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Abstract— Lattice-based cryptography, one of the leading
candidates for post-quantum security, relies heavily on discrete
Gaussian samplers to provide necessary uncertainty, obfuscating
computations on secret information. For reconfigurable hard-
ware, the cumulative distribution table (CDT) scheme has pre-
viously been shown to achieve the highest throughput and the
smallest resource utilisation, easily outperforming other existing
samplers. However, the CDT sampler does not scale well. In
fact, for large parameters, the lookup tables required are far too
large to be practically implemented. This research proposes a
hierarchy of multiple smaller samplers, extending the Gaussian
convolution lemma to compute optimal parameters, where the
individual samplers require much smaller lookup tables. A large
range of parameter sets, covering encryption, signatures, and
key exchange are evaluated. Hardware-optimised parameters are
formulated and a practical implementation on Xilinx Artix-
7 FPGA device is realised. The proposed sampling designs
demonstrate promising performance on reconfigurable hardware,
even for large parameters, that were otherwise thought infeasible.
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I. INTRODUCTION

Post-quantum (or quantum-safe) cryptography has seen
a substantial expansion, due to recent advances in scalable
quantum computing. It is believed that such a device would
compromise the security of all current public-key crypto-
graphic algorithms used for secure communication, based on
the hardness of factoring prime numbers (RSA) or the discrete
logarithm problem (ECC/ECDSA). The need to transition
towards quantum-safe cryptography is reflected by the stance
of government agencies, including CNSS and CESG [1], [2],
and a NIST call for quantum-safe algorithms [3]. Among
the quantum-safe cryptographic schemes proposed, lattice-
based cryptography has emerged as an appealing candidate,
due to its security; offering average-case to worst-case hard-
ness, its efficiency; outperforming other quantum-safe and
classical software or hardware architectures, and versatility;
showing suitability for advanced cryptographic services such
as identity-based encryption (IBE) and fully-homomorphic
encryption, as well as standard primitives such as encryption,
signatures, and key exchange [4].

Almost all lattice-based cryptographic schemes require
sampling from an error distribution, usually a discrete Gaus-
sian distribution. This error hides computations on secret-
key data within learning with errors (LWE) or short integer

§This research was completed whilst the author was at CSIT, Queen’s
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solution (SIS) based cryptographic schemes1. The use of
discrete Gaussian samplers also enables lattice-based schemes
to provide compact ciphertexts or signatures, as well as smaller
key sizes, and in general efficient instantiations.

Being one of the main modules within lattice-based cryp-
tography, the discrete Gaussian sampler must be efficient to
avoid excessive resource occupation or performance degra-
dation. Practical architectures of discrete Gaussian samplers
have been proposed [5]–[11], however, to date all of them are
designed on a case-by-case basis and there has yet been a
proposal for a generic hardware design.

This paper proposes a scalable discrete Gaussian sampling
template suitable for all lattice-based cryptographic appli-
cations. The design combines the use of Gaussian convo-
lutions [12] with an efficient constant-time cumulative dis-
tribution table (CDT) [13] sampler to guarantee reusability,
high performance, and time-independence. Previous research
demonstrated that the CDT sampling technique achieves better
performance, with small resource utilisation, compared to the
other sampling techniques [5]. However, the CDT scalability
problem was not addressed, limiting the possible practical use
of this approach in schemes characterised by large parameters
[14]. This research addresses this issue, presenting the follow-
ing three main contributions.

Firstly, a discrete Gaussian sampler template is formulated
to demonstrate that a number of smaller samplers can be
combined, in parallel, to produce a sample from much larger
parameters, via convolutions. As such, inconceivably large
standard deviations, such as those in Dilithium-G [14], become
feasible and efficient when implemented in hardware. Further-
more, the use of a hierarchical structure for sampling simplifies
the application of side-channel countermeasures, and limits
their overhead in terms of performance and area occupation.

Secondly, through optimised parameter selection for Gaus-
sian convolutions, this research enables reusability for smaller
discrete Gaussian samplers in multiple cryptographic schemes.

Thirdly, different lattice-based cryptographic primitives are
considered, including Ring-LWE [15] for encryption, BLISS
[16] and Dilithium-G [14] for signatures, and New Hope
[17] and BCNS [18] for key exchange. Hardware designs are
proposed, which can be used for each scheme considered.

1This also applies to Ring-LWE, Ring-SIS, Module-LWE, and Module-
SIS based cryptographic schemes.



