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Abstract: Let A be an extension ring of a ring B, that is, B is a subring of A with
the same identity. We denote by P(A,B) the category of all the relatively projective mod-
ules. For this extension B ↪→ A, we introduce relatively Gorenstein-projective modules. As
Gorenstein-projective modules are closely related to projective modules and there are some
good results about Gorenstein dimensions, we want to give a similar relationship between rela-
tively Gorenstein-projective modules and relatively projective modules.

The main results are: (1) Let B ↪→ A be an extension of rings with the same identity.
Then the category of all the relatively Gorenstein projective modules is relatively resolving.
(2) Let B ↪→ A be an extension of rings with the same identity. If gl.dim(A,B) ≤ n, then every
relatively Gorenstein-projective module is relatively projective, where gl.dim(A,B) represents
the supreme of relatively projective dimension of all the A-modules.
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0 Introduction

Let A be an Artin algebra. In the representation theory of Artin algebra, there is a famous

finitistic dimension conjecture (see [1–2]), which says that there exists a uniform bound for

the finite projective dimensions of all finitely generated (left) A-modules of finite projective

dimension. It is over 50 years old and the conjecture has not been completely resolved. The

conjecture is very important because it is not an isolated one but closely related to some other

homological conjectures (see [12] for details).

Hochschild[8] in 1956 introduced relatively projective modules and relatively injective mod-

ules, and then the relative Tor and relative Ext functors, which we will always use in this paper.

For more relatively homological properties, one can refer to [7, 10]. Xi and Xu[13] in 2013 applied

relatively projective modules to the conjecture of finitistic dimension and proved the following:

Let A be an Artin algebra and B be a subalgebra of A such that the radical of B is a left ideal in

A. If the category of all finitely generated relatively projective A-modules is closed under taking

A-syzygies, then the conjecture of finitistic dimension is true. This interests us to study the

category of all relatively projective modules and two theorems below[14] give us an idea about

how to study it.

Proposition 0.1 Suppose that A is an Artin algebra and e is an idempotent element of

A with proj.dim(AeeAe) < ∞. If fin.dim(A) < ∞, then fin.dim(eAe) < ∞.
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Theorem 0.1 Suppose that A is an Artin algebra and e is an idempotent element of A

with G-dim(AeeAe) < ∞. If fin.dim(A) < ∞, then fin.dim(eAe) < ∞.

Comparing the two results, we can find that Gorenstein projective modules are closely

related to projective modules and have nice homological properties[9].

In order to consider the finitistic dimension conjecture and study the category of all relatively

projective modules, affected by the method above, we consider the general ring extensions and

give a new definition called relatively Gorenstein-projective module. We will prove that the

relatively Gorenstein-projective modules are closely related to relatively projective modules and

have nice homological properties. Our main results are as follows:

Theorem 0.2[14] Let B ↪→ A be an extension of rings with the same identity. Then the

category of all relatively Gorenstein projective modules is relatively resolving, in the sense that

if 0 → X ′ → X → X ′′ → 0 is an (A,B)-exact sequence in A-Mod, where X ′′ is relatively

Gorenstein projective, then X is relatively Gorenstein projective if and only if X ′ is relatively

Gorenstein projective.

Theorem 0.3[14] If gl.dim(A,B) ≤ n < ∞, then every relatively Gorenstein projective

module is relatively projective, that is, GP(A,B) = P(A,B).

The paper is organized as follows: In Section 1, we recall some definitions and basic facts.

The new definitions and properties are given in Section 2. In Section 3, we present some examples

to show the significance of this paper.

1 Preliminaries

In this section, we recall some definitions and basic results that will be used in the paper.

Throughout this paper, we assume that A is an extension ring of B, that is, B is a subring

of A with the same identity. A-Mod represents the category of all left A-modules, relatively

projective module will always be denoted by (A,B)-projective module, the category of all rela-

tively projective modules is denoted by P(A,B), I(A,B) represents the category of all relatively

injective modules, P(A) represents the category of all projective A-modules, and GP(A) repre-

sents the category of all Gorenstein projective A-modules. They are all the full subcategories of

A-Mod.

Suppose that X ⊆ A-Mod is a subcategory of A-Mod. The long exact sequence

· · · → P 1 → P 0 → P 0 → P 1 → · · ·

in A-Mod is called HomA(X ,−) exact, if applying HomA(X,−) to the sequence above is still

exact for any X ∈ X . Dually, HomA(−,X ) exact has the similar meaning.

