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0 Introduction

In this paper, we shall establish the existence of positive solutions for the following second

order three-point boundary value problem:

ϕ′′(t) + a(t)ϕ′(t) + b(t)ϕ(t) = −g(t, ϕ(t)), 0 ≤ t ≤ 1, (0.1)

ϕ(0) = 0, ϕ(1) = αϕ(η), (0.2)

where 0 < α < 1, 0 < η < 1.

The existence of nontrivial solutions for second order multi-point boundary value problems

has been extensively studied by applying Krasnosel’skii’s fixed point theorem, method of upper

and lower solution, Leggett-Williams fixed point theorem, theory of fixed point index, and so on

(see [1–17] and references therein). For example, in [6], by the fixed point theorems with lattice

structure, under the condition that the nonlinear term can change sign, the author has studied

the existence of nontrivial solutions of the following boundary value problems:{
−ϕ′′(t) = g(t, ϕ(t)), 0 ≤ t ≤ 1,

ϕ(0) = 0, ϕ(1) = αϕ(η),

where 0 < α < 1, 0 < η < 1, g : [0, 1]× (−∞,+∞) → (−∞,+∞) is continuous.

In [3], by means of fixed point theorem, the authors considered the existence and uniqueness

of positive solution for the following three-point boundary value problem with sign-changing
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nonlinearities: {
x′′(t) + f(t, x(t)) = 0, 0 < t < 1,

x(0) = 0, x(1) = αx(η), 0 < η < 1, 0 < α < 1.

In [9], by using Leggett-Williams fixed point theorem, the authors considered the following

second order three-point boundary value problem:{
u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1,

u′(0) = 0, u(1) = αu(η),

where 0 < α, η < 1, a : [0, 1] → (−∞, 0) is continuous, and f is allowed to change sign.

In [8], the authors considered the following second order three-point boundary value problem:{
u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(t, u) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η),
(0.3)

where α is a positive constant, 0 < η < 1, a ∈ C[0, 1], b : [0, 1] → (−∞, 0) is continuous,

h : (0, 1) → [0,∞) is continuous, f : [0, 1] × (0,+∞) → [0,+∞) is continuous, h is allowed to

be singular at t = 0, 1, and f may be singular at u = 0. By the fixed point index theorem, the

authors established the existence of positive solutions for the boundary value problem (0.3) under

some conditions concerning the first eigenvalue corresponding to the relevant linear operator.

Inspired by [1–17], we shall discuss the existence of positive solutions and multiple positive

solutions for the nonlinear second order three-point boundary value problem (0.1)–(0.2). The

main features of this paper are as follows. First, there are few papers considering the boundary

value problem (0.1)–(0.2) with sign-changing nonlinearity, i.e., when the nonlinear term g is

allowed to change sign, we shall obtain the existence of one or two positive solutions for the

boundary value problem (0.1)–(0.2) by using topological methods and analyzing the boundary

value condition. Second, we shall give some relatively weak assumptions which are easy to be

checked.

The organization of the rest of this paper is as follows. In Section 1, some preliminaries and

lemmas are given, which will be used to prove the main results. In Section 2, we shall give the

main results about the existence of positive solutions.

1 Preliminaries and Some Lemmas

In the following, we give the definition of H condition and some relevant lemmas. Let

E = C[0, 1] with the norm ‖ϕ‖ = maxt∈[0,1] |ϕ(t)|. Then E is a Banach space. Let P = {ϕ ∈ E :

ϕ(t) ≥ 0, t ∈ [0, 1]} be a cone of E.

Consider the linear integral operator

(Bϕ)(x) =

∫ 1

0

B(x, y)ϕ(y)dy, (1.1)

where B(x, y) is nonnegative continuous on [0, 1] × [0, 1]. It is obvious that B : P → P is

completely continuous. Let (B∗ψ)(x) =
∫ 1

0 B
∗
(x, y)ψ(y)dy, where B

∗
(x, y) = B(y, x). Let the

spectral radius r(B) �= 0. Then the spectral radius r(B∗) = r(B). By Krein-Rutman theorem,

there exists ψ∗ ∈ P \ {θ} such that
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ψ∗ =
1

r(B)
B∗ψ∗. (1.2)

For δ > 0, let

P (ψ∗, δ) =
{
ϕ ∈ P

∣∣∣∣ ∫ 1

0

ψ∗(x)ϕ(x)dx ≥ δ‖ϕ‖
}
.

Definition 1.1[1] Assume that there exists ψ∗ ∈ P \ {θ} and δ > 0 such that (1.2) is

satisfied and B maps P into P (ψ∗, δ), then the operator B defined by (1.1) is said to satisfy H

condition.

