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Abstract

Shabani S. (2017): Modelling and mapping of soil damage caused by harvesting in Caspian forests (Iran) using 
CART and RF data mining techniques. J. For. Sci., 63: 425–432.

Controlling the soil damage caused by forest harvesting has a key role in forest management due to its effect on forest 
dynamics and productivity, mainly through modifying the physical, mechanical, and hydrological context of soil. This 
study was conducted to evaluate the soil damage susceptibility in one of the Caspian forests, Iran. For this purpose, 
two data mining techniques including classification and regression tree (CART) and random forest (RF) were applied. 
A total of 224 soil damage locations were identified primarily from field surveys. Then, 10 conditioning variables were 
produced in GIS. For model performance, the outputs of the analyses were compared with the field-verified soil dam-
age locations. Our results show that slope degree, soil type, and slope aspect had the highest weight on soil damage, 
in the order of their appurtenance. Additionally, according to the relative operating characteristics curve, RF is a more 
suitable prediction model for soil damage zoning compared to CART. In summary, the findings of this study suggest 
that soil damage susceptibility mapping is an effective technique for Caspian forests, Iran.
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Soil damage is among the challenging causes for 
forestry operations, forest management activities 
(Brevik et al. 2016; Huang et al. 2017), and espe-
cially for the forest areas with ground-based skid-
ding such as Caspian forests in northern Iran. A 
considerable deal of investigations has addressed 
the soil damage such as soil compaction, rutting, 
and displacement during harvesting in these for-
ests (Najafi et al. 2009; Majnounian, Jourg-
holami 2013). Previous results indicate that soil 
damage during logging operations has different 
destructive effects such as modifying soil structur-
al properties (Najafi et al. 2009), increasing soil 
bulk density (Ezzati et al. 2014), restricting wa-
ter and air transport into soils (Cambi et al. 2015), 
decreasing soil porosity (Agherkakli et al. 2014), 
intensifying soil erosion risk (Ezzati et al. 2014) 

and reducing soil sustainability (Majnounian, 
Jourgholami 2013).

Although soil degradation has few benefits in the 
plant growth, its harmful impacts are much more 
common (Kozlowski 1999). Most of the studies re-
lated to soil damage in Caspian forests deal with soil 
damage assessment or recovery (Ezzati et al. 2014; 
Naghdi et al. 2014), however, their findings do not 
seem to be useful in mitigation of soil damage.

One of the fundamental activities in soil damage 
prevention is to make soil damage susceptibility 
maps by prediction models (Pereira et al. 2017). 
These maps help to divide the forest area into sub-
divisions according to soil susceptibility levels for 
harvesting operations (Pourghasemi et al. 2012a). 
Soil damage susceptibility can be provided using a 
number of different techniques such as linear re-
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gression (Singh, Kushwaha 2011), generalized 
additive models (Goetz et al. 2011), frequency 
ratio model (Pourghasemi et al. 2012a), neuro-
fuzzy (Manel et al. 1999) and tree-based methods 
(Cutler et al. 2007). Despite the widespread use 
of these methods in other sciences, they have been 
only limited to a linear model which is performed 
to predict soil damage in forest ecosystems (Sowa, 
Kulak 2008; Reeves et al. 2012).

Furthermore, in a few soil damage and hazard 
mappings, however, independent performance of 
statistical models for soil damage hazard or damage 
assessment is lacking. Thus, a random-based separa-
tion of soil damage, which is also done in the present 
work, is the most acceptable method of performance 
(van Westen et al. 2003). The other goals pursued 
by conducting this work are: (i) to employ classifica-
tion and regression tree (CART) and random forest 
(RF) modelling as two old and new tree-based meth-
od with a bivariate statistical approach to define the 
physical parameters contributing to the occurrence 
of soil damage at Lalis forests, Iran, (ii) to prepare a 
soil damage hazard map that possesses high predic-
tion and success rates for the study area.

MATERIAL AND METHODS

Study area. The study area with a coverage area 
of around 1,500 ha is located in the Caspian forests 
in northern Iran (Fig. 1). The climate of this mixed 

hardwood forest is humid and moderate, with tem-
peratures ranging from 3 to 25°C and 1,000 mm 
of annual precipitation (Administration of Now-
shahr Natural Resources 2016). The soil type is 
classified as clay, silty-loamy and clay-loamy. The 
dominant tree species are beech (Fagus orientalis 
Lipsky), hornbeam (Carpinus betulus Linnaeus), 
maple (Acer velutinum Boissier), and alder (Alnus 
subcordata C.A. von Meyer) (Administration of 
Nowshahr Natural Resources 2016). In the study 
area, stands have an uneven-aged structure and 
2.5 m3·ha–1·yr–1 volume increment that is managed 
under a single selection system.