Definition 1.1[8] Suppose that A is an extension ring of B. A short exact sequence in

A-Mod

0 → U → V → W → 0

is called (A,B)-exact, if it splits as B-modules. A long exact sequence in A-Mod is called

(A,B)-exact, if it is (A,B)-exact when splitting into short exact sequences.

Next, we give an equivalent description of (A,B)-exact sequences.

Lemma 1.1 A short exact sequence in A-Mod is (A,B)-exact if and only if the exact

sequence is HomA(P(A,B),−) exact.
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Let us recall the definitions of relatively projective module and relatively injective module.

For the details, the readers can see [8].

Definition 1.2 An A-module M is called relatively projective (or (A,B)-projective), if

for any (A,B)-exact sequence 0 → U
p−→ V

q−→ W → 0 and a homomorphism g : M → W of

A-modules, there exists a homomorphism g′ : M → V of A-modules such that g′q = g. Dually,

one can define the relatively injective module.

Remark 1.1 1) M is (A,B)-projective if and only if M is a summand of A ⊗B M . For

any Y ∈ B-Mod, A⊗B Y is (A,B)-projective.

2) For any X ∈ A-Mod, 0 → K → A⊗B X → X → 0 is (A,B)-exact, where A⊗B X → X

is the multiplication map and K is the kernel of A⊗B X → X .

Definition 1.3[13] For an A-module X , the relative projective dimension is defined to be

the minimal number n such that there is an exact sequence 0 → Pn → Pn−1 → · · · → P1 →
P0 → X → 0 satisfying:

(1) All Pj are (A,B)-projective.

(2) HomA(P(A,B),−) is exact.

If such an exact sequence does not exist, then we say that the relative projective dimension

of X is infinite. The relative global dimension represents the supremum of the relative projective

dimensions of A-modules, denoted by gl.dim(A,B).

Also, we have the relative derived functors Ext(A,B) and Tor(A,B), see [3, 8] for details. Here,

we list some properties of the relatively derived functors which will be used in the next section.

1) For relative projective module P , Extn(A,B)(P,X) = 0, for any X ∈ A-Mod, n ≥ 1.

2) Let 0 → U → V → W → 0 be an (A,B)-exact sequence, for any X ∈ A-Mod, we can get

two long exact sequences below:

0 → HomA(X,U) → HomA(X,V ) → HomA(X,W ) → Ext1(A,B)(X,U)

→ Ext1(A,B)(X,V ) → Ext1(A,B)(X,W ) → Ext2(A,B)(X,U) → · · ·

and
0 → HomA(W,X) → HomA(V,X) → HomA(U,X) → Ext1(A,B)(W,X)

→ Ext1(A,B)(V,X) → Ext1(A,B)(U,X) → Ext2(A,B)(W,X) → · · · .
3) If 0 → U → V → W → 0 is an (A,B)-exact sequence with W ∈ P(A,B), then it splits

as A-modules, that is, V ∼= U ⊕W as A-modules.

4) Applying HomA(P(A,B),−) to an arbitrary (A,B)-exact sequence is still exact.

Next, we recall the definition of Gorenstein projective module and some basic properties,

see [4–6] for details.

Definition 1.4[6] Let R be an associative ring with identity. G ∈ R-Mod is called Goren-

stein projective if there exists an exact sequence in R-Mod

P = · · · → P 1 → P 0 → P 0 → P 1 → · · ·

with the following properties:

1) All Pi and P i are projective;

2) HomR(−,P(R)) is exact;

3) G ∼= Im(P 0 → P 0).
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Remark 1.2 Every projective R-module is Gorenstein projective, that is, P(R) ⊂ GP(R).

All the images, kernel and cokernel of P are Gorenstein projective modules.

There is a main theorem about the category of all Gorenstein projective modules.

Theorem 1.1[8] The class of all Gorenstein projective modules is resolving, in the sense

that if 0 → X ′ → X → X ′′ → 0 is a short exact sequence in R-Mod, where X ′′ ∈ GP(R), then

X ′ is Gorenstein projective if and only if X is Gorenstein projective.

2 Relative Gorenstein Projective (Injective) Modules

In this section, we shall give the new definitions and the main theorems.

Definition 2.1 Let A be an extension ring of a ring B. An A-module X is called relatively

Gorenstein projective (or (A,B)-Gorenstein projective) if there exists a HomA(P(A,B),−) exact

and HomA(−,P(A,B)) exact sequence in A-Mod

P = · · · → P 1 → P 0 → P 0 → P 1 · · ·

such that X ∼= Im(P 0 → P0), where P i, P
i ∈ P(A,B) for all i.

