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Habitual sleep duration is associated with BMI and macronutrient
intake and may be modified by CLOCK genetic variants1–5
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ABSTRACT
Background: Short sleep duration has been associated with greater
risks of obesity, hypertension, diabetes, and cardiovascular disease.

Also, common genetic variants in the human Circadian Locomotor

Output Cycles Kaput (CLOCK) show associations with ghrelin and

total energy intake.
Objectives: We examined associations between habitual sleep dura-
tion, body mass index (BMI), and macronutrient intake and assessed

whether CLOCK variants modify these associations.
Design: We conducted inverse-variance weighted, fixed-effect meta-
analyses of results of adjusted associations of sleep duration and BMI

and macronutrient intake as percentages of total energy as well as

interactions with CLOCK variants from 9 cohort studies including up

to 14,906 participants of European descent from the Cohorts for Heart

and Aging Research in Genomic Epidemiology Consortium.
Results: We observed a significant association between sleep dura-
tion and lower BMI (b 6 SE = 0.16 6 0.04, P , 0.0001) in the

overall sample; however, associations between sleep duration and

relative macronutrient intake were evident in age- and sex-stratified

analyses only. We observed a significant association between sleep

duration and lower saturated fatty acid intake in younger (aged 20–

64 y) adults (men: 0.11 6 0.06%, P = 0.03; women: 0.10 6 0.05%,

P = 0.04) and with lower carbohydrate (20.316 0.12%, P , 0.01),

higher total fat (0.18 6 0.09%, P = 0.05), and higher PUFA (0.05 6
0.02%, P = 0.02) intakes in older (aged 65–80 y) women. In addition,

the following 2 nominally significant interactions were observed:

between sleep duration and rs12649507 on PUFA intake and between

sleep duration and rs6858749 on protein intake.
Conclusions: Our results indicate that longer habitual sleep duration
is associated with lower BMI and age- and sex-specific favorable

dietary behaviors. Differences in the relative intake of specific mac-

ronutrients associated with short sleep duration could, at least in part,

explain previously reported associations between short sleep duration

and chronic metabolic abnormalities. In addition, the influence of

obesity-associated CLOCK variants on the association between sleep

duration and macronutrient intake suggests that longer habitual sleep

duration could ameliorate the genetic predisposition to obesity via

a favorable dietary profile. Trials related to this study were registered

at clinicaltrials.gov as NCT00005133 (Cardiovascular Health Study),

NCT00005121 (Framingham Offspring Study), NCT01331512
[Invecchiare in Chianti (Aging in the Chianti Area) study],
NCT00289237 (Inter99), and NCT00005487 (Multi-Ethnic Study of
Atherosclerosis). Am J Clin Nutr 2015;101:135–43.
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INTRODUCTION

In 2013, approximately one-third of U.S. workers reported
sleep duration#6 h/night and fewer than 21% of U.S. adults met
NIH recommendation of 7–8 h sleep/night (1). The increasing
prevalence of short sleep duration raises public health concerns
related to both safety and health (2). Short sleep duration has
been associated with greater risk of obesity (3), hypertension
(4), diabetes (5), cardiovascular disease (6), and all-cause mor-
tality (7). Because cardiometabolic conditions have strong nu-
tritional determinants, links between insufficient sleep and
metabolic disruption could be mechanistically mediated through
changes in dietary intake.

Studies of experimental sleep restriction showed unfavorable
impacts on the appetite-related hormones ghrelin and leptin and
on hunger, total energy intake, and weight (8, 9). In short-term,
crossover, inpatient trials in adults, sleep restriction was asso-

ciated with increased energy intake (10, 11), increased total fat (11),
and SFA (10) intakes and excess consumption of carbohydrate-rich
snacks (12). However, habitual sleep duration assesses long-term
sleep patterns, which may affect risk for chronic diseases. Self-
reported habitual short sleep duration is associated with elevated
ghrelin and decreased leptin concentrations in the general pop-
ulation (13), and a recent cross-sectional analysis reported higher
energy intake in individuals with self-reported short sleep du-
ration (14). Whether chronic metabolic abnormalities associated
with short sleep duration result from differences in relative in-
takes of macronutrients in addition to reported higher energy
intake is not known.

