考虑温度影响的能源桩桩 - 土界面荷载传递模型

骆湘勤,刘干斌,郑言东,钱峰,周 敏

(宁波大学 岩土工程研究所,浙江 宁波 315211)

摘要: 为深入揭示温度对能源桩力学特性的影响,考虑能源桩桩 - 土界面法向温度应力增量对初始剪切刚度的影响,对传统桩 - 土界面荷载传递双曲线模型进行修正,并通过合理假设桩身及桩周土中温度场分布,计算得到桩 - 土界面法向温度应力,建立考虑温度影响的桩 - 土界面荷载传递模型。同时,选取宁波地区典型软黏土开展不同温度下能源桩承载力特性模型试验,将计算结果与模型试验结果进行对比,结果表明:升温有助于提高能源桩单桩的承载力; 桩周土温度、*Q-s* 曲线计算结果与实测值较为一致,验证了能源桩桩 - 土界面荷载传递模型的合理性; 能源桩运行使得桩、土体温度升高,桩、土之间的法向应力增大,相同条件下能源桩上部(0.7 m 以上)桩侧摩阻力随温度的升高(30 ℃→45 ℃→60 ℃)有一定的增大,发挥充分,下部反之。

关键词: 桩基础; 能源桩; 桩 - 土界面; 荷载传递模型; 侧摩阻力

中图分类号: TU 47 **文献标识码:** A **文章编号:** 1000 - 6915(2019)01 - 0171 - 09

A load transfer model of energy pile-soil interfaces under temperature variation

LUO Xiangqin, LIU Ganbin, ZHENG Yandong, QIAN Feng, ZHOU Min (Institute of Geotechnical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China)

Abstract: To reveal the influence of temperature on the mechanical properties of energy piles, a traditional hyperbolic model for pile-soil interface load transfer was revised by considering the influence of the normal temperature stress increment on the initial shear stiffness at the interface of pile and soil. The temperature field distributions in the pile body and surrounding soil were assumed, and the normal temperature stress of the pile-soil interface was calculated, then the load-transfer model of pile-soil interfaces considering the influence of temperature was established. The bearing capacity of energy piles in the typical soft clay in Ningbo area was studied by modelling test. The experimental results were compared with the calculated results. It is shown that the temperature helps to improve the bearing capacity of the energy pile, and that the calculated results of *Q*-s curve are consistent with the measured values, which verifies the rationality of the load transfer model of the energy pile considering the influence of temperature. The operation of energy piles leads to temperature increasing in pile and soil, and the normal stress between pile and soil increase too, which cause the shaft resistance of the upper part of the energy pile(above 0.7 m) to increase with temperature (30 °C \rightarrow 45 °C \rightarrow 60 °C) under the same conditions of calculation, but in the lower part, the opposite occurs.

Key words: pile foundations; energy pile; pile-soil interface; load-transfer model; shaft resistance

收稿日期: 2018 - 07 - 06; 修回日期: 2018 - 09 - 06

基金项目: 国家自然科学基金资助项目(51478228)

Supported by the National Natural Science Foundation of China(Grant No.51478228)

作者简介:骆湘勤(1989-),女,2012 年毕业于中国地质大学(武汉)土木工程(岩土工程)专业,现为硕士研究生,主要从事桩土力学特性方面的研究 工作。E-mail: 1009184600@qq.com。通讯作者:刘干斌(1976-),男,现任教授、博士生导师。E-mail: liugb76@163.com **DOI:** 10.13722/j.cnki.jrme.2018.0906

1 引 言

近年来,在传统地源热泵技术的基础上发展而 来的"能源桩技术"已有一定的应用,并引起了国 内外学者的广泛关注。目前,有关能源桩的研究主 要还是集中在传热方面,而针对能源桩桩-土力学 特性方面的研究较少,尤其是鲜有考虑温度影响的 能源桩桩-土界面荷载传递模型成果。

由于桩 - 土界面的荷载传递模型对预测桩的承 载变形性状有着重要的影响,从1950年至今,国内 外学者通过对实测曲线的拟合,提出了多种荷载传 递函数的表达式,具有代表性的传递函数模型有指 数曲线模型、双曲线模型和理想弹塑性模型等。土 与结构 SSI(soil structure interface)试验^[1-4]表明,双 曲线模型能较好地描述桩 - 土界面的剪切性状,参 数物理意义明确,适合桩基受力分析。自 H. B. Seed 和 L. C. Reese^[5]提出软黏土中桩身荷载传递的双曲 线模型以来,国内外许多学者对常温下双曲线荷载 传递函数做出了各种不同的简化、改进或提出新的 传递函数模型。K. S. Wong 和 C. I. The^[6]采用 M. F. Randolph 和 C. P. Worth^[7]提出的经验公式,确定桩-土界面的初始剪切刚度,分析了层状地基中的桩基 承载性状。陈仁朋等^[8-9]改进了考虑侧阻硬化的双曲 线模型,该模型可以描述桩侧土初始剪切刚度随地 基土的固结而增长,桩-土界面的分阶段加载和卸 载循环剪切特性等。