The category of all relatively Gorenstein projective modules is denoted by GP(A,B).

Remark 2.1 By Lemma 1.1, we know that the condition HomA(P(A,B),−) exact is

equivalent to P (A,B)-exact.

2) Every (A,B)-projective module is (A,B)-Gorenstein projective. In particular, every

projective A-module is (A,B)-Gorenstein projective.

3) All the images, kernels and cokernels of P are in GP(A,B).

4) If B is semisimple, in the sense that B is semisimple as a B-module, then every (A,B)-

projective module is projective and every (A,B)-Gorenstein projective module is Gorenstein

projective, that is, P(A,B)=P(A), GP(A,B)=GP(A). For this reason, the module in GP(A,B)

is called relatively Gorenstein projective.

In fact, the categories we inferred have the following relations:

P(A)
� � ��

� �

��

P(A,B)� �

��
GP(A) GP(A,B)

Definition 2.2 Suppose that X ⊆ A-Mod is a full subcategory of A-Mod. X is called

relatively resolving if P(A) ⊆ X , and for every short (A,B)-exact sequence 0 → X ′ → X →
X ′′ → 0 with X ′′ ∈ X , the conditions X ′ ∈ X and X ∈ X are equivalent.

We get our main theorems.

Theorem 2.1 Let B ↪→ A be an extension of rings with the same identity. Then the

category of all relatively Gorenstein projective modules is relatively resolving, in the sense that

if 0 → X ′ → X → X ′′ → 0 is an (A,B)-exact sequence in A-Mod, where X ′′ is relatively

Gorenstein projective, then X is relatively Gorenstein projective if and only if X ′ is relatively

Gorenstein projective.

Theorem 2.2 If gl.dim(A,B) ≤ n < ∞, then every relatively Gorenstein projective mod-

ule is relatively projective, that is, GP(A,B) = P(A,B).
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We give an example to show that there may exist relatively Gorenstein-projective module

which is not relatively projective if gl.dim(A,B) is infinite.

Example 2.1 Let A be the path algebra given by the quiver

1◦
α

�� ◦2
β

��

with relations: αβ = βα = 0. B is the subalgebra generated by the primitive idempotent

elements of A corresponding to the vertices of the quiver. Then B is a semi-simple algebra and

every relatively projective module is projective, that is, P(A,B) = P(A). There exists an exact

sequence in A-module

· · · f−→ 1
2

g−→ 2
1

f−→ 1
2

g−→ 2
1
→ · · ·

such that the simple module S(1) ∼= Im g, so S(1) is relatively Gorenstein projective, S(1) ∈
GP(A,B) = GP(A), but S(1) /∈ P(A,B) = P(A).

Now, we prove the main theorems. First, we give some definitions and lemmas relevant to

the proof.

Definition 2.3 A right P(A,B)-resolution of an A-module M is that there exists an

(A,B)-exact sequence P+ = 0 → M → P 0 → P 1 → · · · with P i ∈ P(A,B) for all i ≥ 0.

Moreover, we say that P+ is co-proper if Hom
A
(P+, Q) is exact for all Q ∈ P(A,B).

⊥P(A,B):={X ∈ A-Mod |Exti(A,B)(X,P(A,B)) = 0, for all i > 0}.
Similar with [9, Prop. 2.3], we have the following lemma in order to describe the relatively

Gorenstein projective module.

Lemma 2.1 An A-module M is (A,B)-Gorenstein projective if and only if M ∈ ⊥P(A,B)

and admits a co-proper right P(A,B)-resolution.

Lemma 2.2 (Horseshoe Lemma) Let 0 → X ′ → X → X ′′ → 0 be a short (A,B)-exact

sequence with X ′, X ′′ ∈ GP(A,B). Suppose that 0 → X ′ → P0 → P1 → · · · is a co-proper right

P(A,B)-resolution of X ′, and 0 → X ′′ → Q0 → Q1 → · · · is a co-proper right P(A,B)-resolution

of X ′′. Then we can construct the following commutative diagram such that the middle column

is a co-proper right P(A,B)-resolution of X .

0

��

0

��

0

��
0 �� X ′ ��

��

X ��

��

X ′′ ��

��

0

0 �� P0
��

��

P0 ⊕Q0
��

��

Q0
��

��

0

0 �� P1
��

��

P1 ⊕Q1
��

��

Q1
��

��

0

...
...

