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Abstract

We consider a Make-to-Order manufacturing system which can be formulated as an
open queueing network composed of some GI/G/1 queueing systems. In Make-to-Order
manufacturing systems, it is important to fulfill customer’s requests quickly. Therefore, it
has been frequently investigated how to shorten the lead time. The production allocation
can be one of such the strategies. However, many researchers have focused on nothing
but the expectation of lead time, e.g., minimizing the expectation of lead time. In this
article, we pay attention to not only the expectation but also the variance of lead time, and
then evaluate a tardiness cost due to delivery behind a prescribed schedule. Especially, we
assess a maximal loss among all the lead time distributions with the same expectation and
variance. Then, an optimal production allocation plan is decided using production and
tardiness costs. Lastly, we provide some numerical examples and perform the sensitivity
analysis for the optimal production allocation.
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1. Introduction

A large number of industries have been moving toward time-based competition [14].
Therefore, manufacturers need to obtain great ability to fulfill costumer’s requests quickly
for the purpose of winning a competitive advantage. Especially, it is a significant issue in
make-to-order (MTO) manufacturing environments. MTO manufacturers usually yield
such as customized, seasonal, and short life cycle items. Therefore, the stock of final
items isn’t held ahead of demand and the item starts to be built up immediately after
the receipt of customer’s request in the MTO manufacturing systems. While the MTO
manufacturing systems are able to save holding and wasting costs about surplus stock
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exceeding demand and reduce the manufacturer’s exposure to financial risk, it may cause
long lead time, large backorders and lost sales [8]. Therefore, the MTO manufacturers
have been impelled to search for ways to hold down an operating cost and to deliver
quickly.

The production allocation can be one of such the strategies which are practiced
for the purpose of quick delivery to customers [1, 2], where the production allocation
means that customer’s orders are assigned to one of some plants in which the same
item can be processed. The workload can be balanced and then the waiting time can
be shortened by allocating the production to some plants. On one hand, each plant
usually has distinct capacity, i.e., processing cost and time. Therefore, the optimal plan
of production allocation to some plants should be decided by taking each plant capacity
into consideration. In this article, we consider an optimal production allocation plan in
the MTO manufacturing systems.

MTO manufacturing systems are in particular formulated into mathematical mod-
els using open queueing network (OQN) theory. Then, the performance of formulated
systems is evaluated, such as in-process inventory, equipment utilization, and lead time
[2, 7]. The lead time means time interval that a customer’s order spends in the system
from the moment the order is placed to the moment it is completed for delivery. The
lead time is given as a random variable from the variability in the arrival of orders and
processing when the system is formulated as an OQN. In the previous literature, the
production allocation problem for minimizing the average lead time has been formulated
and investigated [1, 5]. Also, Bitran and Dasu [1] have formulated the production allo-
cation problem for minimizing the operating cost of the system subject to a given upper
bound on the average lead time.

A regular interval from order to delivery is sometimes decided and promised between
manufacturers and customers beforehand. In this article, this time interval is called
“due delivery interval”. The due delivery interval corresoponds to the lead time that a
customer might expect from the time of placing the order to the time of delivery. Then,
a kind of penalties is frequently put on tardy delivery which exceeds the due delivery
interval in the production management. For the purpose of evaluating the tardiness cost,
the distribution of lead time should be investigated. For OQN models, Whitt [15, 16]
has proposed an approximate method on evaluating the expectation and variance of
lead time. Then, Vandaele et al. [13] have given an approximate distribution of lead
time by using the expectation and variance of lead time, where the accuracy of their
approximate distribution hasn’t been shown. Generally speaking, it may be extremely
difficult to derive the accurate distribution of lead time, e.g., when the type of queues
in the OQN is considered to be GI/G/1 queue with the general independent interarrival
and service time distributions. Therefore, an more appropriate procedure for evaluating
the tardiness cost should be developed.