Further, let B(x, y) = k(x, y)a(y), B
∗
(x, y) = B(y, x), where k(x, y) is nonnegative contin-

uous on [0, 1]× [0, 1], a(y) is nonnegative continuous on [0, 1]. Define

(Bϕ)(x) =

∫ 1

0

B(x, y)ϕ(y)dy, (1.3)

(B∗ψ)(x) =
∫ 1

0

B
∗
(x, y)φ(y)dy.

Lemma 1.1[1] Let r(B) �= 0. And assume that there exists v(x) ∈ P \ {θ} such that

k(x, y) ≥ v(x)k(τ, y), ∀x, y, τ ∈ [0, 1].

In addition, assume that there exists ψ∗(x) ≥ 0, ψ∗(x) �≡ 0, ψ∗ = 1
r(B)B

∗ψ∗, v(x)ψ∗(x) �≡ 0.

Then the operator B defined by (1.3) satisfies H condition.

In order to prove our main results, we also need the following lemmas.

Lemma 1.2[1] Let E be an infinite Banach space, Ω ⊂ E be a bounded open set, A :

Ω → E be completely continuous. And assume that B : ∂Ω → E is completely continuous and

satisfies

(i) infx∈∂Ω ‖Bx‖ > 0,

(ii) x−Ax �= tBx, ∀x ∈ ∂Ω, t ≥ 0.

Then deg(I −A,Ω, 0) = 0.

Lemma 1.3[1] Let E be a Banach space, P ⊂ E be a cone, Ω be a bounded open set of

E. And assume that A : Ω ∩ P → P is completely continuous, and A has no fixed points on

P ∩ ∂Ω. If there exist a linear operator B : P → P and u0 ∈ P \ {θ} such that

(i) Bnu0 ≥ u0, for some natural number n;

(ii) Ax ≥ Bx, ∀x ∈ P ∩ ∂Ω.
Then deg(I −A,Ω ∩ P, 0;P ) = 0.

Lemma 1.4[10] Let a ∈ C[0, 1], b ∈ C([0, 1], (−∞, 0)). And assume that φ1 is the unique

solution of boundary value problem{
φ′′1(t) + a(t)φ′1(t) + b(t)φ1(t) = 0, 0 < t < 1,

φ1(0) = 0, φ1(1) = 1,

and φ2 is the unique solution of boundary value problem{
φ′′2(t) + a(t)φ′2(t) + b(t)φ2(t) = 0, 0 < t < 1,

φ2(0) = 1, φ2(1) = 0.
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Then φ1 is strictly increasing on [0, 1] and φ2 is strictly decreasing on [0, 1].

Lemma 1.5[10] Let a ∈ C[0, 1], b ∈ C([0, 1], (−∞, 0)). And assume that 0 < αφ1(η) < 1.

Then for any y ∈ C[0, 1], the following boundary value problem:{
u′′(t) + a(t)u′(t) + b(t)u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η)

is equivalent to the following integral equation

u(t) =

∫ 1

0

G(t, s)p(s)y(s)u(s)ds,

where

G(t, s) = k(t, s) +
αφ1(t)

1− αφ1(η)
k(η, s), (1.4)

and

k(t, s) =
1

ρ

{
φ1(t)φ2(s), 0 ≤ t ≤ s ≤ 1,
φ1(s)φ2(t), 0 ≤ s ≤ t ≤ 1,

and

ρ = φ′1(0) > 0, p(t) = exp

(∫ t

0

a(s)ds

)
.

For convenience, we list the following conditions.

(H1) a : [0, 1] → (−∞,+∞) and b : [0, 1] → (−∞, 0) are continuous; 0 < αφ1(η) < 1, where

φ1 is given in Lemma 1.4.

(H2) g : [0, 1]× (−∞,+∞) → (−∞,+∞) is continuous, g(t, 0) ≡ 0 for t ∈ [0, 1], and there

exists m > 0 such that g(t, v) ≥ −m, ∀t ∈ [0, 1], −∞ < v < +∞.

2 Main Results

Theorem 2.1 Suppose that (H1) and (H2) are satisfied. In addition, assume that there

exist continuous functions c(t) > 0, d(t) ≥ 0, h(t) > 0 and a constant r > 0 such that

g(t, v) ≥ c(t)v − d(t), ∀t ∈ [0, 1], v ≥ 0; (2.1)

g(t, v) ≤ h(t)v, ∀t ∈ [0, 1], 0 ≤ v ≤ r. (2.2)

And the spectral radius r(L∞) > 1, r(L0) ≤ 1, where

(L∞ϕ)(t) =
∫ 1

0

G(t, s)p(s)c(s)ϕ(s)ds, (2.3)

(L0ϕ)(t) =

∫ 1

0

G(t, s)p(s)h(s)ϕ(s)ds.