...
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Proof For P0 ∈ P(A,B), we have a long exact sequence

0 → HomA(X
′′, P0) → HomA(X,P0) → HomA(X

′, P0) → Ext1(A,B)(X
′′, P0) → · · ·

and Ext1(A,B)(X
′′, P0) = 0 because X ′′ ∈ P(A,B), then we have a commutative diagram:

0

��

0

��

0

��
0 �� X ′ ��

��

X

��

��

��

X ′′ ��

��

0

0 �� P0
��

��

P0 ⊕Q0
��

��

Q0
��

��

0

0 �� K′
0

�� K �� K′′
0

�� 0

where K ′
0,K, and K ′′

0 are cokernels of each corresponding homomorphism. By Snake Lemma,

0 → K ′
0 → K → K ′′

0 → 0 is exact.

For any Q ∈ P(A,B), applying HomA(Q,−) to the commutative diagram above and by

3× 3 [11, Lemma, p. 96], we can get the following communicative diagram:

0

��

0

��

0

��
0 �� HomA(Q,X ′) ��

��

HomA(Q,X) ��

��

HomA(Q,X ′′) ��

��

0

0 �� HomA(Q,P0) ��

��

HomA(Q,P0 ⊕Q0) ��

��

HomA(Q,Q0) ��

��

0

0 �� HomA(Q,K′
0) ��

��

HomA(Q,K) ��

��

HomA(Q,K′′
0 ) ��

��

0

0 0 0

So 0 → X → P0 ⊕ Q0 → K → 0 and 0 → K ′
0 → K → K ′′

0 → 0 are both (A,B)-exact. Now

repeating the argument by using (A,B)-exact sequence 0 → K ′
0 → K → K ′′

0 → 0, we have the

result. �
Lemma 2.3 Let f : M → N be a homomorphism of A-modules and consider the following

diagram

0 �� M

f

��

�� P 0 �� P 1 �� P 2 �� · · ·

0 �� N �� Q0 �� Q1 �� Q2 �� · · ·

where the upper row is a co-proper right P(A,B)-resolution of M and the lower row is a right
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P(A,B)-resolution of N . Then f : M → N induces a chain map of complexes

0 �� P 0

f0

��

�� P 1

f1

��

�� P 2

f2

��

�� · · ·

0 �� Q0 �� Q1 �� Q2 �� · · ·

with the property that the square

0 �� M

f

��

�� P 0

f0

��
0 �� N �� Q0

commutes.

Furthermore, the chain map above is uniquely determined up to homotopy by this property.

Proof Similar to [9, Prop. 1.8] and use the fact that for any P ∈ GP(A,B), P ∈ ⊥P(A,B),

then Lemma 2.3 holds. �
Now, we can prove Theorem 2.1.

Let 0 → X ′ → X → X ′′ → 0 be an (A,B)-exact sequence with X ′′ ∈ GP(A,B). To prove

that GP(A,B) is relatively resolving, we first suppose X ′ ∈ GP(A,B). For any Q ∈ P(A,B), we

can get a long exact sequence

0 → HomA(X
′′, Q) → HomA(X,Q) → HomA(X

′, Q) → Ext1(A,B)(X
′′, Q)

→ Ext1(A,B)(X,Q) → Ext1(A,B)(X
′, Q) → · · · .

By Lemma 2.1, we know that X ′ and X ′′ are in ⊥P(A,B) ⇒ X ∈ ⊥P(A,B). Also by Lemma

2.1, both X ′ and X ′′ have a co-proper right P(A,B)-resolution, then by Lemma 2.2 (Horseshoe

Lemma), so does X . By Lemma 2.1, we finally get X ∈ P(A,B).

Next, we assume X ∈ P(A,B). Then X ∈ ⊥P(A,B), and by the long exact sequence

above, we can get X ′ ∈ ⊥P(A,B). Our aim is to give X ′ a co-proper right P(A,B)-resolution.

Suppose that X = 0 → X → P 0 → P 1 → · · · is a co-proper right P(A,B)-resolution of X .

X1 = 0 → X ′′ → Q0 → Q1 → · · · is a co-proper right P(A,B)-resolution of X ′′. Lemma 2.3

gives a chain map of X → X1, which lifts the homomorphism of X → X ′. Let C denote the

mapping cone of X → X1. Since X → X1 is quasi-isomorphism, C is exact. Actually,

C = 0 → X → P 0 ⊕X ′′ → P 1 ⊕Q0 → · · · .

