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On the Error Term for the Sum of the
Coefficients of Dedekind Zeta-function

Over Square Numbers
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Abstract: Suppose that E is an algebraic number field over the rational field Q. Let a(n)
be the number of integral ideals in E with norm n. Let also Δ(x) denote the remainder term in
the asymptotic formula for the average behavior

∑
n≤x(a(n

2))l. In this paper, the sharp bound
for ∫ X

1

Δ2(x)dx

is given by analytical method. This result constitutes an improvement upon that of Lü and
Yang [J. Number Theory, 2011, 131: 1924-1938] for the remainder terms on average.
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1 Introduction and Main Results

Let E be a number field of degree d over the rational field Q, and ζ(s, E) be its Dedekind

zeta-function. Thus

ζ(s, E) =
∑
a

1

(Na)s
(Re(s) > 1),

where a runs over all integral ideals of the field E, and Na is the norm of a. If a(n) denotes the

number of integral ideals in E with norm n, then we have

ζ(s, E) =

∞∑
n=1

a(n)

ns
, s = σ + it, σ > 1. (1)

It is an important problem to study the function
∑

n≤x a
l(n). In 1927, Landau[8] first proved

that ∑
n≤x

a(n) = αx+O
(
x1− 2

d+1+ε
)

for any arbitrary algebraic number field of degree d ≥ 2, where α is the residue of ζ(s, E) at its

simple pole s = 1. It is hard to improve Landau’s result. Until 1993, for any algebraic number

field of degree d ≥ 3, Nowak[11] obtained the best result
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∑
n≤x

a(n) = αx+

{
O
(
x1− 2

d+
8

d(5d+2) (log x)
10

5d+2

)
for 3 ≤ d ≤ 6,

O
(
x1− 2

d+
3

2d2 (log x)
2
d

)
for d ≥ 7.

In [1], Chandrasekharan and Good studied the l-th integral power sum of a(n) in some Galois

fields, and they showed that if E is a Galois extension of Q of degree d, then for any ε > 0 and

any integer d ≥ 2, we have

∑
n≤x

(a(n))l =xQl(log x) +O
(
x1− 2

dl
+ε),

where Ql(t) is a suitable polynomial in t of degree dl−1 − 1. Recently, Lü and Wang[9] improved

the classical result of Chandrasekharan and Good by replacing 2
dl in the error term with 3

dl+6
.

In 2011, Lü and Yang[10] studied the asymptotic behavior of (a(n2))l in some Galois fields.

They proved that

Theorem A Suppose that E is a Galois extension of Q of degree d ≥ 3. When d is odd,

we have

∑
n≤x

(a(n2))l = xQm(log x) +O
(
x
1− 3

dl+6
+ε)

for any ε > 0 and any integer l ≥ 1, where m = (d+1
2 )ldl−1, Qm(t) is a suitable polynomial in t

of degree m− 1.

By the same method, Lü and Yang[10] also considered the k-dimensional divisor problem in

some Galois fields over square numbers. Define

τEk (n) =
∑

N(a1a2···ak)=n

1. (2)

In [10], it is also proved that

Theorem B Suppose that E is a Galois extension of Q of degree d. When d is odd, we

have

∑
n≤x

τEk (n2) = xQm(log x) +O
(
x1− 3

md+6+ε
)

for any ε > 0 and any integer k ≥ 2, where m = k2d+k
2 , Qm(t) is a suitable polynomial in t of

degree m− 1.

Theorem B constitutes an improvement upon the main terms of Deza and Varukhina’s

results (see [3]), and generalizes their results in some Galois fields.

Motivated by [4–6], the purpose of this note is to investigate the remainder terms in mean

square, and we shall prove the following results.

Theorem 1.1 Subject to the conditions in Theorem A, define

Δ(x) :=
∑
n≤x

(a(n2))l − xQm(log x).
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Then we have ∫ X

1

Δ2(x)dx �ε X
3− 6

md+3+ε

for any ε > 0.

Theorem 1.2 Subject to the conditions in Theorem B, define

R(x) :=
∑
n≤x

τEk (n2)− xQm(log x).

Then we have ∫ X

1

R2(x)dx �ε X
3− 6

md+3+ε

for any ε > 0.

Theorem 1.3 Under the assumption of Theorem 1.1, for any Abelian polynomial f(x) if

Δ1(x) :=
∑
m≤x

ρ(m)− C(f)x

where C(f) = Ress=1

∑∞
m=1

ρ(m)
ms , then we have

∫ X

1

Δ2
1(x)dx �ε X

3− 3
l +ε.