In addition to sleep, the circadian system, which is comprised
of transcription factors including Circadian Locomotor Output
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Cycles Kaput (CLOCK)6 and governs the sleep-wake cycle, also
influences diet through changes in appetite mediated by endo-
crine hormones such as leptin, ghrelin, and insulin (15). Com-
mon genetic variants in the human CLOCK show associations
with ghrelin (16), whereas other CLOCK variants situated in the
3#-untranslated region show associations with total energy in-
take (17). These observations are in line with genome-wide
association studies that identified 3 CLOCK variants rs4864548,
rs3736544, and rs1801260 to be associated with obesity and
metabolic syndrome (18). Observed differences in appetite-related
endocrine hormones and total energy intake related to CLOCK
variants suggest that CLOCK could modify associations between
habitual sleep duration and dietary intake.

We hypothesized that habitual short sleep duration is asso-
ciated with macronutrient composition, specifically with diets
higher in relative carbohydrate and SFAs and lower in PUFAs and
MUFAs. On the basis of the influence of CLOCK on appetite and
total energy intake, we further hypothesized that CLOCK vari-
ants modify the association between habitual short sleep dura-
tion and relative macronutrient intake. These hypotheses were
tested in large cross-sectional meta-analyses of population-
based cohorts from the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consortium.

SUBJECTS AND METHODS

Cohorts

The cross-sectional meta-analyses included up to 14,906
participants of European descent from the following 9 cohort
studies of the CHARGE Consortium Nutrition Working Group
(Supplemental Table 1): Corogene Controls, the Cardiovascu-
lar Health Study (CHS), the Framingham Offspring Study
(FOS); the Helsinki Birth Cohort Study (HBCS), Invecchiare in
Chianti (aging in the Chianti area, InCHIANTI), Inter99, Multi-
Ethnic Study of Atherosclerosis (MESA), The Hellenic Study of
Interactions between SNPs and Eating in Atherosclerosis Sus-
ceptibility (THISEAS), and the Cardiovascular Disease Risk in
Young Finns Study (YFS). Participants provided written informed
consent, and the protocol was approved by local institutional
review boards and oversight committees.

Dietary assessment and BMI

Habitual dietary intake data were collected via validated food-
frequency questionnaires (Supplemental Table 2) (19–24). The
type of food-frequency questionnaire used in each cohort dif-
fered slightly to capture the dietary habits of the population of
interest. The current analysis focused on intake as percentages
of total energy of protein, carbohydrate, and total fat. In addition,
we examined PUFA, MUFA, and SFA intakes as percentages of
total energy. Cohort-specific assessment methods for BMI are
provided in Supplemental Table 3.

Sleep

Data on habitual weekday/workday nighttime sleep duration in
hours were obtained from self-reported responses to questions
such as “How many hours of sleep do you usually get at night?”
or were calculated from self-reported weekday/workday bed and
rise times (Supplemental Table 3). Responses were analyzed as

continuous variables. Participants within each cohort were ex-
cluded from the analysis if they were shift workers, on a sleep or
depression medication, reported bedtimes after 0500 or before
1800, or reported sleep duration #3 or $16 h/night.

Genotyping

We selected 9 tagging single nucleotide polymorphisms
(tSNPs) that capture variations for CLOCK gene and flanking
regulatory regions (620 kb) by using the web-based service of
the Tagger option (aggressive tagging approach) within Haplo-
view software (version 4.2; Broad Institute) (25) with variables
on the basis of the Caucasian European Utah analysis panel
(HapMap III release 2) with a minor allele frequency $0.10 and
r2 $ 0.80. Selected tSNPs and single nucleotide polymorphisms
(SNPs) in linkage disequilibrium (r2 $ 0.80) were previously
directly genotyped or imputed by participating cohorts before
inclusion in this analysis (Supplemental Table 4). Not all SNPs
were available in all participating cohorts (Supplemental Table 5),
and as a result, total sample sizes for analyses varied accordingly.

Cohort-specific analyses

All participating cohort-specific statistical analyses followed
a uniform analysis plan. First, main associations between sleep
duration and BMI were estimated by using linear regression
models with adjustment for age, sex, and, when relevant, study
site. Main associations between sleep duration and relative di-
etary intake were estimated similarly with adjustment for age,
sex, BMI, and, when relevant, study site. Because sex and age
have been reported to modify the association of sleep duration
with BMI and total energy intake (11, 26, 27), associations were
further explored in stratified age [20–64 y (younger) compared
with 65–80 y (older)] and sex groups. Second, main associations
between CLOCK tSNPs and dietary intake were investigated
by using linear fixed-effect regression models or linear mixed-
effects models for cohorts with family data in an additive genetic
model adjusted for age, sex, BMI, and, when relevant, study site and
family or population substructure. Third, the sleep duration3 tSNP
effect modification on dietary intake was investigated by including
an interaction term in a model adjusted for the aforementioned
covariates.