B. Wang 等^[10]在 Monash 内开展了能源桩原位 试验,发现桩身温度升高后,桩身径向会发生膨胀, 从而增加桩 - 土界面的法向应力,使得桩侧摩阻力 增大。刘干斌等^[11]通过开展宁波饱和黏土中能源桩 承载力特性模型试验研究,发现桩侧摩阻力随着温 度的升高而增大,单桩极限承载力也随之增大。路 宏伟等^[12]开展了摩擦型能源桩荷载 - 温度现场联合 测试,发现荷载与温度的耦合作用改变了摩擦型能 源桩的荷载传递特征和承载性状。

迄今为止,国内外学者开展了能源桩模型试验、 现场测试以及数值模拟,取得了诸多成果,系统研 究了能源桩荷载 - 温度作用下的热力学特性及承载 性状,但未能考虑桩 - 土界面性状变化,为此,本 文建立了考虑温度影响的桩 - 土界面荷载传递双曲 线模型,结合室内模型试验,验证了所建模型的合 理性,并分析了温度对能源桩承载性状及桩侧摩阻 力分布的影响。

2 考虑温度影响的桩 - 土界面荷载传 递模型

桩 - 土界面荷载传递模型示意图如图 1 所示, 沿深度 *L* 方向,将桩体与桩周土体自上而下等分成 *n* 层,每一微段高度 *h* = *L*/*n*。为建立桩土界面荷载 传递模型,假设:

(1) 桩的压缩变形是弹性的,沿深度方向桩身 直径不变;

(2) 桩与桩周土体均匀且各向同性;

(3) 桩与桩周土体视为热弹性体;

(4) 土体的变形是微小的;

(5) 土体温度增加时,水不发生相变,仅考虑 受温度引起的线性膨胀;

(6) 将桩体视为一圆柱体热源,并假设其温度 随深度呈线性分布,每一微段的温度增量均为常量 且温度不随厚度变化。

由图 1 可建立桩 - 土界面荷载传递模型方程^[8] 如下:

平衡方程:

$$\mathrm{d}Q(z) = 2\pi r_0 \tau(z) \mathrm{d}z \tag{1}$$

几何方程:

$$\frac{\mathrm{d}Q(z)}{E_{\mathrm{p}}A_{\mathrm{p}}} = \frac{\mathrm{d}w_{\mathrm{p}}}{\mathrm{d}z} \tag{2}$$

式中: A_p 为桩身截面面积, E_p 为桩身弹性模量, dQ(z)为深度 z 处桩体受到的竖向压力差, dz 为深 度 z 处的土层厚度, r_0 为桩体半径, w_p 为深度 z 处 桩身竖向位移, $\tau(z)$ 为深度 z 处桩土界面上的剪应 力。

由上述平衡方程和几何方程得到控制方程如下:

$$\frac{d^2 w_p}{dz^2} - \frac{2\pi r_0}{A_p E_p} \tau(z) = 0$$
(3)

在控制方程式(3)中, *τ*(*z*)可选用双曲线模型, 其表达式可定义^[6]为

$$\tau = \frac{\Delta}{\frac{1}{k_{\rm si}} + R_{\rm f} \frac{\Delta}{\tau_{\rm f}}}$$

$$\Delta = w_{\rm p} - w_{\rm s}}$$

$$(4)$$

式中: Δ 为桩 - 土界面的相对位移, w_s 为土体位移; R_f 为破坏比, $R_f = \tau_f / \tau_{ult}$, 其中 τ_{ult} 为桩 - 土界面的 极限剪应力,本文 R_f 取值为 1; k_{si} 为桩 - 土界面的 初始剪切刚度; τ_f 为桩 - 土界面的抗剪强度。

由 SSI 试验^[1-4]可知, 桩 - 土界面极限剪应力的 大小与法向应力成正比, 桩 - 土界面的初始剪切刚 度随土的强度增加而增加。针对饱和土, E. E. Alonso 等^[13]定义了桩 - 土界面初始剪切刚度如下:

$$k_{\rm si} = \tau_{\rm f} / \Delta_{\rm i}$$

$$\tau_{\rm f} = \sigma_{\rm b}' \tan \phi' = k_0 \tan \phi' (\gamma' z + \Delta \sigma')$$
(5)

式中: Δ_i 为桩 - 土相对位移; ϕ' 为土体有效内摩擦 角; σ'_h 为水平向有效应力; k_0 为土的水平侧压力系 数,可取 $k_0 = 1 - \sin \phi'$; γ' 为土体有效重度;z为深 度; $\Delta \sigma'$ 为某时刻深度z处的竖向附加有效应力。