In this article, we investigate an new planning of production allocation to two plants
under an MTO manufacturing system in order to minimize an evaluation function com-
posed of the production and tardiness costs. The rest of this article is organized as
follows. Section 2 explains the model descriptions and notations. Section 3 formulates
the MTO manufacturing system with two plants using the OQN theory and evaluates
the expectation and variance of lead time. Section 4 derives an upper bound on the
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Figure 1: The outline of the MTO manufacturing system considered in this paper

tardiness cost using the idea of “distribution free approach” [10] and indicates a de-
cision procedure with respect to the optimal plan of production allocation. Section 5
shows some numerical examples and performs the sensitivity analysis. Finally, Section
6 concludes this article.

2. Model description

In this article, we consider an MTO manufacturing system about single item that can be
manufactured at each production plant. Concretely, Figure 1 illustrates the outline of the
MTO manufacturing system considered in this article, where the system is composed of
a sales center and two production plants. The assumptions about demand, sales center,
and plants are as follows:

• Order interarrival time is independently and identically distributed, where its dis-
tribution function is unknown. Only the information about the expectation and
variance of order interarrival time is given.

• The sales center and production plants are respectively defined as a GI/G/1 queue-
ing system. The respective processing time at each plant is independently and
identically distributed, where its distribution function is unknown. Only the infor-
mation about the expectation and variance of respective processing time is given.

• Order arrival and production processes are independent of each other.

• The respective buffer space at each plant is unlimited.

• The discipline of “first-come, first-service (FCFS)” is adopted to sequence orders
waiting for service and production.
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All customer orders are accepted and then the initial service for orders is executed at
the service center. After the completion of the initial service, the sales center requests
the production about the order to either production plant 1 or 2. This selection of plants
is based on a probabilistic allocation rule, which is defined as follows [4, 6, 9].

• A request for production is assigned to either plant 1 or 2 by Bernoulli trials.

• No information about the history and the present state of the system is used in
the selection of the plant.

The production starts after the allocation of order to the plant. Then, the final item is
delivered to the customer.

Further, the notations are represented as follows, where the sales center and plants
are called “station”. Concretely, the station 0, 1 and 2 correspond to the sales center
and the plant 1 and 2, respectively.

λi : demand rate per unit time at the station i, i = 0, 1, 2, where mean order
interarrival time is given as 1/λi.

C2
ai

: squared coefficient of variation (SCV) of order interarrival time at the
station i, i = 0, 1, 2, where SCV is given as (variance / mean2).

µi : processing rate in production per unit time at the station i, i = 0, 1, 2,
where mean processing time is given as 1/µi.

C2
si

: SCV of processing time at the station i, i = 0, 1, 2.

ρi : traffic rate at the station i, i = 0, 1, 2, where ρi = λi/µi.

ci : processing cost per service or production at the station i, i = 0, 1, 2.

L : due delivery interval.

b : penalty per unit time due to tardiness of delivery.

p : probability of allocating production from the station 0 to the station
1 (decision variable), where 1 − p implies the probability of allocating
production from the station 0 to the station 2.

[x ]+ : max{0, x}
E[x ] : expectation of a random variable x.

V[x ] : variance of a random variable x.

Cov(x, y ) : covariance of random variables x and y.

3. Analysis of lead time property

We investigate the lead time property of the MTO manufacturing system in Figure 1 by
using the theory of OQN. Whitt [15, 16] has developed the approximate evaluation of
some performance for various types of OQNs and his result has been applied to a lot of
researches [2, 5, 7, 11, 13]. In his analysis, the arrival and departure processes at each
station are described as renewal processes. Then, every station is individually analyzed,
and the decomposition method is applied. The decomposition method is described by
three steps as follows [2, 15]: (i) analysis of interaction between stations in the network,
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(ii) evaluation of performance at each station, and (iii) evaluation of performance for
the whole network. We also apply his procedure to the MTO manufacturing system in
Figure 1.

At first, note that λ0, C
2
a0

, µi and C2
si
, i = 0, 1, 2, are given, respectively. Then, the

order arrival rate λi at the station i, i = 1, 2, is respectively obtained as

λ1 = pλ0, (1)

λ2 = (1 − p)λ0, (2)

where the traffic rate at the station i needs to satisfy ρi < 1. Further, C2
ai

, i = 1, 2, is
given as follows:

C2
a1

= pC2
d + 1 − p, (3)

C2
a2

= (1 − p)C2
d + p, (4)

where Cd expresses the SCV of interdeparture time from the station 0 and is obtained
as

C2
d = ρ2

0C
2
s0

+ (1 − ρ2
0)C

2
a0

.