Notations As usual, ω(n) is the number of distinct prime divisors of n, and τ(n) is the

divisor function. The Vinogradov symbol A � B means that B is positive and the ratio A
B

is bounded. The letter ε denotes an arbitrary small positive number, not the same at each

occurrence.

2 Some Lemmas

To prove our theorems, we need the following lemmas.

Lemma 2.1 Let E/Q be a Galois extension of degree d which is odd. a(n) and D2,l(s)

are defined in (1) and (6), respectively. Then we have

D2,l(s) = ζm(s, E) ·A1(s) (3)

for any integer l ≥ 1, where m = (d+1
2 )ldl−1, A1(s) denotes a Dirichlet series, which is absolutely

and uniformly convergent for σ > 1
2 .

Proof This follows immediately from (3.5) in [10, pp. 1929–1930]. �
Lemma 2.2 Let E/Q be a Galois extension of degree d which is odd. τEk (n) and DE

k,2(s)

are defined in (2) and (17), respectively. Then we have

LE
2,k(s) = ζm(s, E) · A2(s) (4)

for any integer k ≥ 2, where m = k2d+k
2 , A2(s) denotes a Dirichlet series, which is absolutely

and uniformly convergent for σ > 1
2 .
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Proof By replacing [9, (4.7)] with [9, (4.6)], this is similar to the proof of [9, (4.11)]. �
Lemma 2.3 Let E be an algebraic number field of degree d, then

ζ(σ + it, E) � (1 + |t|) d
3 (1−σ)+ε

for 1
2 ≤ σ ≤ 1 + ε and any fixed ε > 0.

Proof By [10, Lemma 2.5] and the Phragmén-Lindelöf principle for a strip (see [7, Theorem

5.53]), this lemma follows. �

3 Proof of Theorem 1.1

Let E be a Galois extension of Q of degree d ≥ 3 which is odd. Recall that a(n) denotes

the number of integral ideals in E with norm n, and

ζ(s, E) =

∞∑
n=1

a(n)

ns
, s = σ + it, σ > 1.

Then by [2, Lemma 9], it is known that

a(n) � nε. (5)

Therefore as in [10] we introduce the L-function associated to a(n2),

D2,l(s) =

∞∑
n=1

a(n2)l

ns
, σ > 1. (6)

From (5), we know that the Dirichlet series D2,l(s) is absolutely convergent in the half-plane

σ > 1.

Let T = X
3

md+3 . From (5), (6) and Perron’s formula (see [7, Proposition 5.54]), we get

∑
n≤x

a(n2)l =
1

2πi

∫ 1+ε+iT

1+ε−iT

D2,l(s)
xs

s
ds+O

(
x1+ε

T

)
. (7)

By the property that D2,l(s) only has a simple pole at s = 1 for σ > 1
2 and Cauchy’s residue

theorem, we have

∑
n≤x

a(n2)l =
1

2πi

{∫ 1
2+ε+iT

1
2+ε−iT

+

∫ 1+ε+iT

1
2+ε+iT

+

∫ 1
2+ε−iT

1+ε−iT

}
D2,l(s)

xs

s
ds+Res

s=1
D2,l(s)x+O

(
x1+ε

T

)

:= xQm(log x) + J1(x) + J2(x) + J3(x) +O(x1+εT−1)

:= xQm(log x) + Δ(x),
(8)

where Qm(t) is a suitable polynomial in t of degree m− 1. One can find the details of deducing

(8) (see [10, p. 1929]).

In order to prove Theorem 1.1, it is enough to prove the following results:∫ X

1

J2
i (x)dx �ε X

3− 6
md+3+ε, i = 1, 2, 3 (9)
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and ∫ X

1

(
O

(
x1+ε

T

))2

dx �ε X
3− 6

md+3+ε. (10)

It is easy to get

∫ X

1

(
O

(
x1+ε

T

))2

dx = O

(
X3+ε

T 2

)
� X3− 6

md+3+ε. (11)

Now we consider the integral J1(x). We have

J1(x) =
1

2π

∫ T

−T

D2,l

(
1

2
+ ε+ it

)
x

1
2+ε+it

1
2 + ε+ it

dt.