在式(4)中,考虑土的固结特性的桩-土界面初 始剪切刚度可由式(5)表示,该方程式没有考虑温度 的影响,因而不能完全反映能源桩桩-土界面特性。 为此本文考虑温度引起的法向应力增量,对 E. E. Alonso 等^[13]定义的桩-土界面初始剪切刚度(式(5)) 进行修正,假设桩周土体为弹性体(不考虑其固结特 性),则能源桩桩-土界面初始剪切刚度(式(5))中的 抗剪强度表达式可以表示为

$$\tau_{\rm f} = \zeta(\sigma_{\rm r\pm} + \sigma_{\rm h})$$

$$\sigma_{\rm h} = K_0 \gamma z$$

$$k_{\rm ei} = \tau_{\rm f} / \Delta_{\rm i}$$
(6)

式中: ζ 为界面摩擦因数^[13], σ_h 为土体自重引起的 水平向应力, K_0 为静止土压力系数, γ 为土体重度, $\sigma_{,+}$ 为土体中水平向温度应力。

3 桩-土温度应力计算

3.1 桩周土温度场

由式(6)可知,考虑温度影响的双曲线模型需要

确定桩周土的温度应力分布,根据假设①~③,可 将桩与土体视为一个轴线对称旋转体,来计算桩周 土中的应力。赵海丰等^[14]认为能源桩可以视为一个 有限长的线热源模型,距离桩壁 0.8 m 范围处的土 体温度己接近室温; M. E. Suryatriyastuti 等^[15]认为 热能在土体中的衰减速度是非常快的,即能源桩的 影响半径并不大。据此,可假设能源桩的温度影响 半径为 xr_0 ,即 xr_0 处的土体温度为室温,桩周土体 可视为一厚度为 $(x-1)r_0$ 的厚壁圆筒。根据假设⑥, 在 z 方向上的温度分布如图 2 所示,可表示为

$$T(z_i) = a_0 + k z_i \tag{7}$$

式中: z_i 为第 *i* 层的深度, $T(z_i)$ 为沿深度方向第 *i* 层桩体的桩身温度, a_0 为 z = 0 处的桩身温度, k为 温度沿深度的变化率。

对于桩周土体,由于 h 很小,每一土层均可视 为一均质的空心圆盘^[16],并假设温度只沿半径传播, 其分布在径向都满足方程 T = T(r),如图 3 所示。

根据瞬态传热方程 $k\nabla^2 T + Q = \rho c \frac{\partial T}{\partial t}$,其中,Q为单位时间内单位体积中内热源的生成热, ρ 为材料密度,c为材料比热容;温度达到稳定状态的某一时刻,可视为无内热源的温度场稳态分布,即

 $Q = 0, \quad \frac{\partial T}{\partial t} = 0; \quad 在极坐标下, \quad \left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right)T = 0,$ 对于划分的每一层, 其通解为

$$T(r_i) = a_i \ln(r_i) + b_i \tag{8}$$

式中: a_i , b_i 为由边界条件确定的系数,其边界条 件为: $r_i = r_0$ 处, $T(r_i) = T(z_i)$, $r_i = xr_i$ 处, $T = T_0$, 其中, T_0 为室温。

图 3 径向温度分布示意图

3.2 桩周土温度应力

在弹性力学中,不考虑外力时,空间轴对称体 的平衡方程为

$$\frac{\mathrm{d}\sigma_r}{\mathrm{d}r} + \frac{\mathrm{d}\tau_{zr}}{\mathrm{d}z} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \tag{9}$$

$$\frac{\mathrm{d}\sigma_z}{\mathrm{d}z} + \frac{\mathrm{d}\tau_{rz}}{\mathrm{d}r} + \frac{\tau_{rz}}{r} = 0 \tag{10}$$

物体内一点的4个应变分量与位移的关系为

$$\varepsilon_{r} = \frac{\partial u}{\partial r}, \quad \varepsilon_{\theta} = \frac{u}{r}, \quad \varepsilon_{z} = \frac{\partial w}{\partial r}$$

$$\gamma_{zr} = \frac{\partial w}{\partial r} + \frac{\partial u}{\partial z}$$

$$(11)$$

式中: *u*, *w*分别为质点沿 *r* 方向与 *z* 轴方向的位移。

按照线性热应力理论,对于各向同性体而言, 应力、应变和温差的函数可表达为

$$\sigma_{r} = \frac{E}{(1-2\nu)(1+\nu)} [(1-\nu)\varepsilon_{r} + \nu(\varepsilon_{\theta} + \varepsilon_{r})] - \frac{E\alpha\Delta T}{1-2\nu}$$

$$\sigma_{\theta} = \frac{E}{(1-2\nu)(1+\nu)} [(1-\nu)\varepsilon_{\theta} + \nu(\varepsilon_{z} + \varepsilon_{r})] - \frac{E\alpha\Delta T}{1-2\nu}$$

$$\sigma_{z} = \frac{E}{(1-2\nu)(1+\nu)} [(1-\nu)\varepsilon_{z} + \nu(\varepsilon_{\theta} + \varepsilon_{r})] - \frac{E\alpha\Delta T}{1-2\nu}$$

$$\tau_{zr} = \frac{E}{2(1+\nu)} \gamma_{zr}$$

(12)

