
FE and iO for Turing Machines
from Minimal Assumptions

Shweta Agrawal ∗ Monosij Maitra †

Abstract

We construct Indistinguishability Obfuscation (iO) and Functional Encryption (FE) schemes
in the Turing machine model from the minimal assumption of compact FE for circuits (CktFE).
Our constructions overcome the barrier of sub-exponential loss incurred by all prior work. Our
contributions are:

1. We construct iO in the Turing machine model from the same assumptions as required in the
circuit model, namely, sub-exponentially secure FE for circuits. The previous best constructions
[KLW15, AJS17] require sub-exponentially secure iO for circuits, which in turn requires
sub-exponentially secure FE for circuits [AJ15, BV15].

2. We provide a new construction of single input FE for Turing machines with unbounded
length inputs and optimal parameters from polynomially secure, compact FE for circuits. The
previously best known construction by Ananth and Sahai [AS16] relies on iO for circuits, or
equivalently, sub-exponentially secure FE for circuits.

3. We provide a new construction of multi-input FE for Turing machines. Our construction
supports a fixed number of encryptors (say k), who may each encrypt a string xi of unbounded
length. We rely on sub-exponentially secure FE for circuits, while the only previous construction
[BGJS15] relies on a strong knowledge type assumption, namely, public coin differing inputs
obfuscation.

Our techniques are new and from first principles, and avoid usage of sophisticated iO specific
machinery such as positional accumulators and splittable signatures that were used by all relevant
prior work [KLW15, AS16, AJS17].

1 Introduction

The notion of indistinguishability obfuscation (iO) [BGI+01] seeks to garble programs such that the
obfuscations of any two functionally equivalent programs are indistinguishable. While non-obvious at
first what such a guarantee is good for, iO has emerged as a surprisingly powerful notion in cryptography,
leading to many advanced cryptographic applications that were previously out of reach [GGH+13, SW14,
CLTV15, CHJV15, BGL+15, KLW15, BPR15, LPST16, CHN+16, CMR17, LZ17].

Functional encryption (FE) [SW05, BSW11, O’N10] is a generalization of public key encryption that
enables fine grained access control on encrypted data. In FE, a secret key corresponds to a function f and
ciphertexts correspond to strings from the domain of f . Given a function key SKf and a ciphertext CTx,
the decryptor learns f(x) and nothing else.

While an important primitive in its own right, FE has also been shown to imply iO, albeit with
sub-exponential loss [AJ15, BV15]. Over the last few years, both primitives have received significant
attention, with a rich body of work that attempts to support more general models of computation
∗IIT Madras, India. Email: shweta.a@cse.iitm.ac.in
†IIT Madras, India. Email: monosij@cse.iitm.ac.in

1



[BGL+15, CHJV15, KLW15, CCHR15, CCC+15, ACC+16, CH16], rely on weaker assumptions [BKS16,
GS16, LM16, BNPW16, KS17, AS17b, Lin17, LT17, KNT17, KNT18a, KNT18b], achieve stronger
security [ABSV15, BKS16] and greater efficiency [AJS17].

In this work, we make further progress towards the goal of basing iO and FE on minimal assumptions,
in the Turing machine model of computation. This question has been studied extensively [GKP+13a,
AS16, BGL+15, KLW15, CHJV15, CCC+15, CCHR15, ACC+16, CH16, AJS17] – we refer the reader
to [AS16, AJS17] for a detailed discussion. Below, we summarize the state of art:

1. iO for Turing Machines with unbounded memory and bounded inputs are constructed in the works
of Koppula et al. and Ananth et al. [KLW15, AJS17]. Both works rely on the existence of
sub-exponentially secure iO for circuits along with other standard assumptions. We note that FE
for circuits implies iO with sub-exponential loss, so when relying on FE for circuits, these works
incur double sub-exponential loss.

2. For single input FE for Turing machines that accept unbounded length inputs and place no restriction
on the description size or space complexity of the machine, the state of art is the work of Ananth
and Sahai [AS16], which relies on the existence of iO for circuits.