In these forests, ground-based extraction sys-
tems are commonly used as the primary bunching 
extraction and transportation system by all logging 
companies. A steel-tracked skidder Zetor LTT-
100A (KEMP company, Russia) equipped with a 
winch (90,000 MPa pulling force) was used to re-
move the timber from the study area to the landing 
(Table 1). Primary skid trails leaving the road were 
constructed and used only by the skidder.

Extraction was done between June and July 
(2009–2016). At the time of logging and sampling, 
weather conditions were dry and warm for more 
than one month, so that average soil-water content 
at the time of logging was 29%.

Data collection. The selection of forest site fac-
tors for susceptibility prediction depends on the 
availability of database and resources and terrain 
attributes (Pourghasemi et al. 2012b). The pre-

Fig. 1. Study area and traversed transect maps
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dictor variables were determined according to field 
observations and then converted into a vector type 
spatial database using the GIS. A digital elevation 
model (DEM) by 10 m interval contours was cre-
ated from the 1:25,000 scale topographical map.

Slope degree, slope aspect, altitude, slope length 
(LS), topographic position index, and topographic 
wetness index were produced by the mentioned 
DEM. The soil type map was obtained from a 
1:100,000 scale geological map. The forest type and 
density were classified using a Landsat Thematic 
Mapper and were verified by a field survey. In ad-
dition, the buffers of road and skid trails were pro-
vided at 50 m intervals.

During the field survey in the study area, a total 
of 224 soil damage spots were mapped. The modes 
of failure for the soil damage identified in the study 
area were divided into four classes (low, medium, 
high and very high) in accordance with the soil 
damage classification system proposed by Page-
Dumroese et al. (2009).

Using this method, 19,350 m traversing transects 
were randomly located (Fig. 1) in such a way that 
387 monitoring points were set at 50 m intervals on 
transects. A monitoring point is defined as a 15 cm 
diameter circular area around. In this work, 224 
(56 monitoring points for each soil damage class) 
monitoring points out of 387 were determined 
randomly.

Soil damage modelling

CART. CART is an efficient prediction tool since 
it provides intuitive results that are easy to visualize 
(Cosman et al. 1993). CART is capable of dealing 
with any type of predictor variables such as numer-
ic, binomial, ordinal categorical as well as providing 
a simple predictor preparation method (Steinberg 
2009). Furthermore, a difference in measurement 

scales between predictor variables and monotonic 
variations cannot affect model outcomes.

CART includes a non-parametric regression 
method that grows a decision tree ensemble on a 
binomial partitioning algorithm that iteratively 
splits the predictors as long as the groups are ho-
mogeneous or contain not fewer observations than 
a user-defined threshold. The mean of the response 
values in each node presents the terminal node 
predicted value (Breiman et al. 1984).

Regression trees can cover missing data by surro-
gates, thus providing an advantage for dealing with 
outlier data (Huang et al. 2004). In addition to the 
regression modelling, the hierarchical structure 
of classification allows model interaction between 
predictor variables (Provost, Domingos 2002).

In the current study CART was made by the rpart 
package, as a function of R software (Version 3.2.5, 
2016). In order to prune the decision tree, Gini co-
efficient via complexity parameter ratio was used to 
determine the most important predictors.

The Gini coefficient (G) measure of impurity of a 
node t was calculated using Eq. 1, where the target 
is a binary value (Steinberg 2009):

      221 1G t p t p t    � (1)

where:
p(t)	– �(possibly weighted) relative frequency of class 1 in 

the node.

RF. RF includes an ensemble of classification and 
regression trees (Breiman 2001; Liaw, Wiener 
2002). In this new technique, random feature selec-
tion incorporates with bagging method. Firstly, train-
ing data are divided into subsamples and each tree 
is grown on a bootstrap subsample. In the next step, 
best split for a random subset of predictor variables 
is selected at each node. The number of trees and the 
number of required predictor variables for splitting at 
each node have a key role in RF model. The number of 
required predictor variables for splitting at each node 
is the square root of the number of predictor vari-
ables. Like in the CART method, the Gini coefficient 
is calculated to select the most important variables. 
For the kth class classification problem the Gini index 
is defined according to Eq. 2 (Genuer et al. 2010):

 1k k
k

G P P  � (2)

where:
Pk	– �proportion of observations at the node in the kth 

class.

The index is minimized when one of the Pk takes 
the value 1 and all the others have the value 0 

Table 1. Technical details of the Zetor LTT-100A steel-
tracked skidder (KEMP Company, Russia)

Length (m) 6
Width (m) 2.6
Track (m) 3
Operation power (kW) 88.2
Ground unit pressure (MPa) 0.049
Track drive sprockets cast-steel toothed wheel
Pressure in hydraulic system (MPa) 14
Number of teeth 9
Width of caterpillar (cm) 44
Tractor mass maintenance (kg) 11,200
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(Cutler et al. 2007). This model was performed 
by randomForest package in R software.