II. DISCRETE GAUSSIAN SAMPLING

A. Preliminaries

The discrete Gaussian distribution, DZ,σ , is considered
over the integers Z, with mean µ and standard deviation σ, and
is defined as ρσ(x) = exp(−x

2

2σ2 ) for all integers x ∈ Z. The
probability of sampling a value x ∈ Z from DZ,σ is calculated
as ρσ(x)/Sσ , where Sσ = ρσ(Z) =

∑∞
k=−∞ ρσ(k) ≈

√
2πσ.

All parameters are fixed and known in advance, where µ
is almost always set to 0, and σ varies depending on the
application. Two other parameters are defined so that the
discrete Gaussian distribution, which has infinite precision and
infinitely long tails, can be used in practice. These are the
precision λ and tail-cut τ parameters, both of which depend
on the target security level of the cryptographic scheme.

Straightforward optimisations can be used to simplify dis-
crete Gaussian sampling. One such optimisation is to only
consider the positive integers, which due to the distribution’s
symmetry, halves the table size. Thus, it suffices to sample
from Z+ proportional to ρ(x) for all x > 0 and to set ρ(0)/2
for x = 0, where a sign bit is used to output values over Z.

B. Gaussian Convolutions

Another technique to reduce table size and maximise
throughput is by virtue of Gaussian convolutions [12], [13].
The main idea, proposed by Pöppelmann et al. [10], is to
use Peikert’s convolution lemma [12], [13] with the Kullback-
Leibler divergence, so that discrete Gaussian samples from a
much smaller standard deviation (σ′) can be combined to form
a sample from a much larger standard deviation σ.

Referring to [10], [12], [13] for the formal definitions of
the smoothing parameter (η) and Kullback-Leibler divergence,
respectively, the adaption in [10] states:

Lemma 1. Let x1 ← DZ,σ1 , x2 ← DkZ,σ2 for some positive
real σ1, σ2 and let σ−23 = σ−21 + σ−22 and σ2 = σ2

1 + σ2
2 . For

any ε ∈ (0, 12 ) if σ1 ≥ ηε(Z)/
√
2π and σ3 ≥ ηε(kZ)/

√
2π,

then (“perfect”) distribution P of x1 + x2 verifies

DKL(P||DZ,σ) ≤ 2
(
1−

(1 + ε

1− ε

)2)2
≈ 32ε2.

Proof: The proof of this lemma is referred to in [10].

Utilising Lemma 1 minimises the standard deviation re-
quired. For the BLISS signature scheme [10], Lemma 1 is
satisfied by setting k = 11, which means σ′ = σ/

√
1 + k2 ≈

19.53, and by sampling twice x′1, x
′
2 ← DZ,σ′ a value

x ← DZ,σ is built as x = x′1 + 11x′2. The use of the smaller
σ′ means that precomputed tables within the CDT sampler are
≈11x smaller, with the requirement of sampling twice. This
idea is further extended for σ′ = 19.53, where two smaller
samples (denoted σ′′) can be combined to form a sample from
σ′, meaning four samples from standard deviation σ′′ can be
combined to form a sample with standard deviation σ.

This technique is essential for the Dilithium-G signature
scheme [14], which has standard deviation σ = 17900.
This research proposes parameters which make it possible to
reuse the same Gaussian convolution parameters in BLISS
for Dilithium-G parameter sets. Due to this approach, the

TABLE I: Parameter sets for proposed discrete Gaussian
hardware architectures, for Ring-LWE encryption [15], [20],
[21], BLISS [16] and Dilithium-G [14] signatures, and New
Hope [17] and BCNS [18] key exchange schemes.

Convolution Levels

Type Cryptographic Security Std. L1 L2 L3
Scheme (bits) Dev. (σ) (k, σ′) (k′, σ′′) (k′′, σ′′′)

KEX New Hope 200 2.83 (-,-) (-,-) (-,-)
BCNS 128 3.19 (1,2.26) (-,-) (-,-)

Enc. Ring-LWE 128 4.52 (1,3.19) (-,-) (-,-)

Sign.

BLISS-I 128 215 (11,19.53) (3, 6.18) (-,-)
BLISS-II 128 107 (8, 13.27) (2, 5.94) (-,-)
BLISS-III 160 250 (12,20.76) (3, 6.57) (-,-)
BLISS-IV 192 271 (13,20.78) (3, 6.57) (-,-)

Dilithium-G-I 91 19200 (89,215.69) (11,19.53) (3,6.18)
Dilithium-G-II 129 17900 (83,215.69) (11,19.53) (3,6.18)
Dilithium-G-III 158 12400 (57,215.69) (11,19.53) (3,6.18)

Dilithium-G signature can compute a sample requiring only
12kB and 8 clock cycles (instead of the previous 33kB and 18
clock cycles per sample) and thus become practical.