3. For multi-input FE in the Turing machine model, the only known construction is [BGJS15], which
relies on the existence of public coin differing inputs obfuscation (diO).

Our Results. We construct Indistinguishability Obfuscation (iO) and Functional Encryption (FE)
schemes in the Turing machine model from the minimal assumption of compact FE for circuits
(CktFE). Our constructions overcome the barrier of sub-exponential loss incurred by all prior work. Our
contributions are:

1. We construct iO for Turing machines with bounded inputs and unbounded memory from the same
assumptions as required by iO for circuits, namely, sub-exponentially secure FE for circuits. The
previous best constructions [KLW15, AJS17] require sub-exponentially secure iO for circuits,
which in turn requires sub-exponentially secure FE for circuits [AJ15, BV15], resulting in double
sub-exponential loss.

2. We provide a new construction of single input FE for Turing machines with unbounded inputs,
achieving optimal parameters from polynomially secure, compact FE for circuits. The previously
best known construction by Ananth and Sahai [AS16] relies on iO for circuits, or equivalently, sub-
exponentially secure FE for circuits. We note that iO for circuits implies decomposable compact
FE for circuits [GGH+13] (please see Appendix F), so our construction also implies FE for TMs
from iO for circuits.

3. We provide a new construction of multi-input FE for Turing machines. Our construction supports a
fixed number of encryptors (say k), who may each encrypt a string xi of unbounded length. We
rely on sub-exponentially secure FE for circuits, while the only previous construction [BGJS15]
relies on a strong knowledge type assumption, namely, public coin differing inputs obfuscation.
The arity k supported by our scheme depends on the underlying multi-input CktFE scheme, for
instance using [KS17], we can support k = polylog(λ).

Our constructions make use of FE for circuits that satisfy a mild property called decomposablity, which
in turn can be constructed generically from FE for circuits (please see Appendix F). Decomposable
FE, analogously to decomposable randomized encodings [AIK11], roughly posits that a long string be
encrypted bit by bit using shared randomness across bits. This property is already satisfied by all known
constructions of CktFE in the literature to the best of our knowledge, please see Appendix F.1.

2



Our techniques are new and from first principles, and avoid usage of sophisticated iO specific
machinery such as positional accumulators and splittable signatures that were used by all prior work
[KLW15, AS16, AJS17]. Our work leverages the security notion of distributional indistinguishability
(DI) for CktFE which was first considered by [GHRW14], who provided a construction for single input
FE satisfying DI security assuming the existence of iO. We strengthen this result by constructing DI
secure CktFE from standard CktFE. Please see Figure 1 for an overview of our results.

Additional Prior Work. Since iO is considered an inherently sub-exponential assumption and
much stronger than the polynomial assumption of compact FE, replacing iO by FE in cryptographic
constructions has already been studied extensively, for instance in the context of PPAD hardness [GPS16],
multi-input FE for circuits [BKS16, KS17] as well as trapdoor one-way permutations and universal
samplers [GPSZ16]. We note that aside from reliance on weaker, better understood assumptions, avoiding
sub-exponential loss results in significantly more efficient schemes. We refer the reader to [GPSZ16] for
a detailed discussion.

Distributional indistinguishability was also considered in the context of output compressing
randomized encodings [LPST16]; indeed, this work implies that achieving DI security for FE for Turing
machines with long outputs is impossible in the plain model. We note that our construction sidesteps this
lower bound by considering Turing machines with a single output bit.

iO for TMs with unbounded memory has been constructed by [KLW15, AJS17] as discussed above,
other prior works were limited to bounded space constraints. We note that [AJS17] additionally achieve
constant overhead in the size of the obfuscated program as well as amortization, which we do not consider
in this work. We also note that the work of [BGJS15] achieve miFE for TMs where the number of
encrypting parties can be arbitrary, whereas we only support a-priori fixed, bounded number of parties.