For any Q ∈ P(A,B), the complex

HomA(C, Q) = · · · → HomA(P
1 ⊕Q0, Q) → HomA(P

0 ⊕X ′′, Q) → HomA(X,Q) → 0

is just isomorphic to the mapping cone of the quasi-isomorphism of HomA(X1, Q) → HomA(X, Q),



724 ADVANCES IN MATHEMATICS (CHINA) Vol. 46

so HomA(C, Q) is exact. We have the commutative diagram below:

...
...

...

0 �� P 1 ⊕Q0 ��

��

P 1 ⊕Q0 ��

��

0 ��

��

0

0 �� P 0 ��

��

P 0 ⊕X ′′ ��

��

X ′′ ��

��

0

0 �� X ′ ��

��

X ��

��

X ′′ ��

��

0

0

��

0

��

0

��

0 �� X0
�� C �� D �� 0

�
Claim: X0 is a co-proper right P(A,B)-resolution of X ′.
Since C and D are exact complexes, X0 is an exact complex in A-Mod.

X0 = 0 → X ′ → P 0 → P 1 ⊕Q0 → · · · .
Applying HomA(Q,−) to X0, we get a complex

0 → HomA(Q,X ′) → HomA(Q,P 0) → HomA(Q,P 1 ⊕Q0) → · · · .
We have known that 0 → X → P 0 → P 1 → · · · and 0 → X ′′ → Q0 → Q1 → · · · are (A,B)-

exact, so 0 → HomA(Q,X) → HomA(Q,P 0) → HomA(Q,P 1) → · · · and 0 → HomA(Q,X ′′) →
HomA(Q,Q0) → HomA(Q,Q1) → · · · are exact, then the mapping cone 0 → HomA(Q,X) →
HomA(Q,P 0) ⊕ HomA(Q,X ′′) → HomA(Q,P 1) ⊕ HomA(Q,Q0) → · · · is exact, i.e., 0 →
HomA(Q,X) → HomA(Q,P 0)⊕HomA(Q,X ′′) → HomA(Q,P 1 ⊕Q0) → HomA(Q,P 2 ⊕Q1) →
· · · is exact. Let K = coker(HomA(Q,X) → HomA(Q,P 0)⊕HomA(Q,X ′′)). Because 0 → X ′ →
X → X ′′ → 0 is an (A,B)-exact sequence, we have the commutative diagram below:

0

��

0

��
0 �� HomA(Q,X ′) ��

��

HomA(Q,X) ��

��

HomA(Q,X ′′) �� 0

0 �� HomA(Q,P0) ��

��

HomA(Q,P0)⊕ HomA(Q,X ′′) ��

��

HomA(Q,X ′′) �� 0

K

��

K

��
0 0
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Then we can get that 0 → HomA(Q,X ′) → HomA(Q,P 0) → K → 0 is exact, so 0 →
HomA(Q,X ′) → HomA(Q,P 0) → HomA(Q,P 1 ⊕ Q0) → HomA(Q,P 2 ⊕ Q1) → · · · is exact,

i.e., X0 is (A,B)-exact. Now we know that X0 is a right P(A,B)-resolution of X ′. To see that

it is co-proper, for all Q ∈ P(A,B).

0 → HomA(D, Q) → HomA(C, Q) → HomA(X0, Q) → 0

is an exact sequence of complexes. Because HomA(D, Q) and HomA(C, Q) are exact, so is

HomA(X0, Q). Finally we have that X0 is a co-proper right P(A,B)-resolution of X ′, so X ′ ∈
GP(A,B). GP(A,B) is relatively resolving.

Corollary 2.1 (Schanuel’s Lemma) Let 0 → K1 → P1 → M → 0 and 0 → K2 → P2 →
M → 0 be two (A,B)-exact sequences in A-Mod, with P1 ∈ P(A,B), P2 ∈ GP(A,B). Then

K1 ∈ GP(A,B) if and only if K2 ∈ GP(A,B).

Proof From the assumption, we can get the commutative diagram below:

0

��

0

��
K1

��

K1

��
0 �� K2

�� P1 ⊕K2
��

��

P1

��

��

��

0

0 �� K2
�� P2

��

��

M ��

��

0

0 0

So 0 → K1 → P1 ⊕K2 → P2 → 0 is exact.