The use of convolutions was also shown in a recent
software-optimised discrete Gaussian sampler by Micciancio
and Walter [19], designed to be generic and constant-time,
which also includes a convolution-finding algorithm. Our
research explores additionally hardware-optimised parameters
for the convolutions, selected to achieve efficiency, reusability,
and constant runtime, as will be detailed in Section III.

C. CDT Sampling

The use of discrete Gaussian sampling based on a large
cumulative distribution table (CDT) was first proposed by
Peikert [13], and adapted by Ducas et al. [16] for BLISS.
The CDT sampler requires a precomputed table of discrete
Gaussian cumulative distribution function (CDF) values. Given
the CDF values S[·], a sample r ∈ [0, 1) is drawn uniformly,
with λ bits of precision. The desired sample, x, is found
satisfying interval S[x] ≤ r < S[x + 1]. Since the discrete
Gaussian CDF is a sorted table in descending order, the binary
search algorithm can be used to find the position of the target
value. The search space, comprising initially of the entire CDT
(N samples), is dichotomously exhausted in every iteration
of the algorithm, where the algorithm complexity is fixed to
dlog2(N)e. If the table size is fixed as a power of 2, the runtime
of the binary search algorithm is constant, which is a desirable
additional property of the CDT sampler, since it improves the
resistance against physical attacks.

III. METHODOLOGY FOR HIERARCHICAL SAMPLERS

The parameters for the cryptographic schemes considered
in this paper and the proposed convolution parameters are
summarised in Table I. For this research, λ = 80 and 128 are
considered, to demonstrate performance at varying precision
levels. The tail-cut is dependent on the precision parameter
and is defined as τ =

√
λ× 2 ln (2).

The inequalities in Lemma 1 set the range for k, essentially
a bound so that the actual distribution sampled is within 2−128

from the required theoretical distribution (P). Once this value
is decided, the smaller target standard deviation can be found
by calculating σ′ = σ/

√
1 + k2. For example, the maximum

values for k which satisfy Lemma 1 for BLISS is k = 11
and for Dilithium-G is k = 108. The reason why k = 83 is
chosen for Dilithium-G, in Table I, is so that the corresponding



σ′ value matches with the original BLISS value as σ ≈ 215,
adding the dimension of reusability to the sampler2.

The first level convolution (L1) uses k as follows: two
samples x1, x2 ∈ Dσ′ are derived from the standard deviation
σ′, which are combined to form a sample x ∈ Dσ as:

x = x1 + kx2. (1)

This process can be repeated to further enhance the prac-
ticality of the sampler. This is referred to as convolution
levels and the different proposed levels are shown in Table
I. For each level, a new convolution constant (k) is derived,
which has to satisfy Lemma 1, using σ′ as the target standard
deviation. So for second level convolutions (L2); four samples
x1, x2, x3, x4 ∈ Dσ′′ are derived from the standard deviation
σ′′, using a new convolution constant k′, which are combined
to form a sample x ∈ Dσ as:

x = (x1 + k′x2) + k(x3 + k′x4). (2)

Finally, for the third level convolutions (L3) used in
Dilithium-G; eight samples x1, x2, . . . , x8 ∈ Dσ′′′ are derived
from the standard deviation σ′′′, using a new convolution
constant k′′, and combined to form a sample x ∈ Dσ as:

x = ((x1 + k′′x2) + k′(x3 + k′′x4))+

k((x5 + k′′x6) + k′(x7 + k′′x8)).
(3)

Using this approach, the standard deviation for BLISS can
be reduced 11x, from σ = 215 to σ′ = 19.53. The convolution
approach can also be extended to σ′ = 19.53, to gain a smaller
standard deviation, again, as σ′′ = 6.18. This is the second
level of convolutions (L2), shown in Table I.

TABLE II: Maximum standard deviation values that can fit
within 32 or 64 entry memories for CDT sampling.