Meta-analyses

We conducted inverse-variance weighted, fixed-effect meta-
analyses by using the METAL program (version released 25
March 2011; University of Michigan, Center for Statistical
Genetics) (28) for 1) main associations of sleep duration on both
BMI and macronutrient intake, 2) main associations of tSNPs on
macronutrient intake, and 3) interactions between tSNPs and
sleep duration on macronutrient intake.

The heterogeneity across studies was tested by using
Cochran’s Q statistic and quantified by using the I2 statistic (29).
To assess potential sources of heterogeneity, we conducted
a meta-regression of all association and interaction analyses
with moderate heterogeneity (I2 . 30%) to assess the impact of
moderator variables on heterogeneity by using the R metafor
package (version 1.9-4; Maastricht University) (30). Meta-regression
moderators considered included geographic location (United States
compared with northern Europe compared with Mediterranean),
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mean age of cohort (20–64 compared with 65–80 y), and total
energy intake (,2000 compared with$2000 kcal/d). In addition,
we conducted sensitivity analyses to assess the influence on the
meta-analyzed estimate of any single cohort study by repeating
analyses with the removal of one cohort study at a time in both
association and interaction analyses. Statistical significance was
defined at a = 0.002 on the basis of Bonferroni correction for 27
total independent interaction tests (3 independent macro-
nutrients 3 9 independent tSNPs).

RESULTS

General characteristics of participants are shown in Table 1.
Average habitual sleep duration was consistent in the 9 cohorts
and remained similar when stratified by sex and age group [20–
64 y (younger) compared with 65–80 y (older)] (Supplemental
Figure 1). In older adults, however, we observed that women
had lower sleep duration than that of men (P , 0.0001). Mean
dietary intakes were not significantly different across studies
and differed only for MUFA intake; the Mediterranean cohorts
(InCHIANTI and THISEAS) had higher mean MUFA intakes
than northern European and U.S. cohorts (P , 0.0001).

Associations of sleep duration with BMI and macronutrient
intake

After adjustment for age, sex, and study site, we identified
a significant association between sleep duration and BMI (Table 2,
Supplemental Table 6). Each additional hour of sleep was
associated with 0.16 lower BMI (b 6 SE = 20.16 6 0.04,
P , 0.0001). In sex-stratified analyses, the magnitude of this
association was approximately twice as great in men as women
and was significant in men only with slight differences by age
group; each additional hour of sleep was associated with
0.23 6 0.07 lower BMI (P , 0.001) and 0.19 6 0.07 lower
BMI (P , 0.01) in younger and older men, respectively.

There were no significant associations between sleep duration
and relative macronutrient intake adjusted for age, sex, BMI, and
study site in the overall sample. However, associations between
sleep duration and intake were evident in age- and sex-stratified
analyses (Table 2). We observed a significant association between
sleep duration and SFA intake in younger adults whereby, per each
additional hour of sleep, SFA intake was 0.116 0.06% (P = 0.03)
and 0.10 6 0.05% (P = 0.04) lower in younger men and women,
respectively. In addition, in older women, each additional hour of
sleep was associated with 20.31 6 0.12% (P , 0.01), 0.18 6
0.09% (P = 0.05), and 0.05 6 0.02% (P = 0.02) differences in
percentages of energy from carbohydrate, total fat, and PUFAs,
respectively. Results from both meta-regressions and sensitivity
analyses did not substantively affect these results or reveal any
clear sources of heterogeneity between sleep duration and BMI
and dietary intake (results not shown).

Associations of CLOCK variants with macronutrient intake

Meta-analyzed estimates of SNP associations with macronu-
trient intake are presented in Table 3. No associations met the
prespecified Bonferroni-corrected significance level of P ,
0.002. A nominally significant (i.e., P , 0.05) association with
the percentage of energy from MUFAs was observed at
rs10462028 (b 6 SE = 20.07 6 0.03% per additional C allele, T
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P = 0.05), and percentage of energy from protein at rs504836
(b 6 SE = 0.13 6 0.06% per additional C allele, P = 0.04).
Although overall meta-analyzed estimates of SNP associations
show little evidence of heterogeneity (Supplemental Table 7),
results of the meta-regression revealed that geographic location
(P , 0.05) might be a source of heterogeneity for several of the
associations between tSNPs and PUFAs; these subgroup meta-
analyzed estimates by geographic location (United States com-
pared with northern Europe compared with Mediterranean) are
presented in Supplemental Table 8. Sensitivity analyses
showed that the association for rs1047354 with protein (I2 =
96%) was driven by one cohort (HBCS); the removal of the
cohort from the meta-analysis resulted in a weaker and non-
significant association (b 6 SE = 0.03 6 0.03% per additional
G allele, P = 0.46, I2 = 52%). Sensitivity analyses also altered
the association of rs10462028 with PUFA such that the associ-
ation became nominally significant when the outlying cohort
(InCHIANTI) was excluded (b 6 SE = 20.05 6 0.02% per
additional C allele, P = 0.03, I2 = 23%).