All the interaction between stations in Figure 1 can be represented by (1)–(4).
The, denote the waiting time of orders at the station i, i = 0, 1, 2, by wi. By using

(1)–(4), we obtain the following expectation and variance of wi:

E[wi ] =
ρi(C

2
ai

+ C2
si
)

2µi(1 − ρi)
Φi, (5)

V[wi ] = (E[wi])
2
(

∆i + 1

Θi

− 1
)
, (6)

where

Φi =


exp

[
−

2(1 − ρi)(1 − C2
ai

)2

3ρi(C2
ai

+ C2
si
)

]
, C2

ai
≤ 1

1, C2
ai

> 1

∆i =


2ρi − 1 +

4(1 − ρi)(2C
2
si

+ 1)

3(C2
si

+ 1)
, C2

si
≤ 1

2ρi − 1 +
4C2

si
(1 − ρi)

(C2
si

+ 1)
, C2

si
> 1

Θi =


ρi +

ρi(1 − ρi)(C
2
ai
− 1)(1 + C2

ai
+ ρiC

2
si
)

1 + ρi(C2
si
− 1) + ρ2

i (4C
2
ai

+ C2
si
)

, C2
ai
≤ 1

ρi +
4ρ2

i (1 − ρi)(C
2
ai
− 1)

C2
ai

+ ρ2
i (4C

2
ai

+ C2
si
)
, C2

ai
> 1
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Further, denote the flow time of orders at the station i, i = 0, 1, 2, by ti. By using
(5) and (6), the expectation and variance of flow time ti at the station i are obtained as

E[ ti ] = E[wi ] +
1

µi

, (7)

V[ ti ] = V[wi ] +
C2

si

µ2
i

. (8)

At last, the expectation and variance of lead time t are given by

E[ t ] = E[ t0 ] + pE[ t1 ] + (1 − p)E[ t2 ], (9)

V[ t ] = V[ t0 ] + pV[ t1 ] + (1 − p)V[ t2 ] + p(1 − p) (E[ t1 ] − E[ t2 ])2 . (10)

For the details, see appendix A.

4. Decision of optimal production allocation

In this section, we construct an evaluation function composed of production and tardiness
costs and show a procedure for deciding a new planning of production allocation using
the constructed evaluation function. We define the evaluation function per unit item as
follows:

C(p) = c0 + pc1 + (1 − p)c2 + b · E[t − L]+. (11)

Then, the respective term from first to third expresses the production cost at the plant
and the last term means the penalty due to tardiness of delivery. In (11), E[t − L]+

implies the average tardiness period of delivery behind the prescribed schedule and is
given as follows:

E[t − L]+ =
∫ ∞

L
(t − L)f(t; p)dt, (12)

where f(t; p) means a probability density function of lead time t for a given p. Then,
f(t; p) is unknown.

On decision making based on the evaluation function in (11), (12) must be evaluated
for all p. In other words, f(t; p) must be investigated in order to calculate (12). If the
distribution of lead time were known, we could evaluate C(p) and derive the optimal
production allocation plan. Although we can evaluate the expectation and variance of
lead time as mentioned in previous section, it is strictly difficult to derive the distribution
function of lead time.

Vandaele et al. [13] have proposed a procedure for approximating the distribution
of lead time using its expectation and variance. Concretely, they have given the ap-
proximate distribution of lead time based on a log-normal distribution, by letting the
expectation and variance of lead time correspond to those of log-normal distribution.
However, it can not be always guaranteed that the log-normal distribution by their ap-
proximation is the best approximate distribution of lead time. Actually, they haven’t
shown the adequacy of their approximation. We consider other procedures for evaluating
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(12) than the procedure based on the log-normal approximation by Vandaele et al. [13].
So, we consult an investigation for the inventory policy presented by Moon and Gallego
[10]. For [t − L]+ = max{0, t − L}, we obtain the following relation:

[ t − L ]+ =
| t − L | + (t − L)

2
.