The approach of using decomposable FE for circuits to construct FE for deterministic finite automata
(DFA) in the single key setting was suggested by [AS17a]. In this work we develop and significantly
generalize their ideas. In particular, we handle the unbounded key setting in FE for TMs which necessitates
dealing with the much more complex indistinguishability style definition, for which we develop new proof
techniques which use a novel “sliding trapdoor” approach and leverage distributional indistinguishability.
In contrast, since [AS17a] use simulation security for single key FE, their proof must not contend with
any of these challenges. Please see below for details.

Our Techniques. We describe an overview of our constructions, starting with single input FE,
generalizing to multi-input FE and then building iO. All our constructions support the Turing machine
model of computation. Our constructions rely on a single input FE scheme for circuits, denoted by
CktFE, which satisfies decomposability. In Appendix F, we show that decomposable FE for circuits is
implied by FE for circuits. Intuitively, decomposability means that the ciphertext CTx for a multi-bit
message x be decomposable into multiple ciphertext components CTi for i ∈ |x|, one for each bit xi
of the message. Moreover, the ciphertext components encoding individual bits of a single input are tied
together by common randomness, that is CTi = E(PK, r, xi) where E is an encoding function and r
is common randomness used for all i ∈ |x|1. The notion of decomposability has been widely studied
and used in the context of randomized encodings, which may be seen as a special case of functional
encryption; please see [AIK11] as an example. We note that all known FE schemes in the literature are
already decomposable to the best of our knowledge, please see Appendix F.1 for a discussion.

Single Input TMFE. Recall that a Turing machine at any time step reads a symbol, state pair and
produces a new symbol which is written to the work tape, a new state and a left or right head movement.
By assuming the Turing machine is oblivious, the head movements of the TM may be fixed; thus, at any

1Encoding of each bit may also use additional independent randomness, which is not relevant to the discussion here, and
hence omitted.

3



iO for TMs

FE for circuits

iO for circuits

Subexp

Subexp

Rerandomizable

encryption 

DDH, LWE, etc

Subexp

FE for circuits

iO for circuits

FE for TMs

Subexp

AS16 AJS17 This

iO for circuitsFE for circuits

FE for TMs MIFE for TMs

iO for TMs

Subexp

Subexp

Poly

Figure 1: Prior work and our results. The reductions with subexponential loss are specified, no
specification implies standard polynomial loss. The dashed blue lines indicate primitives that are
not actually used by the work in question; we add these to elucidate the relationship between primitives.
We do not include [BGJS15] here since it relies on public coin diO.

given time step when a work tape cell is read, we can compute the next time step when the same work
tape cell will be accessed. This reduces the output at any time step t to a symbol, state pair, where the
state is read in the next time step t+ 1 and the symbol is read at a future (fixed) time step t′ > t.

Our construction uses two CktFE schemes, 1FE1 and 1FE2, where 1FE2 is decomposable. Intuitively,
1FE1 is used by the encryptor to encode the unbounded length input, while 1FE2 is used to mimic the
computation of the Turing machine, as we describe next. The ciphertext of 1FE2 is divided into two parts,
encoding input components (t, σ) and q respectively. Here, t is the current time step in the computation
and σ, q are the current work-tape symbol and state respectively. We maintain the invariant that at any
time step t in the computation, both components of the ciphertext have been computed using common
randomness derived from PRFK((t‖salt)), where salt is an input chosen by the key generator and the
PRF key K is chosen by the encryptor.

Now, to mimic the TM computation, we provide a function key for the Next functionality, that stores
the transition table, receives as input the current (symbol, state) pair, computes the symbol to be written
on the work tape and the next state using the transition table, derives the randomness using the PRF for
the appropriate time step and outputs the encodings of the new (symbol, state) pair. In more detail, say
the encryptor provides encodings of each input symbol xi, for i ∈ [|x|], in addition to an encoding for
the first (fixed) state qst, where the encodings of (1, x1) and qst share the same randomness so that they
may be concatenated to yield a complete ciphertext for (1, x1, qst). Now, the function key may read input
(1, x1, qst), lookup the transition table and produce an encryption of the next state q2 and the symbol to
be written x′2. The randomness used to encrypt q2 is derived using a PRF as described above, and is the
same as the randomness used by the encryptor to encode (2, x2). Hence, the two ciphertext components
encoding (2, x2) and q2 may be concatenated to yield a complete 1FE2 ciphertext which may be again
decrypted using the function key.