32 Entry Table 64 Entry Table
Level No. Samples k/k′/k′′ Max σ k/k′/k′′ Max σ

L0 1 -/-/- 3.39 -/-/- 6.79
L1 2 1/-/- 4.80 3/-/- 21.30
L2 4 1/2/- 10.50 3/13/- 280
L3 8 1/2/5 54.75 3/13/163 45660

As the CDT sampler runs in constant-time, its runtime is
dependent on the number of rows used, that is, the CDF values.
The constant runtime is produced by fixing the number of rows
always as a power-of-two. For example, a CDF table with
entries 32 < #rows ≤ 64, will have the same performance.
Table II shows the maximum standard deviations for each table
size considered, for up to three convolution levels. Samplers
that fit within either 32 or 64 entry CDF tables are easily
reconfigurable and have the same performance.

Samplers designed in this way can be used in more than one
application. Firstly, for all Dilithium-G parameters, the same
base sampler can be used, which requires a minimal change
in the convolution constants. Moreover, the base sampler used
in Dilithium-G can be reused for BLISS-I, since all the
parameters match at the lower level. BLISS-III and BLISS-IV
as well as BCNS and Ring-LWE parameters can also all share

2Although the target standard deviation for BLISS is σ = 215, the hard-
ware design by Pöppelmann et al. [10] targets the slightly bigger σ = 215.73.
Thus, targeting σ = 215.69 is within the same bound.

the same base sampler. This discovery may have large com-
mercial impact, as companies planning to implement lattice-
based cryptographic schemes can use a much smaller subset of
base samplers for their target cryptographic implementations.
Additionally, the overall discrete Gaussian samplers utilise
significantly less memory and achieve higher throughput. Both
features are desirable in the next generation of IoT devices.

When implementing a cryptographic function, addressing
the side-channel analysis (SCA) vulnerabilities is crucial, as if
successfully compromised, an adversary can gain information
about the secret key. This is also valid for discrete Gaussian
samplers, that can be attacked using the timing or the power
channel. Timing was the first channel exploited, where the
information leaked via cache memory by a CDT based Gaus-
sian sampler was successfully extracted [22]. This attack was
carried out on software, and it is very unlikely that a similar
attack can be successfully completed in hardware. However,
countermeasures which can be applied to hardware designs
do exist. To disentangle the link between timing information
and the samples, Roy et. al proposed the use of a Fisher-
Yates [23] shuffling algorithm [8], [9]. Saarinen [24] later
suggested the shuffling be carried out twice on the set of
independently generated samples, before summation (using
Equation 1). Recent research shows that relying solely on two-
stage shuffling may not be sufficient to protect against SCA
attacks [25]. Consequently, multiple sampling and shuffling
stages together with the use of different convolution param-
eters are recommended to ensure adequate protection [25].
A further advantage of the proposed hierarchical Gaussian
sampler design approach is that this SCA countermeasure can
be adopted with ease. The convolution parameters (k) and the
related standard deviations can be easily calculated offline, and
the reconfigurable lookup tables (LUTs) can also be easily
updated. Similarly, a multi-stage sampling and shuffling can
be accommodated by inserting a shuffler at various stages.

IV. IMPLEMENTATION, RESULTS AND ANALYSIS

To evaluate the proposed hierarchical Gaussian samplers
on hardware, results are provided for one design from each
convolution level, i.e., BCNS for L0, Ring-LWE encryption
for L1, BLISS signatures for L2, and Dilithium-G signatures
for L3 from Table I. Table III depicts results for a Xilinx Artix-
7 FPGA (XC7a50tcsg325-2), using Vivado version 2016.4.
All designs exhibit constant execution time, with operating
frequency is set at 100 MHz. Results provided are for reusable
table sizes (with 32/ 64 entries), different precisions (80/ 128
bits), with and without BRAMs, and targeting lattice-based
cryptographic schemes requiring distinct standard deviations.
Performance is evaluated as operations per second (Ops/s) and
operations per second per FPGA slice (Ops/s/S).

Architecturally, a sampler has 2L independently operating
discrete Gaussian sampler state machines (where L denotes
the convolution level), performing binary search. For L = 1,
the two independent state-machines share a common dual-port
lookup table (or BRAM). The samples generated from the
two state machines (x1 and x2) are accumulated by Equation
1 to generate a single sample from the desired distribution.
Similarly for L = 2, two independently operating pairs of
state-machines need two copies of the same CDF lookup table
using Equation 2, as depicted in Figure 1.