Sleep duration3 CLOCK variants on macronutrient intake

Meta-analyzed estimates of interactions between sleep dura-
tion and tSNPs on macronutrient intake are presented in Table 4.
There were no significant interactions evident on intake after
correction for multiple testing (i.e., at corrected P , 0.002). The
following 2 nominally significant interactions were observed: 1)
between sleep duration and rs12649507 for PUFA (b 6 SE =
0.05 6 0.02%, P = 0.01), which suggested higher PUFA intake
with each additional hour of sleep in the presence of the minor G
allele, and 2) between sleep duration and rs6858749 for energy
from protein (b 6 SE = 20.08 6 0.04%, P = 0.04), which
suggested lower protein intake with each additional hour of
sleep in the presence of the minor T allele. Meta-analyzed es-
timates of interactions showed little evidence of heterogeneity
(Supplemental Table 9), and results of meta-regressions and the
sensitivity analyses did not substantively affect our results or
reveal any clear sources of heterogeneity (results not shown).

DISCUSSION

In meta-analyses of 9 cohorts, we showed that sleep duration
was associated with BMI in the overall sample and relative
macronutrient intake in specific age and sex groups. We also
identified several nominal associations between CLOCK variants
and intake, some of which appeared to be region specific. Finally,
we observed that CLOCK variants could modify the associations
between sleep duration and dietary intake; however, these results
were only nominally significant.

Our large-scale, multinational assessment of habitual sleep
duration and BMI was consistent with previous literature
whereby adults who reported habitually longer sleep durations
had significantly lower BMI than that of those with habitually
shorter sleep durations (31). No associations were evident be-
tween sleep duration and relative macronutrient intake in the
overall sample; however, stratified exploratory analyses indicated
that associations between sleep duration and intake tended to be
age- and sex-specific; longer sleep duration was associated with
lower SFA intake in younger adults and higher total fat intake,
primarily driven by higher PUFA intake, as well as lowerT
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carbohydrate intake in older women. The mechanisms that un-
derlie these sex-specific associations were unclear but could have
included sex-specific hormonal differences, differences in self-
reporting behaviors (32), or differences in sleep duration between
older adult men and women identified in the current study. Sex-
specific associations of short sleep duration were also shown for
other outcomes such as hypertension (4).

The 2010 Dietary Guidelines for Americans emphasized the
cardioprotective benefits of consuming diets lower in SFAs by
replacing them with MUFAs and PUFAs (33). On the basis of
our observation of associations between habitual sleep duration
and dietary fat intake in younger adults and older females, our
findings suggest that longer sleep duration may facilitate com-
pliance to the current recommendations for healthier eating
behaviors. Together with previously reported differences in total
energy intake with sleep duration (9), our results may support
the hypothesis that metabolic differences associated with sleep
duration can be mediated in part by differences in dietary intake,
specifically differences in SFA, PUFA, and carbohydrate in-
takes.

For associations between CLOCK variants and macronutrient
intake, results from both sensitivity and meta-regression analyses
indicated various sources of heterogeneity. Meta-regression re-
sults indicated that geographic location could have influenced
these associations, particularly between CLOCK and PUFA.
When stratified by geographic location, meta-analyses results
showed nominally significant SNP-PUFA associations. Although
region-specific observations could result from mechanistically
plausible effects of geographic variation on the entrainment of cir-
cadian rhythms (34), whether the SNP-diet associations are truly
region specific or confounded by other factors such as differences in
dietary assessment tools and dietary patterns across the meta-ana-
lyzed cohorts could not be elucidated in our analysis. Likewise, by
the sequential removal of single cohorts from the meta-analyses,
sensitivity analyses suggested the strong influence of single cohorts
on some of these associations. Single cohort–driven results are
possibly attributable to differences in intakes across cohorts as ev-
ident for the association between rs10462028 and PUFAs for which
heterogeneity was substantively reduced after the removal of In-
CHIANTI, which was a Mediterranean cohort with the lowest
PUFA intake. Overall, we report no associations between CLOCK
variants and macronutrient composition; however, our results sug-
gest that differences in intakes across geographic regions should be
accounted for in future studies of the genetic component of dietary
intake.