式中: v, α , E分别为材料的泊松比、线膨胀系数与弹性模量; ΔT 为温差, $\Delta T = T - T_0$ 。将式(11)代入式(12)得到:

$$\sigma_r = 2G \left[\frac{1-v}{1-2v} \frac{\partial u}{\partial r} + \frac{v}{1-2v} \left(\frac{u}{r} + \frac{\partial w}{\partial z} \right) \right] - \beta \Delta T \quad (13)$$

$$\sigma_{\theta} = 2G \left[\frac{1 - v}{1 - 2v} \frac{u}{r} + \frac{v}{1 - 2v} \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial r} \right) \right] - \beta \Delta T \qquad (14)$$

$$\sigma_{z} = 2G \left[\frac{1-v}{1-2v} \frac{\partial w}{\partial z} + \frac{v}{1-2v} \left(\frac{\partial u}{\partial r} + \frac{u}{r} \right) \right] - \beta \Delta T \qquad (15)$$

$$\tau_{zr} = G\left(\frac{\partial w}{\partial r} + \frac{\partial u}{\partial z}\right) \tag{16}$$

式中: G 为剪切弹性模量, $G = \frac{E}{2(1+2\nu)}$; β 为热

应力系数, $\beta = \frac{\alpha E}{1-2v}$ 。

根据假设⑥,温度不随厚度变化,温度引起的 应力与位移也不随厚度变化,假设温度场为轴对称 分布,即T = T(r),则 $\tau_{r_z} = 0$,式(9)简化为

$$\frac{\mathrm{d}\sigma_r}{\mathrm{d}r} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \tag{17}$$

由于 h 很小,可视为平面应力问题^[14],故 $\sigma_z =$ 0,由式(15)可以得到

$$\frac{\partial w}{\partial z} = \frac{1+v}{1-v} \alpha \Delta T - \frac{v}{1-v} \left(\frac{\mathrm{d}u}{\mathrm{d}r} + \frac{u}{r}\right) \tag{18}$$

将式(18)代入式(13), (14), 整理得

$$\sigma_r = \frac{E}{(1+\nu)(1-\nu)} \frac{\mathrm{d}u}{\mathrm{d}r} + \frac{E\nu}{(1+\nu)(1-\nu)} \frac{u}{r} - \frac{E\alpha\Delta T}{1-\nu}$$

$$\sigma_\theta = \frac{E}{(1+\nu)(1-\nu)} \frac{u}{r} + \frac{E\nu}{(1+\nu)(1-\nu)} \frac{\mathrm{d}u}{\mathrm{d}r} - \frac{E\alpha\Delta T}{1-\nu}$$
(19)

再将式(19)代入式(17)中,展开后得到

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{1}{r}\frac{\mathrm{d}u}{\mathrm{d}r} - \frac{u}{r^2} = (1+v)\alpha\frac{\mathrm{d}(\Delta T)}{\mathrm{d}r}$$
(20)

对方程式(20)进行求解,得到

$$u = (1+v)\frac{\alpha}{r} \int_{r_1}^{r_2} \Delta T r dr + C_1 r + \frac{C_2}{r}$$
(21)

式中: r₁为圆盘内径, r₂为圆盘外径。

对于每一层土体,求解式(21)的微分,并将 u 及 du / dr 代入式(19),可以得到每一层土的温度应力 为

$$\sigma_{r\pm} = \frac{E_{\rm s}C_1}{1 - v_{\rm s}} - \frac{E_{\rm s}C_2}{1 + v_{\rm s}} \frac{1}{r^2} - \frac{\alpha_{\rm s}E_{\rm s}}{r^2} \int_{r_0}^{r_0} T_{\rm s} r dr \qquad (22)$$

式中: T_s 为与桩体接触处的土体温度增量, $T_s = a \ln(r) + b - T_0$; α_s 为土体的线膨胀系数; E_s 为土体的弹性模量; v_s 为土体的泊松比; C_1 , C_2 为积分常数。

同理,对于每一层桩体,可视为内径 $r_1 = 0$ 外径 $r_2 = r_0$ 的实心圆盘,其应力表达式为

$$\sigma_{r \notin E} = \frac{E_{\rm p}C}{1 - v_{\rm p}} - \frac{E_{\rm p}C'}{1 + v_{\rm p}} \frac{1}{r^2} - \frac{\alpha_{\rm p}E_{\rm p}}{r^2} \int_0^{r_0} T_{\rm p} r dr \qquad (23)$$