Then ∫ X

1

J2
1 (x)dx =

1

4π2

∫ X

1

(∫ T

−T

D2,l

(
1

2
+ ε+ it1

)
x

1
2+ε+it1

1
2 + ε+ it1

dt1

×
∫ T

−T

D2,l

(
1

2
+ ε+ it2

)
x

1
2+ε−it2

1
2 + ε− it2

dt2

)
dx

=
1

4π2

∫ T

−T

∫ T

−T

D2,l(
1
2 + ε+ it1)D2,l(

1
2 + ε+ it2)

(12 + ε+ it1)(
1
2 + ε− it2)

×
∫ X

1

x1+2ε+i(t1−t2)dxdt1dt2

� X2+2ε

∫ T

−T

∫ T

−T

|D2,l(
1
2 + ε+ it1)||D2,l(

1
2 + ε+ it2)|

(1 + |t1|)(1 + |t2|)(1 + |t1 − t2|) dt2dt1

� X2+2ε

∫ T

−T

∫ T

−T

(
|D2,l(

1
2 + ε+ it1)|2

(1 + |t1|)2 +
|D2,l(

1
2 + ε+ it2)|2

(1 + |t2|)2
)

× 1

1 + |t1 − t2|dt2dt1

� X2+2ε

∫ T

−T

|D2,l(
1
2 + ε+ it1)|2

(1 + |t1|)2 dt1

∫ T

−T

dt2
1 + |t1 − t2| . (12)

To go further, we get∫ T

−T

dt2
1 + |t1 − t2| �

∫ t1+1

t1−1

dt2 +

(∫ T

t1+1

+

∫ t1−1

−T

)
dt2

|t1 − t2|

� 1 +

∫ T

t1+1

dt2
|t1 − t2|

�
∫ T+|t1|

1

dt

t
� log 2T. (13)

By (12)–(13),

∫ X

1

J2
1 (x)dx � X2+2ε log 2T

∫ T

−T

|D2,l(
1
2 + ε+ it1)|2

(1 + |t1|)2 dt1. (14)
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From this, Lemmas 2.1 and 2.3, we have (for d ≥ 3)

∫ X

1

J2
1 (x)dx � X2+3ε +X2+3ε

∫ T

1

∣∣∣∣ζm
(
1

2
+ ε+ it, E

)
A1

(
1

2
+ ε+ it1

) ∣∣∣∣
2

t−2dt

� X2+3ε +X2+3ε

∫ T

1

∣∣∣∣ζm
(
1

2
+ ε+ it, E

) ∣∣∣∣
2

t−2dt

� X2+3ε +X2+3ε

∫ T

1

(
t
md
6 +ε

)2
t−2dt

� X2+3ε +X2+4εT
md
3 −1

� X3− 6
md+3+ε. (15)

Finally we estimate trivial bounds of the integrals J2(x) and J3(x). By Lemma 2.3, we get

J2(x) + J3(x) �
∫ 1+ε

1
2+ε

xσ|ζm(σ + iT,E)|T−1dσ

� max
1
2+ε≤σ≤1+ε

xσT
md
3 (1−σ)+εT−1

= max
1
2+ε≤σ≤1+ε

(
x

T
md
3

)σ

T
md
3 −1+ε

� x1+ε

T
+ x

1
2+εT

md
6 −1+ε,

which yields

∫ X

1

(J2(x) + J3(x))
2dx �

∫ X

1

(
x1+ε

T
+ x

1
2+εT

md
6 −1+ε

)2

dx

�
∫ X

1

(
x1+ε

T

)2

dx+

∫ X

1

(
x

1
2+εT

md
6 −1+ε

)2
dx

� X3+ε

T 2
+X2+2εT

md
3 −2+2ε

� X3− 6
md+3+ε. (16)

The inequalities (9) and (10) immediately follow from (3), (10), (15) and (16). That is,

∫ X

1

Δ2(x)dx �ε X
3− 6

md+3+ε.

Then this completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

By the definition of τEk (n) in (2) we can define an L-function associated to the function

τEk (n2),

LE
k,2(s) =

∞∑
n=1

τEk (n2)

ns
(σ > 1), (17)

which is absolutely convergent in this region.
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From Lemma 2.2, we know that LE
k,2(s) admits a meromorphic continuation to the half-

plane σ > 1
2 and only has a pole s = 1 of order m = k2d+k

2 in this region. By Lemma 2.2, the

detail of the proof of Theorem 1.2 is similar to that of Theorem 1.1. Hence, we omit it here.
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