Then, the following inequality is derived from the Cauchy-Schwarz’s inequality based on
the expectation and variance of lead time:

E [| t − L |] ≤
{
E[(t − L)2 ]

}1/2

=
{
V[ t ] + (E[ t ] − L)2

}1/2
.

Also, it is obvious that E[ t − L ] = E[ t ] − L. Finally, we obtain the following relation:

E[ t − L ]+ ≤ 1

2

{
V[ t ] + (E[ t ] − L)2

}1/2
+

1

2
(E[ t ] − L) . (13)

From (11) and (13), the following inequality is obtained:

C(p) ≤ c0 + pc1 + (1 − p)c2 +
b

2

{
V [ t ] + (E[ t ] − L)2

}1/2
+

b

2
(E[ t ] − L)

= CS + CD ≡ CDFA(p), (14)

where let CS ≡ c0 + pc1 + (1 − p)c2 as the production cost per unit item and CD ≡
b
2
{V[ t ] + (E[ t ] − L)2}1/2

+ b
2
(E[ t ] − L) as the tardiness cost per unit item. CDFA(p) in

(13) means an upper bound of C(p) in (11) among all the lead time distributions with the
same expectation E[ t ] and variance V[ t ]. Accordingly, we propose to employ CDFA(p)
in (13) as an alternative evaluation function instead of C(p). The evaluation technique
mentioned above is called “distribution free approach” [10]. Then, our optimization
procedure can be interpreted as a solution based on the Min-Max criterion.

5. Numerical examples and sensitivity analysis

In this section, we illustrate some numerical examples. Firstly, set the parameters for
demand as follows:

λ0 = 0.75, C2
a0

= 1.00.

Then, the parameters for production at each station are given as follows:

µ0 = 2.00, µ1 = 1.25, µ2 = 1.00,

C2
s0

= 1.00, C2
s1

= 1.00, C2
s2

= 1.00.

Further, specify the coefficients for each cost as:

c0 = 2.00, c1 = 6.50, c2 = 5.00, b = 2.00, L = 4.00.
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Figure 2: The behavior of CS, CD and CDFA(p) in p

We show the behavior of CDFA(p) in p in Figure 2. From Figure 2, it is confirmed
that CS is monotonically increased as p increases, since the production cost c1 at the
plant 1 is more expensive than one at the plant 2. On one hand, the behavior of CD is
convex in p. This is the reason why a big (or small) p brings the long queue of orders in
the plant 1 (or 2). After all, CDFA(p) is convex in p. In addition to Figure 2, we show the
numerical result for some properties such as E[ t ], V[ t ] and CDFA(p) in Table 1. From
Table 1, CDFA(p) is minimized as CDFA(p∗DFA) = 8.35 when p∗DFA = 0.46.

On one hand, Vandaele et al. [13] have assumed that the distribution of lead time is
given the log-normal distribution as mentioned in previous section. Also, there may be
some cases in which the distribution of lead time is assumed to be a plausible distribution.
In this viewpoint, the distribution free approach is a somewhat pessimistic approach
because the distribution of lead time is assumed to be unknown. However, it is extremely
difficult to derive exactly the distribution function of lead time. The distribution free
approach is considered a kind of robust solution.

Therefore, we investigate the optimal production allocation plan when the distribu-
tion of lead time is assumed to be a particular distribution. Suppose that the lead time
obeys the log-normal distribution as:

fLN(t) =
1

t
√

2πδ
exp

{
−(log t − ν)2

2δ2

}
,

where ν and δ mean the respective parameters about location and scale. By letting the
expectation and variance of lead time correspond to those of the log-normal distribution,
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Table 1: E[ t ] and V[ t ] of the lead-time and CS, CD and CDFA(p) in some p in Figure 2

p E[ t ] V[ t ] CS CD CDFA(p)
0.00 4.80 16.64 7.00 4.96 11.96
0.10 3.65 9.68 7.15 2.78 9.93
0.20 2.98 6.21 7.30 1.67 8.97
0.30 2.57 4.30 7.45 1.09 8.54
0.40 2.31 3.21 7.60 0.77 8.37
0.46 2.22 2.81 7.69 0.66 8.35
0.50 2.17 2.63 7.75 0.61 8.36
0.60 2.12 2.40 7.90 0.56 8.46
0.70 2.15 2.47 8.05 0.58 8.63
0.80 2.27 2.83 8.20 0.68 8.88
0.90 2.47 3.52 8.35 0.89 9.24
1.00 2.80 4.64 8.50 1.27 9.77

the respective parameters about location and scale are given as follows:

δ2 = log

(
V[ t ]

E[ t ]2
+ 1

)
, ν = log E[ t ] − δ2

2
.