式中: T_p 表示桩体的温度增量, $T_p = T(z) - T_0$; α_p 为 桩体的线膨胀系数; E_p 为桩体的弹性模量; v_p 为桩 体的泊松比; *C*, *C*为积分常数。积分常数可由边界 条件确定,具体为:

$$r = 0, u_{\pm} = 0$$

$$r = xr_0, u_+ = 0$$

应力连续条件:

$$\sigma_{\mathrm{tt}}|_{r=r_{\mathrm{o}}} = \sigma_{\pm}|_{r=r_{\mathrm{o}}}$$

位移连续条件:

$$u_{\text{tet}}\mid_{r=r_{o}}=u_{\pm}\mid_{r=r_{o}}$$

通过相应的边界条件与连续条件,就可以求得 相应的积分常数 C, C', C₁, C₂。

在桩 - 土界面处(x=1), $\int_{r_0}^{xr_0} T_s r dr$ 的积分为 0, 故每一土层土体的水平向热应力可化简为

$$\sigma_{r\pm} = \frac{E_{s}C_{1}}{1 - v_{s}} - \frac{E_{s}C_{2}}{1 + v_{s}} \frac{1}{r^{2}}$$
(24)

式(24)即为升温时桩 - 土界面处水平向的温度 应力。

4 桩体位移计算

4.1 桩端位移计算

实际上,桩基承载性状除了与桩-土界面荷载 传递模型有关外,还与桩端土的荷载-沉降模型有 关。B.H.Fellenius^[17]通过长期试验发现,当桩端刺 入变形为桩径的 5%时,桩端阻仍未达到其极限。 Y.Shinichi 和 M. Madan^[18]通过现场原位测试发现, 在桩端刺入变形小于 4 cm 时,桩端阻与刺入变形基 本上成线性关系。而规范^[19]规定,桩顶沉降一般控 制在 4~8 cm 范围。因此,本文取桩端阻与变形成 正比关系,即

$$w_{\rm pp} = \frac{\pi r_{\rm p} (1 - v_{\rm r}^2)}{2E_{\rm r}} \sigma_{\rm p}$$
⁽²⁵⁾

式中: w_{pp} 为桩端刺入变形, σ_{p} 为桩端应力, E_{r} 为 桩端土体的压缩模量, v_{r} 为桩端土体的泊松比, r_{p} 为 桩端处的桩身半径。

4.2 位移求解方法

温度达到稳态分布后,单桩的受力情况由式(3)~ (4)和(6)表示。由于在求解水平向温度应力时,将桩 与土层分为了 n 段,这里需要使用数值方法求解。

将能源桩沿深度方向自上而下等分成 *n* 段, 各 个节点编号分别为 1, 2, 3, …, *n*-1, *n*, *n*+1。 利用 Euler 公式,将控制方程式(3)离散为

$$w_{\rm p}^{i+1} = \left(\frac{L}{n}\right)^2 \left(\frac{2}{E_{\rm p}r_0}\right) \tau^i + 2w_{\rm p}^i - w_{\rm p}^{i-1}$$
(26)

然后使用迭代法求解,其具体步骤为:

 (1) 首先,需要假定第一个节点的位移 w^l_p,并 根据式(4)求得 τ^l;

(2) 其次,利用公式
$$w_p^2 = w_p^1 - \frac{Qh}{E_p A_p}$$
得到第二个

节点的位移 w_p^2 ,并再次利用式(4)求得 τ^2 ;

(3) 根据步骤(1),(2)求得的节点位移,利用 式(21)可以依次求得其余桩身节点的位移 w^j_p,其中 桩端位移为 wⁿ⁺¹,其摩阻力为 rⁿ⁺¹。

(4) 桩端位移根据下式确定:

$$w_{\rm pp} = \frac{\pi r_0 (1 - \mu_{\rm r}^2)}{2E_{\rm r}} \frac{Q - q_{\rm s}}{A_{\rm p}}$$
(27)

(5) 求桩端位移误差 ERR:

$$ERR = w_{\rm p}^{n+1} - w_{\rm pp} \tag{28}$$

(6) 若 *ERR*< ε ,则本次假定的桩顶位移满足要求,否则重复步骤(1)~(5),直至满足要求。一般取 $\varepsilon = 10^{-6}$ m。

在第二次迭代时,仍需假定第一个节点的位移, 从第三次开始, w¹,可按下式计算:

$$w_{\rm p}(num) =$$

$$\frac{ERR(num-1)w_{p}^{l}(num-1)-ERR(num-2)w_{p}^{l}(num-2)}{ERR(num-1)-ERR(num-2)}$$

(29)

对于每一时刻,一般迭代5~6即可满足要求。

5 计算结果及验证

5.1 模型试验

为验证所建桩 - 土界面荷载传递模型的合理 性,选取宁波地区典型黏土进行能源桩承载力模型 试验,其物理力学参数如表 1 所示。试验主要包括 模型试验箱、模型桩、双作用液压千斤顶和电脑式 热水循环加热仪四部分,如图 4 所示。测量系统主

	表	1	模型试验参数
Table	1	Pa	rameters of model test

土体重度 (kN・m ⁻³)	柱侧土弹 性模量 <i>E</i> s/MPa	桩端土弹 性模量 <i>E_r/MPa</i>	土体泊 松比 v _s	土体线膨 胀系数 α _s
18	5.5	5.5	0.35	0.000 2
桩长 L/mm	桩径 r₀/mm	桩体压缩模 量 <i>E</i> _p /MPa	桩身泊 松比 v _p	桩体线膨 胀系数 α _p
1 100	50	1 000	0.33	6×10 ⁻⁶