4



Now consider how to support writing on tape. Say the symbol x′2 will be read at future fixed time
step t′. Then the function key encodes the tuple (t′, x′2) using randomness PRFK((t′‖salt)). The state
for time step t′, say q′ is computed at time step t′ − 1, also using randomness PRFK((t′‖salt)). Thus,
encodings of (t′, x′2) and q′ may be joined together to yield a complete 1FE2 ciphertext which may be
decrypted to propagate the computation.

A detail brushed away by the above description is that the encryptor, given input x, cannot compute
randomness generated by a PRF which has input a value salt chosen by the key generator. This is handled
by making use of an additional scheme 1FE1, which re-encrypts ciphertexts provided by the encryptor
via a ReRand functionality, using the requisite randomness. Note that we support inputs of unbounded
length by leveraging the fact that CktFE schemes 1FE1, 1FE2 support encryption of unbounded number
of inputs, even if each must be of bounded length. Thus, the encryptor provides an unbounded number
of 1FE1 ciphertexts which are rerandomized and translated to ciphertexts under 1FE2 using the ReRand
function key provided by the key generator.

Decomposability. The above construction relies on the underlying CktFE scheme satisfying the
property of decomposability. We note that decomposability is a mild assumption and already satisfied by
all known CktFE constructions in the literature to the best of our knowledge (please see Appendix F.1
for a discussion). We can also remove the requirement of decomposability at the expense of making our
compiler more complicated2. However, a cleaner approach is to build decomposable FE generically from
standard FE, by using decomposable randomized encodings, which may be constructed from one way
functions. Please see Appendix F for details.

Encoding the PRF key. The above informal description hides an important detail – for the function
key to produce ciphertext components using a PRF, it must have the key of the PRF, chosen by the
encryptor3, passed to it as input. Thus the ciphertext must additionally encode the PRF key along with
inputs (t, x, q). However, the ciphertext is constructed using randomness derived from the same PRF-
resulting in circularity. We resolve this difficulty by using constrained PRFs [BW13, KPTZ13, BGI14],
and having a ciphertext encode a PRF key that only allows computation of randomness for time steps of
the future; this does not compromise its own security. For this constraint family, we provide a construction
of cPRFs from standard assumptions. We believe this construction and the method of its application may
be useful elsewhere4.

More formally, our construction makes use of constrained, delegatable PRF for the function family
ft : {0, 1}2·λ → {0, 1} defined as follows.

ft(x‖z) = 1 if x ≥ t
= 0 otherwise

We denote the constrained PRF key Kft by Kt for brevity. By the delegation property of constrained
PRFs, we have that if t′ ≥ t then Kt′ can be derived from Kt. The proof requires the PRF to be punctured
at a fixed point in each hybrid, we provide a construction of delegatable punctured PRF in Appendix D.

Proof Overview. While the above description of single input TMFE is natural and intuitive, the proof
of indistinguishability based security is quite subtle and requires new techniques as we discuss next. For

2Intuitively, we use decomposability because the “symbol” and “state” components of the ciphertext are generated during
different times in decryption, say T1 and T2. However, since the underlying CktFE is compact, generating longer outputs comes
for free. Hence, we can have the CktFE generate the complete (symbol, state) CT for the relevant symbol and all possible states
at time T1. Given in the clear, this would be insecure but this can be fixed by further nesting these CTs within a symmetric
key encryption scheme and outputting them (in randomly permuted order). Later, at time T2, when the state is computed, the
decryption can output the SKE key to unlock the appropriate CktFE CT.