A potential mechanistic overlap between effects of CLOCK
and sleep duration on dietary intake led us to investigate po-
tential gene 3 sleep duration interactions. Our interaction
analyses failed to identify interactions that met prespecified
criteria for statistical significance. However, they did identify
potentially interesting and nominally significant interactions.
One of these interactions was between sleep duration and
rs12649507, which is an intronic variant, that indicated that, in
individuals with the minor A allele, longer sleep duration was
associated with a more favorable dietary profile through greater
increases in PUFA intake. The minor allele was associated with
shorter sleep duration in an earlier meta-analysis (35). In addi-
tion, this variant is in linkage disequilibrium with rs6843722
(r2 = 1.00 in Caucasian European Utah by using the HapMap II
dataset), which is a variant previously associated with obesityT
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(36). Taken together, the interaction suggests that longer sleep
duration could result in an increase in PUFA consumption in
individuals at risk for obesity.

Our meta-analysis of data from 9 cohort studies had several
strengths. To our knowledge, this was the largest observational
study to investigate sleep duration with both BMI and dietary
composition and the largest meta-analysis to investigate asso-
ciations of CLOCK, as well as its interactions with sleep dura-
tion, with dietary intake. With the investigation of habitual
lifestyle, including sleep and diet, our findings are potentially
relevant to chronic diseases (14). Our standardized analytic plan
and uniform analysis across all participating cohorts reduced
errors and biases often associated with meta-analyses, including
selection and publication biases. Although the associations we
observed between sleep duration and BMI and dietary behavior
were small in terms of the size, they were consistent in direction
with those reported in single cohorts that investigated similar
relations, but more importantly, they are relevant to elucidating
the potential underlying biology of very complex human dietary
and sleep behaviors. The small size of these associations could
have also resulted from a potential U-shaped relation between
sleep duration and dietary intake, which was not investigated in
the current analysis. Finally, we observed, overall, little evidence
of heterogeneity in our analyses despite the wide range of co-
horts investigated.

The implications of our current study were limited to in-
dividuals of European descent, and additional analysis in other
ethnic groups is warranted to generalize these findings. Although
our analysis examined associations and interactions of a single
circadian gene on dietary intake because of well-established
biological pathways linking CLOCK to dietary intake, it is likely
there are potentially important interactions elsewhere in the
genome. Our use of self-reported habitual sleep duration and
dietary intake was susceptible to reporting bias, and objective
measures of sleep duration may be required for future studies
(37). Likewise, the use of different assessment tools across co-
horts could affect these findings. Although our investigation
focused on nighttime sleep duration, which is a commonly
surveyed sleep variable in large observational studies, the as-
sessment of other dimensions of sleep, such as sleep quality, in
addition to napping, which may have important effects on dietary
intake, should also be considered (38–40). The current cross-
sectional meta-analyses of observational studies could not inform
us about the temporal relation or the causal pathway linking
CLOCK, sleep, and diet. Therefore, whether sleep duration di-
rectly influenced dietary intake or indirectly moderated macro-
nutrient effects on BMI, potentially through changes in substrate
utilization, cannot be inferred from this investigation, and other
studies are necessary to establish these mechanistic links.

In conclusion, given the declining trends in habitual sleep
duration and rising trends in metabolic abnormalities, our findings
may have public health implications by providing recommen-
dations to individuals at risk for chronic diseases. Our results
indicate that an increase in habitual sleep duration is associated
with desirably lower BMI and age- and sex-specific favorable
dietary behaviors. Furthermore, differences in the relative intake
of specific macronutrients associated with short sleep duration
could provide a partial basis for previously reported associations
between short sleep duration and chronic metabolic abnormal-
ities. In addition, the nominal evidence for the influence of an

obesity-associated CLOCK variant on the association between
sleep duration and macronutrient intake suggests that an increase in
habitual sleep duration could ameliorate a genetic predisposition
to obesity via a more favorable dietary profile. The identified
interaction provides preliminary findings for personalized sleep
recommendations for individuals at increased genetic risk for
obesity aimed at attenuating this risk, and additional exploration
of these interactions in age- and sex-specific groups is warranted.
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