Moreover, applying HomA(Q,−) to the commutative above with Q ∈ P(A,B), we can get

the following commutative diagram:

0

��

0

��
HomA(Q,K1)

��

HomA(Q,K1)

��
0 �� HomA(Q,K2) �� HomA(Q,P1 ⊕K2) ��

f

��

HomA(Q,P1) ��

��

0

0 �� HomA(Q,K2) �� HomA(Q,P2) �� HomA(Q,M) ��

��

0

0

By Snake Lemma, f is epic, so 0 → K1 → P1 ⊕K2 → P2 → 0 is (A,B)-exact. By Theorem 2.1,
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GP(A,B) is relatively resolving and closed under direct sums and summands, so K1 ∈ GP(A,B)

if and only if K2 ∈ GP(A,B). �
Further, we give the general statement without proof.

Corollary 2.2 Let 0 → Kn → Pn−1 → · · · → P0 → M → 0 and 0 → ˜Kn → ˜Pn−1 →
· · · → ˜P0 → M → 0 be two (A,B)-exact sequences in A-Mod with Pi, ˜Pi (A,B)-projective. Then

Kn ∈ GP(A,B) if and only if ˜Kn ∈ GP(A,B).

The next aim is to prove Theorem 2.2. First, we have the following lemma.

Lemma 2.4 If gl.dim(A,B) = 1, then X ∈ GP(A,B) if and only if X ∈ P(A,B), that is,

GP(A,B) = P(A,B).

Proof “⇐” Trivial.

“⇒” Because gl.dim(A,B) = 1, suppose that 0 → P1 → P0 → X → 0 is a short (A,B)-

exact sequence with P0, P1 ∈ P(A,B). By the assumption X ∈ GP(A,B), X ∈⊥ P(A,B) by

Lemma 2.1, and we have a long exact sequence

0 → HomA(X,P1) → HomA(X,P0) → HomA(X,X) → Ext1(A,B)(X,P1) → · · · ,

so the short exact sequence splits as A-modules, i.e., P0
∼= P1 ⊕ X . From the definition of

relatively projective module, we can easily know that P(A,B) is closed under direct sums and

summands, so X ∈ P(A,B). This completes the proof of the lemma. �
Proof of Theorem 2.2 Suppose gl.dim(A,B) ≤ n < ∞. For any X ∈ GP(A,B), there

exists an (A,B)-exact sequence

0 → Pn → Pn−1 → · · · → P1 → P0 → X → 0

with Pi ∈ P(A,B) for 0 ≤ i ≤ n.

Let Ki = Ker(Pi → Pi−1) for 0 ≤ i ≤ n − 1. Because 0 → K0 → P0 → X → 0 is (A,B)-

exact and X ∈ GP(A,B), by Theorem 2.1, we can get that K0 is in GP(A,B). Inductively, we

know that all Ki are in GP(A,B). In particular Kn−2 ∈ GP(A,B), and because 0 → Pn →
Pn−1 → Kn−2 → 0 is (A,B)-exact, by the process of proving Lemma 2.4 we have Kn−2 is

relatively projective. Inductively, we can get that X is in P(A,B). This finishes the proof of

Theorem 2.2. �

3 Example

In this section, we give an example related to Theorem 2.2.

Let A be the path algebra defined by the quiver

n+ 1◦ αn �� ◦ · · · ◦ α2 �� ◦ α1 �� ◦ α0 �� ◦0

with relations: αnαn−1 = · · · = α2α1 = 0. Let B be the subalgebra of A generated by α0

and the primitive idempotent elements of A corresponding to the vertices of the quiver. The

Auslander-Reiten quiver of this algebra can be drawn as follows:
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The number of non-isomorphic indecomposable modules of A is 2n+ 4.

0 1
1
0

2
1
0

3
2

4
3

· · · n+ 1
n

are the non-isomorphic indecomposable relatively projective modules, and

2 3 · · · n+ 1
2
1

are the non-relatively projective ones. For the simple module S(n + 1), there exists an exact

sequence

0 → 1
0
→

2
1
0
→ 3

2
→ · · · → n

n− 1
→ n+ 1

n
→ n+ 1 → 0.

One can check that the relatively projective dimensions of the simple modules 2, 3, · · · , n are all

less than n. For the indecomposable module 2
1 , there exists an exact sequence

0 → 1
0
→ 1⊕

2
1
0
→ 2

1
→ 0

where A⊗B
2
1
∼= 1⊕ 2

1
0
, so this short exact sequence is (A,B)-exact. Finally, we get

gl.dim(A,B) = n.
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