Then the boundary value problem (0.1)–(0.2) has at least one positive solution.

In order to prove Theorem 2.1, we first need to prove the following lemma.

Lemma 2.1 The operator L∞ defined by (2.3) satisfies H condition.

Proof Define

(L∗
∞ϕ)(t) =

∫ 1

0

G∗(t, s)p(t)c(t)ϕ(s)ds,
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where G∗(t, s) = G(s, t).

By the definition ofG∗(s, t), p(t) and c(t), there exists t0 ∈ (0, 1) such thatG∗(t0, t0)p(t0)c(t0)
> 0. So there exists [t1, t2] ⊂ [0, 1] such that G∗(t, s)p(t)c(t) > 0 for any t, s ∈ [t1, t2]. Hence, for

any t ∈ [t1, t2],

(L∗
∞ϕ)(t) =

∫ 1

0

G∗(t, s)p(t)c(t)ϕ(s)ds ≥
∫ t2

t1

G∗(t, s)p(t)c(t)ϕ(s)ds > 0.

Therefore, there exists C > 0 such that C(L∗∞ϕ)(t) ≥ ϕ(t), t ∈ [0, 1]. By Krein-Rutman theorem,

we obtain that the spectral radius r(L∗
∞) �= 0, and there exists ω∗(t) ∈ P \ {θ} such that

L∗
∞ω

∗ = r(L∗
∞)ω∗. (2.4)

By Lemma 1.4 and (1.4), we have

G(t, s) ≥ min

{
φ1(t)

‖φ1‖ ,
φ2(t)

‖φ2‖
}
G(τ, s), ∀t, s, τ ∈ [0, 1],

So

G(t, s)p(s)c(s) ≥ γ(t)G(τ, s)p(s)c(s), ∀t, s, τ ∈ [0, 1].

where γ(t) = min{φ1(t)
‖φ1‖ ,

φ2(t)
‖φ2‖ }. Evidently, γ(t)ω∗(t) �≡ 0, ∀t ∈ [0, 1].

Therefore, by Lemma 1.1, we get that Lemma 2.1 is valid. �
Proof of Theorem 2.1 Let

g1(t, v) =

{
g(t, v), v ≥ 0,

0, v < 0.
(2.5)

Consider the equation

ϕ′′(t) + a(t)ϕ′(t) + b(t)ϕ(t) = −g1(t, ϕ(t)), 0 ≤ t ≤ 1. (2.6)

By (2.5), we obviously know that the positive solutions of the boundary value problem (2.6),

(0.2) are the positive solutions of the boundary value problem (0.1)–(0.2).

By Lemma 1.5, the boundary value problem (2.6), (0.2) is equivalent to the following integral

equation

ϕ(t) =

∫ 1

0

G(t, s)p(s)g1(s, ϕ(s))ds.

Define

(Tϕ)(t) =

∫ 1

0

G(t, s)p(s)g1(s, ϕ(s))ds, ∀0 ≤ t ≤ 1. (2.7)

By (H1) and (H2), T, L∞, L0 : E → E are completely continuous, and the fixed points of T

defined by (2.7) are the solutions of the boundary value problem (2.6), (0.2).

From (2.1) and (H2), there exists a constant m̃ > 0 such that

g1(t, v)

c(t)
≥ −m̃, ∀t ∈ [0, 1], −∞ < v < +∞. (2.8)
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By (2.1), (2.5) and (2.8), we easily get that there exists a continuous function d̃(t) ≥ 0 such

that

g1(t, v) ≥ c(t)v − d̃(t), ∀t ∈ [0, 1], −∞ < v < +∞. (2.9)

From Lemma 2.1, there exist φ∗ ∈ P \ {θ} and δ > 0 such that φ∗ = 1
r(L∞)L

∗
∞φ

∗ and L∞
maps P into P (φ∗, δ), where P (φ∗, δ) = {ϕ ∈ P :

∫ 1

0
φ∗(t)ϕ(t)dt ≥ δ‖ϕ‖}. Let β = r(L∞) − 1.

Then β > 0.