要包括百分表、应变片、温度计等,其埋设如图 5 所示。

模型试验箱尺寸为2m×2m×1.5m(长×宽×高), 模型桩采用空心铝管,其壁厚为2mm,桩长1.1m, 实际埋入土层长度为1.0m。换热管采用钢管,管径 为2cm。为了保证不同温度下的静载荷试验桩与土

的试验条件相一致,将模型箱按1m×1m分格成4

个区域,并在其中心分别布设一根模型桩。

填土之前首先在模型槽内部铺设防水薄膜,避 免其漏水。其次将土体同时分层填入模型箱的4个 区域,每层土样虚高30cm,共计5层,然后在15kPa 压力下静压至沉降稳定,最后进行静力压桩。完成 上述步骤后,将整个模型箱内充满水并静置一周, 从而使填筑的地基土为饱和黏土。试验前,在模型 桩内填充中砂,安装U型管,并连接到电脑式热水 循环加热仪,U型管充水作为导热流体。试验时, 先设定相应的目标温度,开启电脑式热水循环加热 仪,加热能源桩-土系统。由于模型桩径为100 mm, 壁厚 2 mm,桩内填充中砂,桩体压缩模量折减为1 GPa。

试验开始时,将电脑式热水循环仪分别设定为 45 ℃和 60 ℃,在加热 20 h 后,观测到同一测点相 邻两次测得的桩、土温度差小于 10%,认为温度趋 于稳定。通过埋设在土体里的温度传感器 T1,T2 分别测得桩顶与桩端温度的温度为 45 ℃,35 ℃ (45 ℃工况)与 60 ℃,46 ℃(60 ℃工况)。在埋深 500 mm 处布设 T3,T4,T5,T6,T7 共 5 个温度传 感器,稳定后各测点温度沿径向分布如图 6 所示, 可以看出,土体温度沿桩身径向方向下降得很快, 在距离桩身 3 倍直径处,土体温度的变化小于 3 ℃, 超过 3 倍直径范围的土体温度的变化已经很小,即 能源桩单桩温度影响范围不大。

在静载试验时,加热仪仍保持运行,将 200 N 作为一个加载等级,采用砝码堆载方式,当百分表 读数 1 h 内小于 0.1 mm 时,进行下一级加载。当荷 载 - 沉降曲线上出现可以判定桩身极限承载力的陡 降段或桩顶总沉降超过 40 mm 时,终止加载^[17]。

图 7 为室温(30 ℃)、加热至 45 ℃与加热至 60 ℃时能源桩的 Q-s 曲线,可以看出,桩顶荷载在 1 400 N 之前的 Q-s 曲线均较为平缓,近似呈线性关 系。桩顶荷载超过 1 400 N 后,室温(30 ℃)工况下 的 Q-s 曲线的曲率最先变大; 60 ℃工况的 Q-s 曲线 曲率变化最慢,且曲率最小; 45 ℃工况的 Q-s 曲线

则介于两者之间。可见随着温度的升高,能源桩的 极限承载力有一定的提高。

5.2 荷载传递模型计算

以节 5.1 模型桩为对象,利用考虑温度影响的 桩 - 土界面荷载传递模型式(3),(4)和(6),开展桩基 承载力计算。由于假设土体为弹性体,不考虑固结, 故加载时,相应的 w_s取值为 0。基于 SSI 试验及现 场观测,激发桩的侧极限摩阻力所需要的桩 - 土极 限相对位移通常仅为 1~5 mm,而且不随深度变化, 本文取桩 - 土界面极限相对位移值为 2.5 mm;摩擦 因数 *ζ* 由内摩擦角的正切值而得,本文的取值为 0.6^[20]。

在室温(*T* = 30 ℃)下,式(6)中 $\sigma_{r\pm}$ 设为0,桩-土界面初始剪切刚度按E.E. Alonso等^[13]定义的计 算。将表1中的参数代入式(3)~(5),并且根据步骤 (1)~(6),利用 Matlab 编制计算程序,计算得到不 同荷载下每一截桩体的竖向位移 w_p^i ,则桩顶位移可 表示为

$$s = \sum_{i=1}^{i=n} w_p^i \tag{30}$$

桩侧摩阻力计算表达式为

$$q_s(i) = 2\pi r_0 \tau(i) \tag{31}$$

桩身轴力计算表达式为

$$Q(x) = Q_0 - 2\pi r_0 \sum_{i=1}^{i=x} \tau(x)$$
(32)

式中: Q_0 为施加的桩顶荷载, $\tau(x)$ 为深度 z_x 处桩-土界面的剪应力。

(1) 温度对比

由于模型试验分别加热至 45 ℃与 60 ℃时,测得距离桩身 3 倍直径处的土体温度变化很小(<3 ℃),因此,可取 x 值为 7;桩端处实测温度分别为 35 ℃ 与 46 ℃,桩顶处温度取值为 45 ℃,60 ℃,将其分

