Deanonymization of Unreachable Bitcoin Nodes