Choose

R >

∥∥∥∥ ∫ 1

0

G(t, s)p(s)c(s)m̃ds

∥∥∥∥+
1

βδ

[
β

∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)c(s)m̃dsdt

+

∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds
]
. (2.10)

Let ϕ̃(t) be a positive eigenfunction corresponding to the eigenvalue r−1(L∞). That is,

r(L∞)ϕ̃ = L∞ϕ̃. Let ΩR = {ϕ ∈ C[0, 1] : ‖ϕ‖ < R}. We assume that there exist some ϕ ∈ ∂ΩR

and μ0 ≥ 0 such that

ϕ− Tϕ = μ0ϕ̃. (2.11)

Set q(t) =
∫ 1

0 G(t, s)p(s)c(s)m̃ds. Then, by (2.11) we get

ϕ(t) + q(t) = (Tϕ)(t) + q(t) + μ0ϕ̃ =

∫ 1

0

G(t, s)p(s)c(s)

[
g1(s, ϕ(s))

c(s)
+ m̃

]
ds+ μ0ϕ̃. (2.12)

Since L∞ : P → P (φ∗, δ), we have ϕ(t)+q(t) ∈ P (φ∗, δ) by (2.12). Therefore, by (2.9)–(2.10)

and (2.12), we obtain that∫ 1

0

φ∗(t)Tϕ(t)dt −
∫ 1

0

φ∗(t)ϕ(t)dt

≥
∫ 1

0

φ∗(t)dt
∫ 1

0

G(t, s)p(s)c(s)ϕ(s)ds−
∫ 1

0

φ∗(t)dt
∫ 1

0

G(t, s)p(s)d̃(s)ds−
∫ 1

0

φ∗(t)ϕ(t)dt

= r(L∞)

∫ 1

0

φ∗(t)ϕ(t)dt−
∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds−
∫ 1

0

φ∗(t)ϕ(t)dt

= [r(L∞)− 1]

∫ 1

0

φ∗(t)ϕ(t)dt −
∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds

= β

∫ 1

0

φ∗(t)ϕ(t)dt−
∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds

= β

∫ 1

0

φ∗(t)(ϕ(t) + q(t))dt− β

∫ 1

0

φ∗(t)q(t)dt −
∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds

≥ βδ‖ϕ+ q‖ − β

∫ 1

0

φ∗(t)q(t)dt −
∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds

≥ βδ‖ϕ‖ − βδ‖q‖ − β

∫ 1

0

φ∗(t)q(t)dt−
∫ 1

0

∫ 1

0

φ∗(t)G(t, s)p(s)d̃(s)dtds > 0. (2.13)

On the other hand, by (2.11), we have∫ 1

0

φ∗(t)ϕ(t)dt−
∫ 1

0

φ∗(t)(Tϕ)(t)dt = μ0

∫ 1

0

φ∗(t)ϕ̃(t)dt ≥ 0,
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which contradicts with (2.13). So for any ϕ ∈ ∂ΩR, μ ≥ 0, we must have ϕ−Tϕ �= μϕ̃. It follows

from Lemma 1.2 that

deg(I − T,ΩR, 0) = 0. (2.14)

When R takes an arbitrary large number, (2.14) is valid. So by (2.14), we get that

ind(I − T,∞) = 0. (2.15)

Let Ωr = {ϕ ∈ C[0, 1] : ‖ϕ‖ < r}. Without loss of generality, we assume that T has no fixed

points on ∂Ωr. In the following, we prove that for any ϕ ∈ ∂Ωr, ζ > 1, we have

Tϕ �= ζϕ. (2.16)

Otherwise, there exist ϕ0 ∈ ∂Ωr and ζ0 > 1 such that

Tϕ0 = ζ0ϕ0. (2.17)

Now we claim that

ϕ0(t) ≥ 0, ∀0 ≤ t ≤ 1. (2.18)

In fact, otherwise, we may assume that ϕ0(t) takes the minimum value at t0. By (0.2), we know

that t0 ∈ (0, 1). So ϕ0(t0) < 0, ϕ′
0(t0) = 0, ϕ′′

0 (t0) ≥ 0. Thus

ϕ′′
0 (t0) + a(t0)ϕ

′
0(t0) + b(t0)ϕ0(t0) > 0. (2.19)

But ϕ′′
0 (t0) + a(t0)ϕ

′
0(t0) + b(t0)ϕ0(t0) = −ζ0−1g1(t0, ϕ0(t0)) = 0, which contradicts with (2.19).

So (2.18) holds.

By (2.2) and (2.17), we have

ζ0ϕ0(t) = (Tϕ0)(t) =

∫ 1

0

G(t, s)p(s)g1(s, ϕ0(s))ds =

∫ 1

0

G(t, s)p(s)g(s, ϕ0(s))ds

≤
∫ 1

0

G(t, s)p(s)h(s)ϕ0(s)ds = (L0ϕ0)(t). (2.20)

By (2.20) and Krein-Rutman theorem, r(L0) ≥ ζ0 > 1, which contradicts with r(L0) ≤ 1.