TABLE III: Post-place and route (PAR) results for the proposed scalable discrete Gaussian samplers.
Table Implementation Precision LUT/FF/ BRAM/ Clock Ops/s Ops/s/S
Size (Convolution Level) λ Slices DSP Cycles (×106) (×106/S)

32
Entry
Table

BCNS L0
80 139/176/59 0/0 6 16.67 0.28

59/96/37 1.5/0 6 16.67 0.45

128 211/272/84 0/0 6 16.67 0.20
83/144/55 2/0 6 16.67 0.30

Ring-LWE L1
80 199/358/81 0/0 6 16.67 0.21

119/198/56 2.5/0 6 16.67 0.30

128 306/550/115 0/0 6 16.67 0.14
177/294/82 4/0 6 16.67 0.20

64
Entry
Table

BLISS-I L2
80 620/731/214 0/0 7 14.29 0.07

300/411/127 5/0 7 14.29 0.11

128 390/603/169 0/0 7 14.29 0.08
399/603/174 8/0 7 14.29 0.08

Dilithium-G L3
80 1250/1451/416 0/2 8 12.50 0.03

610/811/267 10/ 2 8 12.50 0.05

128 1796/2219/599 0/2 8 12.50 0.02
777/1195/357 16/2 8 12.50 0.04

The choice of storing the CDF tables as LUTs or in
BRAMs on the FPGA has a considerable impact on slice
consumption, as shown in Table III. For L = 3, up to 16
BRAMs can be consumed. Dilithium-G also requires two DSPs
for the multiplication of various k factors to the raw sampler
outputs (shown in Equation 3). Standard deviation values of up
to σ = 45K can comfortably fit within L3 CDT samplers using
64 entry tables, which will perform as well as Dilithium-G.
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Fig. 1: An L2 sampler, comprising of two L1 samplers, each
made up of a pair of L0 samplers, sharing a common CDT.

It is noteworthy that despite the drastic rise in the standard
deviation from L0 to L3, our hierarchical sampler architecture
enables a trivial degradation in throughput (from ≈ 16 to 12
ops/s). The convolution levels L0 and L1 require at most a 32
entry table, whilst for L2 and L3 the table size is no more than
64 entries. The table size is calculated as τ ×σ where the tail-
cut τ = 9.42 is used. Hence, for BCNS L0, with σ = 3.19,
the table size is 31. For λ precision, λ, the 32 entry table
is consequently 32 × λ bits. Since an N entry sorted table
needs no more than dlog2(N)e iterations via binary search, a
sample is generated every 5 cycles for L0 and L1 cases with
one additional cycle required to re-initialise the state-machine,
as shown in Table I. For L2, the cycle count rises to 7 due
to the larger table size. For Dilithium-G, since L3 requires 8
independent samplers, the external random number generation
logic requires a minimum of 8 cycles to populate all samplers
with a uniform random number. The number of pseudo-random
bits required (r) for each sample output is r = 2Lλ.

A Fisher-Yates shuffle state-machine for 256 samples,
implemented on the same FPGA, requires 58 LUTs, 44 Flip-
flops and 20 slices, respectively. The state-machine loops over
the entries of the 256 BRAM samples in pairs, swapping
these within randomly generated locations. The shuffler state-
machine swaps a pair of values per clock cycle, consid-
ering dual-port BRAMs from where the samples are read
and swapped values are stored. The shuffling delay can be
mitigated by using multiple shuffling stages. Resource con-
sumption per shuffler is a cost that should be considered a
trade-off for improved protection against SCA attacks.

The proposed hardware sampler for Dilithium-G is the first
to address the design of such large standard deviations. It
introduces scalability to the existing samplers [5], [7] to tackle
even larger distributions, ensures constant time execution and
facilitates stage-wise shuffling for additional SCA protection.
Alternative hardware CDT samplers exist that offer improved
throughput but are susceptible to timing attacks due to their
non-constant time execution and cannot be naively scaled for
larger distributions [6], [10], [11].

V. CONCLUSIONS

This research demonstrates the feasibility of designing dis-
crete Gaussian samplers that require large standard deviations
parameters on reconfigurable hardware, without a performance
degradation. The proposed designs are conceived to cover
a wide variety of parameters required by the state-of-the
art lattice-based cryptographic algorithms. By virtue of the
proposed hierarchical buildup of scalable Gaussian sampler de-
signs, parallel implementation is feasible. Optimised hardware
designs of samplers, suitable for the most promising lattice-
based cryptographic schemes, are presented together with their
implementations on the FPGA platform. The hierarchical build
up of constituent smaller standard deviation samplers is also
adapted to achieve improved SCA protection, by incorporating
a hierarchy of shufflers to minimise information leakage. This
methodology can also serve as a guideline in the design of
hardware efficient Gaussian samplers for a wide range of
standard deviations, as may be required in future lattice-based
cryptographic algorithms.
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