When the log-normal distribution with ν and δ as mentioned the above is assumed to be
the distribution of lead time, we can calculate (12). Under the same condition in Figure
2, the optimal production allocation plan and the cost are obtained as

p∗LN = 0.41, CLN(p∗LN) = 8.08,

where CLN(p) implies the evaluation function by substituting the log-nomal distribu-
tion for f(t; p) in (12) and then p∗LN means the optimal production allocation plan
based on the evaluation function CLN(p). Naturally, CLN(p∗LN) is more economical than
CDFA(p∗DFA) because the distribution of lead time is given. Consider the difference
between CLN(p∗DFA) and CLN(p∗LN). The difference is called the expected value of addi-
tional information (EVAI) and expresses the largest amount that we would be willing to
pay for the knowledge about the distribution [10]. When the distribution of lead time is
assumed the log-normal distribution, the EVAI is defined as follows:

EVAILN = CLN(p∗DFA) − CLN(p∗LN).

Since EVAILN is obtained as 0.01 due to CLN(p∗DFA = 0.46) = 8.09, we would conclude
that there is not so much benefit by specifying the distribution of lead time as the
log-normal distribution in comparison with the effort to specify it.

Further, we show some numerical examples for the purpose of verifying the impact
of the variability of processing time on the allocation plan . In previous literature, it
has been reported that the variability of the processing time in many manufacturing
operations is smaller than 1 [3]. In Table 2, the parameters C2

s1
and C2

s2
are equal to
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Table 2: The behavior of the optimal production allocation rate under C2
s1

= 0.50 and/or
C2

s2
= 0.50

C2
s1

C2
s2

E[ t ] V[ t ] p∗DFA CDFA(p∗DFA)
Case 2-1 1.00 1.00 2.22 2.81 0.46 8.35
Case 2-2 0.50 1.00 2.15 2.43 0.48 8.29
Case 2-3 1.00 0.50 2.27 2.38 0.35 8.11
Case 2-4 0.50 0.50 2.21 2.11 0.37 8.07

Table 3: The behavior of the optimal production allocation rate under C2
s1

= 2.00 and/or
C2

s2
= 2.00

C2
s1

C2
s2

E[ t ] V[ t ] p∗DFA CDFA(p∗DFA)
Case 3-1 1.00 1.00 2.22 2.81 0.46 8.35
Case 3-2 2.00 1.00 2.35 3.73 0.41 8.50
Case 3-3 1.00 2.00 2.20 3.54 0.61 8.72
Case 3-4 2.00 2.00 2.37 5.21 0.54 8.98

and/or smaller than them in Table 1, where the others are the same as settings in Table
1. Then, Case 2-1 in Table 2 corresponds to the situation in Table 1. From Table 2, it
is confirmed that p∗DFA in Case 2-2 is larger than one in Case 2-1. This is brought by
the reason why the penalty due to tardiness is decreased by allocating more production
to the plant 1 with the smaller SCV. Case 2-2 and Case 2-3 are opposite cases. In Case
2-4, both SCVs of the processing time in the plants 1 and 2 become smaller. Then,
more production is allocated to the plant 2 with the smaller production cost and the
evaluation function CDFA(p∗DFA) is decreased in comparison with Case 2-1. The property
of these results is quite reasonable.