Models performance. Out of the 224 identified 
soil damage cases, 157 (70%) locations were as-
signed randomly for the soil damage susceptibil-
ity maps as training, while the remaining 67 (30%) 
cases were used for the model verification. To ap-
ply validation, we used success and prediction rates 
and relative operating characteristics (ROC) curve, 
Akaike information criterion (AIC) value (Eq. 3), 
log likelihood (LL) ratio test (Eq. 4) and pseudo 
R2 (Eq. 5) by comparing the existing soil damage 
locations:

 AIC ln RMSE 2n P  � (3)

where:
n	 – number of observations,
RMSE	– root mean squared error,
P	 – number of model parameters.

LL 2  ln OiOi
Ei

    
 

� (4)

where:
Oi	 – observed value,
Ei	 – expected value.

2 null deviance residual deviancePseudo 100
null deviance

R    
 

� (5)

Spatial predictions. Spatial predictions were 
built in ArcGIS (Version 9.3, 2009). Models were 
exported from R software as a text file and inter-
preted in ArcGIS by an avenue script prepared 
using rpart and randomForest packages. Lookup 
tables describe each response curve point by point. 
The obtained pixel values were then classified 
based on class 0 (low), class 1 (moderate), class 2 
(high) and class 3 (very high).

RESULTS

Descriptive statistic results of topographic fac-
tors and the other site conditions are presented in 
Table 2.

ROC curve is frequently used for assessing the 
model performance. The success-rate results were 
obtained using the soil damage grid cells in the 
training dataset. Fig. 2a shows the success-rate 
curves of the two soil damage susceptibility maps 
(obtained from the CART and RF models) in this 
study. It could be observed that the RF model has a 
higher area under the curve values (0.972) than the 
CART model (0.873). The results of the prediction 
rates are illustrated in Fig. 2b. These curves indi-
cate that the RF model (0.957) has a relatively high-
er prediction performance than the CART model 
(0.861). Table 3 presents AIC and log likelihood in-
dex, and pseudo R2 for the performance of models. 
The comparison of model performance between 

Table 2. Descriptive statistic results of predictor variables 
(mean ± standard deviation)

Slope (°) 29.04 ± 2.17
Aspect E, W, NW
Altitude (m) 1,499.47 ± 211.55
Slope length (m) 6.99 ± 5.01
Topographic position index canyons, slopes, ridges
Topographic wetness index 5.75 ± 1.74

Soil type silty-loamy,  
clayey-loamy, clayey

Forest type
pure beech, beech-hornbeam, 

mixed stand (hornbeam-
beech-maple-alder)

Forest density (ha) 147.37 ± 6.60
Road (m·ha–1) 16.47
Skid trail (m·ha–1) 14.13

Fig. 2. Success (a), prediction (b) rate curve for the susceptibility maps produced in this study
AUC – area under the curve, CART – classification and regression tree, RF – random forest
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CART and RF shows that differences between the 
models are maximal (Table 3), as RF had a better 
performance than CART.

The slope aspect was the only effective predictor 
of soil susceptibility in the final model of CART, 
prior to pruning, where the main variables were 
soil type, aspect, LS, forest density, and altitude, in 
the order their appearance (Table 4). Slope aspect 
was the most important variable in the RF model, 
whereas slope degree greater than 30° (Fig. 3a) had 
a higher impact on soil susceptibility maps. Fur-
thermore, clay soil type (Fig. 3b) and eastern aspect 
(Fig. 3c) were significant contributors to the soil 
damage occurrence. Table 5 displays the mean de-
crease in the Gini coefficient for variables prior to 
pruning in the RF model.

There were only two susceptibility classes (i.e., 
low and very high) in CART (Fig. 4a, Table 6). In 
comparison, the forest areas were divided into four 
classes by RF, with very high and low zones holding 
their maximum areal area (Fig. 4b, Table 6).

DISCUSSION

Over the past several decades, forest managers 
have been determined to mitigate harvesting dam-
age. The proper implementation of a prediction 
model by forest managers or regulatory staff would 
definitely enable to predict environmental impacts 

for a wide range of forest operations. Forest man-
agement demands must be based on highly devel-
oped models; otherwise, irreparable damage would 
be inevitable. Although soil damage modelling and 
prediction has attracted more attention recently, it 
is still a serious challenge. The present study pro-
vided an application of two different soil suscepti-
bility predictive models. The results suggested that 
RF has a better predictive performance than CART. 
The map produced via CART was more problem-
atic compared to RF due to lacking the medium and 
high sub-classes. There are fundamental differenc-
es between two algorithms; however, they are an 
extension of the classification and regression tree 

Table 3. Performance results of classification and regres-
sion trees (CARTs) and random forests (RFs)