Therefore, (2.16) holds. So we have

deg(I − T,Ωr, 0) = 1. (2.21)

By (2.15), (2.21) and the property of topological degree, there exists ϕ∗(t) ∈ C[0, 1], ϕ∗(t) �≡
0 such that ϕ∗(t) = (Tϕ∗)(t). Similar to the proof of (2.18), we get that ϕ∗(t) ≥ 0, t ∈ [0, 1]. So

ϕ∗(t) is a positive solution of the boundary value problem (2.6), (0.2). By (2.5), we know that

ϕ∗(t) is the positive solution of the boundary value problem (0.1)–(0.2). �
Theorem 2.2 Suppose that (H1)−(H2) and (2.1) of Theorem 2.1 are satisfied. In addition,

assume that there exist r∗ > r1 > 0 and a continuous function w(t) ≥ 0 such that

g(t, v) ≥ w(t)v, ∀t ∈ [0, 1], 0 ≤ v ≤ r1. (2.22)

g(t, r∗) < 0, ∀t ∈ [0, 1]. (2.23)
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And r(L∞) > 1, r(L1) ≥ 1, where L∞ is defined by (2.3), L1 is defined by

(L1ϕ)(t) =

∫ 1

0

G(t, s)p(s)w(s)ϕ(s)ds.

Then the boundary value problem (0.1)–(0.2) has at least two positive solutions.

Proof By the proof of Theorem 2.1, we only need to prove that the boundary value

problem (2.6), (0.2) has two nontrivial solutions. Obviously, (2.15) holds.

Let Ωr∗ = {ϕ ∈ C[0, 1] : ‖ϕ‖ < r∗}. Without loss of generality, we assume that T has no

fixed points on ∂Ω∗
r . Assume that there exist ϕ1 ∈ ∂Ωr∗ and ξ1 > 1 such that

Tϕ1 = ξ1ϕ1. (2.24)

Similar to the proof of (2.18), we know that

ϕ1(t) ≥ 0, ∀t ∈ [0, 1]. (2.25)

Since ‖ϕ1‖ = r∗ and (0.2), there exists t1 ∈ (0, 1) such that ϕ1(t1) = r∗. Then ϕ′
1(t1) = 0,

ϕ′′
1 (t1) ≤ 0. So

ϕ′′
1 (t1) + a(t1)ϕ

′
1(t1) + b(t1)ϕ1(t1) ≤ 0. (2.26)

By (2.23)–(2.24), we have

ϕ′′
1 (t1) + a(t1)ϕ

′
1(t1) + b(t1)ϕ1(t1) = −ξ−1

1 g1(t1, ϕ1(t1)) = −ξ−1
1 g(t1, r

∗) > 0,

which contradicts with (2.26). So (2.25) holds. Hence, for any ϕ ∈ ∂Ωr∗ , ξ ≥ 1, Tϕ �= ξϕ. Then

deg(I − T,Ωr∗, 0) = 1. (2.27)

Let Ωr1 = {ϕ ∈ C[0, 1] : ‖ϕ‖ < r1}. Let P = {ϕ ∈ C[0, 1] : ϕ(t) ≥ 0}. Then P is a cone

of C[0, 1]. By the definition of T and (2.5), (2.22), T maps Ωr1 into P . By the maintenance of

topological degree, we have

deg(I − T,Ωr1 , 0) = deg(I − T,Ωr1 ∩ P, 0;P ). (2.28)

By (2.22), for any ϕ ∈ ∂Ωr1 ∩ P , we get

(Tϕ)(t) =

∫ 1

0

G(t, s)p(s)g1(s, ϕ(s))ds ≥
∫ 1

0

G(t, s)p(s)w(s)ϕ(s)ds = (L1ϕ)(t). (2.29)

Since r(L1) ≥ 1, there exists ϕ̃ ∈ P \ {θ} such that L1ϕ̃ = r(L1)ϕ̃ ≥ ϕ̃. So by (2.29) and

Lemma 1.3, we have

deg(I − T,Ωr1 ∩ P, 0;P ) = 0. (2.30)

From (2.27) and (2.30), we have

deg(I − T,Ωr1, 0) = 0. (2.31)

By (2.14), (2.27)–(2.28) and (2.31), T has at least two fixed points. Hence, the boundary

value problem (2.6), (0.2) has at least two nontrivial solutions. Similar to the proof of (2.17),
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we know that the two nontrivial solutions are positive solutions. From (2.5), the boundary value

problem (0.1)–(0.2) has at least two positive solutions. �
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