别代入式(7),可以求出每一层的桩身温度分布。再 利用式(8),计算每一层的温度沿径向的分布,结果 如图 8 所示,可以看出,加热至 45 ℃和 60 ℃时, 桩周土体温度计算值与实测值较为吻合,说明本文 温度场分布的假设较为合理。

(2) 桩身轴力对比

考虑温度对桩 - 土界面的影响,能源桩升温时, 桩 - 土界面处的温度按照桩身温度计算,桩 - 土界 面初始剪切刚度按照式(6)计算。其中, σ_{r±}利用 式(24)计算,然后根据步骤(1)~(6),可以得到不同 温度下每一桩的竖向位移 wⁱ_p,再利用式(30)~(32), 可计算得到不同桩荷载作用下模型桩的桩身轴力及 不同温度下模型桩的 *Q*-s 曲线。

图 9 为室温下不同桩顶荷载下桩身轴力分布 图,可以看出,桩身轴力的理论计算值与实测值较 为吻合,桩顶荷载分别为400,800,1200,1600 N 时,桩端阻力实测值分别为172.0,243.5,306.7, 504.2 N,说明桩顶大部分荷载由桩侧摩阻力承担。

Fig.9 Comparison between calculated and measured axia force of energy pile(30 °C) 在桩身同一位置,计算轴力大于实测轴力,这是由 于所建理论计算模型假设土体为弹性体,未考虑其 固结效应,桩身侧摩阻力发挥较少,而土体的固结 有助于桩身侧摩阻力的发挥。

(3) Q-s 曲线对比

图 10 给出了温度分别为 30 ℃,45 ℃和 60 ℃ 工况下,能源桩模型计算与实测 *Q-s* 曲线对比结果, 可以看出,在第 10 级加载(2 000 N)之前,3 种温度 工况下的计算结果与实测结果较为一致;随着加载 的进行,实测沉降值大于计算值,这是由于计算模 型中假设土体为弹性体,未能考虑土的固结效应及 塑性变形等的影响。

Fig.10 Comparison between calculated and measured settlement at different temperatures

(4) 侧摩阻力计算

利用能源桩桩 - 土界面荷载传递模型,讨论温 度对桩侧摩阻力分布的影响。在桩顶荷载分别为 400,800,1200 N时,温度对桩侧摩阻力分布影响 结果如图 11 所示。以图 11(a)为例进行分析,0.7 m 以上,桩侧摩阻力随着温度的升高(30 ℃→45 ℃→ 60 ℃)有一定的增大,0.7 m 以下则呈相反趋势,其

原因主要为,能源桩运行导致桩、土体温度升高, 桩、土之间的法向应力增大,使得上部桩侧摩阻力 有一定的增大、桩侧摩阻力发挥充分,下部反之。

在 30 ℃工况下(室温、未加热), 桩顶荷载 400, 800, 1 200 N时, 桩顶处的侧摩阻力为 0, 桩端处 的侧摩阻力最大, 近似呈线性分布, 系由于模型桩 桩长仅为 1 m, 为短桩, 桩身位移几乎都为桩顶位 移, 桩 - 土界面法向应力较小所致。但随着深度的 增加, 桩 - 土界面法向应力逐渐增大, 且桩侧摩阻 力与界面法向应力呈正比, 故侧摩阻力在桩端处达 到最大值。

在 45 ℃和 60 ℃工况下,由于温度升高,桩、 土发生膨胀,桩 - 土界面产生法向温度应力增量, 0.7 m 以上部分,桩侧摩阻力增大;以下部分桩侧摩 阻力减小。因为桩体温度自桩顶向桩端呈减小趋势, 产生的水平向法向应力也随深度增加而减小,而土 体自重产生的水平向法向应力沿深度不断增加,桩 -土界面有效法向应力是二者的叠加,并在约 0.7 m 达到最大值。

6 结 论

本文考虑温度对桩 - 土界面初始剪切刚度及抗 剪强度的影响,建立了升温状态下能源桩桩 - 土界 面荷载传递模型,同时利用室内模型试验验证了模 型的合理性,最后利用该模型计算分析了温度对能 源桩侧摩阻力的影响,主要结论如下:

(1) 在相同桩顶荷载作用下,加热至 60 ℃时的 桩顶竖向位移最小,30 ℃时的桩顶位移最大,45 ℃ 时的桩顶位移介于两者之间,这说明升温有助于提 高能源桩的极限承载力。

(2) 桩周土温度、Q-s 曲线计算结果与实测值较为一致,验证了所建立的考虑温度影响的能源桩桩-土界面荷载传递模型的合理性。

(3) 能源桩运行使得桩、土温度升高,桩、土 间的法向应力增大,相同条件下,上部(0.7 m 以上) 桩侧摩阻力随温度的升高(30 ℃→45 ℃→60 ℃) 有一定的增大,即温度越高,桩侧阻力发挥越充分, 下部则呈相反趋势。