AIC Log likelihood Pseudo R2

CART training –134.35 –69.42 0.68
validation –84.16 –11.37 0.59

RF training –292.08 –203.09 0.95
validation –206.17 –113.26 0.92

AIC – Akaike information criterion

Table 4. Importance of variables based on classification 
and regression tree prior to pruning

Importance
Slope 23
Soil type 18
Slope aspect 16
Slope length 16
Forest density 15
Altitude 12

Table 5. Relative importance of variables based on random 
forest prior to pruning

Mean decrease Gini
Slope length 8.86
Topographic wetness index 2.15
Altitude 6.20
Slope aspect 14.45
Slope degree 44.68
Topographic position index 0.84
Forest density 6.55
Forest type 1.99
Distance to road and skid trail 1.50
Soil type 23.52

Fig. 3. Partial dependence plot according to random forest model: slope (a), soil type (b), slope aspect (c)
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(De’ath, Fabricius 2000). CART builds one tree 
with several bins that assign pixels to a mean value, 
while RF builds thousands of trees that allow each 
pixel being assigned with a more refined value and 
making reliable RF findings (Peters et al. 2007). 

Soil damage maps in the forest area show rec-
ognizable patterns; the outcomes of our study 
suggest that these maps are influenced by both 
physiological and soil factors nonlinearly; thus a 
non-parametric technique is considered desirable 
for modelling soil damage susceptibility. In their fi-
nal form, both models consisted of a smaller num-
ber of variables selected from the original set of 
10; CART consisted of one variable (slope aspect) 
and RF of 3 variables (slope degree, soil type and 
slope aspect). Other researchers also reported that 
a parsimonious prediction model could be more 
stable and easier to generalize, especially at a broad 
spatial scale (Peters et al. 2007; Oliveira et al. 
2012). The previous studies showed a vast area of 
the Caspian forests, mostly located on steep slopes, 

highly sensitive to soil damage during forest har-
vesting (Najafi et al. 2009; Borrelli, Schütt 
2014). When logs are pulled along a steep slope, 
load control and skidder movement would be dif-
ficult. As a result, the soil would experience high 
pressures. In the same conditions of soil tension, 
steep slope receives greater damage compared to 
gentle slope due to altering the forest hydrological 
function and soil morphological process (Laffan 
et al. 2001; Moore, Wondzell 2005). Therefore, 
it was assumed that slope aspect carries a high 
weight in determining the hazard zoning status 
and steep slope can be called an ample window of 
damage (Cerdà, Doerr 2005; Cerdà, Lasanta 
2005). Additionally, exposing the mineral soil on 
steep slope is the result of the erosive power (ac-
cording to high and very high sub-classes) which 
is related to the soil type impact (Imaizumi et al. 
2007; Imaizumi, Sidle 2012). Sowa and Kulak 
(2008) reported that the terrain slope plays an im-
portant role in soil damage modelling of mountain 
forests, as the skidder travel is not likely restricted 
to designated skid trails.

According to Ampoorter et al. (2010), clayey and 
clay-loamy soils are more vulnerable to damage than 
coarse-grained soils. The high susceptibility level for 
clayey type is not therefore surprising, as these soils 
are prone to compaction and leaching, which are 
the representative characteristics in high and very 

Table 6. Covered area percentage for soil damage zones 
in sub-classes

Model Low Moderate High Very high
CART 75.64 – – 24.36
RF 30.40 21.83 16.65 31.12

CART – classification and regression tree, RF – random forest

Fig. 4. Soil damage susceptibility map produced by classification and regression tree (a), random forest (b)

(a)� (b)



J. FOR. SCI., 63, 2017 (9): 425–432	 431

high soil susceptibility sub-classes. Furthermore, the 
fine-textured soil has a higher vulnerability to degra-
dation than other types (Aust et al. 1998).

Although slope aspect played a smaller role, it is 
still the most important in the level of soil damage 
resulting from timber skidding. Our results showed 
that forest sites with northeastern and eastern as-
pects are more exposed to damage than other as-
pects, probably due to microclimate-related condi-
tions (Reeves et al. 2012).

The slope aspect conditions associated with slope 
and soil type make them conducive to the reduced 
impact of logging, which is often prescribed as the 
best management practice since it mitigates soil 
damage (Page-Dumroese et al. 2010a, b).

CONCLUSIONS

In the present work, the soil damage susceptibil-
ity was predicted by two tree ensemble techniques 
for a Caspian forest, Iran. The potentially high 
soil damage risks of the area were quantitatively 
observed on slope steeper than 30°, clayey and 
clay-loamy soil types, and northeast and eastern 
aspects. Our findings indicated that soil suscepti-
bility maps predicted using RF provide a consider-
ably higher prediction compared to maps devel-
oped using CART. The approach developed in the 
present work can support management objectives 
by providing soil conservation protocols and sus-
ceptibility maps in the other forest types.
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