Also, Souza et al. [12] have reported that electronics remanufacturers have SCV be-
tween 1.50 and 2.00 under reverse logistics environment. Then, Souza and Ketzenberg
[11] have considered the production allocation to an ordinary manufacturer and a re-
manufacturer, where their research has considered nothing but the expectation of lead
time. In Table 3, the parameters C2

s1
and C2

s2
are equal to and /or larger than them in

Table 1, where the others are the same as settings in Table 1. Then, Case 3-1 in Table 3
corresponds to the situation in Table 1. From Table 3, it is confirmed that p∗DFA in Case
3-2 is smaller than one in Case 3-1. This is brought by the reason why the penalty due
to tardiness is decreased by allocating more production to the plant 2 with the smaller
SCV. Case 3-2 and Case 3-3 are opposite cases. In Case 3-4, both SCVs of the process-
ing time in the plants 1 and 2 becomes larger. Then, more production is allocated to
the plant 1 with the larger processing rate. The property of these results is also quite
reasonable.
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6. Concluding Remarks

In this article, we have considered the production allocation problem with the penalty
by tardiness of delivery behind the prescribed schedule under the MTO manufacturing
environment. We have described the MTO manufacturing system using the OQN model.
In the OQN analysis, each plant has been defined as the GI/G/1 queue, and then the
expectation and variance of lead time in the whole system have been evaluated. When
the distribution function of lead time is unknown, we have paid the attention to the worst
situation among all the lead time distributions with the same expectation and variance.
Further, we have applied the idea of the distribution free approach to obtaining the
quasi-optimal production allocation plan for the worst situation among all the lead time
distributions. Finally, the quasi-optimal production allocation plan has been successfully
derived using the evaluation function composed of production and tardiness costs.

In this article, we consider the production allocation to two different plants. Of
course, it would be general to formulate the model when the number of plants is n. Also,
it has been assumed that the production is allocated to plants based on the probabilistic
allocation rule in the same manner in previous investigations such as [2, 5] Perhaps,
operators may pay attention to the present queue condition in each plant in the allocation
of production to plants. The formulation of the adaptive production allocation may be
an interesting object. However, the object like this will be our future research.
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Appendix A: Derivation of (9) and (10)

In this appendix, we show the derivation of the expectation and variance of lead time
in (9) and (10). The number of visits to the station i for each order is expressed as
Ni, i = 0, 1, 2. Then, the expectation and variance of lead time are given as follows
[5, 15]:

E[ t ] =
2∑

i=0

E[Ni]E[ti]

V[ t ] =
2∑

i=0

E[Ni]V[ti] +
2∑

i=0

2∑
j=0

Cov(Ni, Nj)E[ti]E[tj]

where E[Ni ], i = 0, 1, 2, means the expected number of visits to the station i for each
order and is given as

E[Ni ] =
λi

λ0
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By the way, orders from customers always arrive at the sales center, i.e. the station
0. Then, the production flows from the station 0 to the station i, i = 1, 2, in this article.
Then, Ni, i = 1, 2, is a random variable of the Bernoulli distribution with parameters N0

and p. When i = j, Cov(Ni, Ni) means the variance of Ni. Therefore, Cov(Ni, Ni), i =
1, 2, is obtained as

Cov(Ni, Ni) = E[N2
i ] − E[Ni]

2

=


0 (i = 0)
p(1 − p) (i = 1)
(1 − p)p (i = 2)

Further, consider Cov(Ni, Nj) when i ̸= j. Cov(Ni, Nj) has the relation as:

Cov(Ni, Nj) = E[NiNj] − E[Ni]E[Nj]

Then, it is obvious that Cov(Ni, Nj) equals to Cov(Nj, Ni). When i = 0 and j ̸= 0, the
covariance Cov(N0, Nj) is obtained as

Cov(N0, N1) = E[N0N1] − E[N0]E[N1]

= pE[N2
0 ] − pE[N0]

2

= 0

Cov(N0, N2) = E[N0N2] − E[N0]E[N2]

= (1 − p)E[N2
0 ] − (1 − p)E[N0]

2

= 0

Cov(Ni, Nj) is evaluated as the following equation when i ̸= 0, j ̸= 0 and i ̸= j.

Cov(N1, N2) = E[N1(N0 − N1)] − E[N1]E[N2]

= pE[N2
0 ] − E[N2

1 ] − E[N1]E[N2]

= −p(1 − p)

Therefore, the expectation and variance of lead time are obtained as (9) and (10), re-
spectively.
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