参考文献(References):

- UESUGI M, KISHIDA H, TSUBAKIHARA Y. Friction between sand and steel under repeated loading[J]. Soils and Foundations, 1989, 29(3): 127 - 137.
- [2] DESAI C S, DRUMM E C. Cyclic testing and modeling of interface[J]. Journal of Geotechnical Engineering, 1985, 111(6): 793 - 815.
- [3] YIN Z Z, ZHU H, XU G H. A study of deformation in interface between soil and concrete[J]. Computers and Geotechnics, 1995, 17(1): 75 - 92.
- [4] GÓMEZ J E, FILZ G M, EBELING R M. Development of an improved numerical model for concrete-to-soil interfaces in soilstructure interaction analyses[R]. Vicksburg: U.S. Army Engineer Research and Development Center, 2000.
- [5] SEED H B, REESE L C. The action of soft clay along friction piles[C]// Trans. Am. Soc. Civ. Engrs., [S. l.]: [s. n.], 1957(122): 731 – 754.
- [6] WONG K S, THE C I. Negative skin friction on piles in layered deposits[J]. Journal of Geotechnical Engineering, ASCE, 1995, 121(6): 457 - 465.
- [7] RANDOLPH M F, WORTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering, ASCE, 1978, 104(2): 1465 - 1488.
- [8] 陈仁朋,周万欢,曹卫平,等. 改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J]. 岩土工程学报,2007,29(6): 824-830.(CHEN Renpeng, ZHOU Wanhuan, CAO Weiping, et al. Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect[J]. Chinese Journal of Geotechnical

Engineering, 2007, 29(6): 824 - 830.(in Chinese))

- [9] 曹卫平. 桩土界面荷载传递双曲线模型的改进及其应用[J]. 岩石力 学与工程学报, 2009, 28(1): 144 - 151.(CAO Weiping. An improved load transfer hyperbolic model for pile-soil interface and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 144 - 151.(in Chinese))
- [10] WANG B, BOUAZZA A, HABERFILED C. Preliminary observations from laboratory scale model geothermal pile subjected to thermalmechanical loading[C]// Geo-Frontiers Congress. Dallas, Texas: ASCE, 2011: 488 - 489.
- [11] 刘干斌,谢琦峰,范高飞,等. 饱和黏土中热交换桩承载力特性模型试验研究[J]. 岩石力学与工程学报,2017,36(10):2535-2543.
 (LIU Ganbin, XIE Qifeng, FAN Gaofei, et al. Model test on bearing capacity characteristics of heat exchanger piles in saturated clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2535-2543.(in Chinese))
- [12] 路宏伟,蒋 刚,王 昊,等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报,2017,39(2):334-342.(LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermomechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342.(in Chinese))
- [13] ALONSO E E, JOSA A, LEDESMA A. Negative skin friction on piles: A simplified analysis and prediction procedure[J]. Geotechnique, 1984, 34(3): 341 – 357.
- [14] 赵海丰,桂树强,唐荣彬,等.螺旋型埋管能源桩传热模型的适用 性及其试验验证[J]. 长江科学院院报, 2017, 34(4): 111 - 116. (ZHAO Haifeng, GUI Shuqiang, TANG Rongbin, et al. Applicability of heat transfer model of energy pile with buried spiral pipe and its experimental verification[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(4): 111 - 116.(in Chinese))
- [15] SURYATRIYASTUTI M E, MROUEH H, BURLON S. A load transfer approach for studying the cyclic behavior of thermo-active piles[J]. Computers and Geotechnics, 2014, 55: 378 - 391.
- [16] 李维特,黄保海,毕仲波. 热应力理论分析及应用[M]. 北京:中国电力出版社,2004:94-95.(LI Weite, HUANG Baohai, BI Zhongbo. Theoretical analysis and application of thermal stress[M]. Beijing: China Electric Power Press, 2004: 94-95.(in Chinese))
- [17] FELLENIUS B H. Results from long-term measurement in piles of drag load and down drag[J]. Canadian Geotechnical Journal, 2006, 43(4): 409 - 430.
- [18] SHINICHI Y, MADAN M. Reliability based load transfer characteristics of bored precast piles equipped with ground bulb in the pile toe region[J]. Soils and Foundations, 2004, 44(3): 57 - 68.
- [19] 中华人民共和国行业标准编写组. 建筑桩基技术规范[S]. 北京:中国建筑工业出版社, 1994.(The Professional Standards Compilation Group of People's Republic of China. Technical code for building pile foundations[S]. Beijing: China Architecture and Building Press, 1994.(in Chinese))
- [20] 赵 刚,李 驰,斯日古楞. 温度循环下桩土界面特性及桩侧摩阻 力数值模拟[J]. 防灾减灾工程学报, 2017, 37(4): 546 - 550.(ZHAO Gang, LI Chi, Siriguleng. Friction characteristics of pile-soil interface under temperature cycles and numerical simulation of shaft resistance[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 546 - 550.(in Chinese))