3Note that the PRF key must be encoded in the ciphertext rather than function key since it is required to be hidden.
4For instance, a similar situation w.r.t circularity arises in the original garbled RAM construction of Lu and Ostrovsky

[LO13].

5



ease of exposition, we describe the proof overview for the case where the adversary makes a single key
request corresponding to some TM M . We must argue that the challenge ciphertext, which is a sequence
of 1FE1 ciphertexts, together with ReRand and Next keys corresponding to a TM M , do not distinguish
the bit b.

As discussed above, the 1FE1 ciphertexts are decrypted using the ReRand key to produce a sequence
of 1FE2 ciphertexts, each corresponding to a time step in the TM execution (when the encoded symbol is
read), which are in turn decrypted by Next keys to compute new 1FE2 ciphertexts for future time steps.
We may view the 1FE2 ciphertexts as forming a chain, with each link of the chain corresponding to a
single step of the TM computation, and each ciphertext producing (via decryption) a new ciphertext for
the next time step, finally yielding the output when the TM halts (after T steps, say). Intuitively, since the
output of the TM does not distinguish the bit b by admissibility of the TMFE adversary, we may argue
by security of 1FE2 that the ciphertext at the penultimate step T − 1 also does not distinguish b, which
implies that the ciphertext at step T − 2 hides b and so on, ultimately yielding indistinguishability of the
entire chain, and hence of the 1FE1 challenge ciphertext.

Formalizing this intuitive argument is quite tricky. A natural approach would be to consider a
sequence of hybrids, one corresponding to each link in the chain, and switch the 1FE2 ciphertexts one
by one starting from the end of the chain. While intuitive, this idea is misleading – note that a naive
implementation of this idea would lead to a chain which is “broken”: namely, its first links correspond to
b = 0, and last links to b = 1. Since the ciphertext at a given step is decrypted to compute the ciphertext
at the next step, a ciphertext corresponding to b = 0 cannot in general output a ciphertext for b = 1.

A standard approach to deal with this difficulty is to embed a “trapdoor” mode within the functionality
[ABSV15, AJ15, BKS16] which lets us “hardwire” the ciphertexts that must be output by decryption
directly in the key, allowing decryption to yield an inconsistent chain. However, this approach also fails
in our case, since the length of the chain is unbounded and there isn’t sufficient space in the key to
incorporate all its values.

Our Approach: “Sliding” Trapdoors. We deal with this difficulty by designing a novel “sliding-
window” trapdoor approach which lets us hardwire the decryption chain “piece by piece”. In more detail,
we start with the last two time steps (T, T − 1), program the key to produce the output corresponding to
b = 1 for time step T and b = 0 for T − 1, then transition to a world where the output corresponds to
b = 1 for both T and T − 1. At this point, the hardwiring of the output for time step T is redundant, since
the ciphertext output by the decryption process at time step T − 1 automatically computes the output
coresponding to b = 1 at time step T . Thus, we may now slide the trapdoor to program to the next pair
(T − 1, T − 2), switching the decryption output at time step T − 2 to b = 1 and so on, until the entire
chain corresponds to b = 1.

Intuitively, we are “programming” the decryption only for outputs at both ends of the “broken link”,
so that preceding links are generated using b = 0 and subsequent links are generated using b = 1. We
leverage the fact that the chain links corresponding to future time-steps are encoded implicitly in a given
time step – hence if we manage to hide the chain inconsistency at a certain position i, this implies that the
remainder of the chain is constructed using the bit encoded at step i. Formalizing this argument requires
a great deal of care, as we must keep track of the “target” time steps corresponding to the two ends of
the broken link that are being programmed, the time steps at which the symbol and state ciphertexts are
generated to be “consumed” at the target time-steps, the particular values that must be encoded in the
symbol, state fields in both cases as well as the key that is being handled at a given time in the proof. For
more details, please see Section 3.3.

Generalising to Multi-Input FE for Turing machines. For the k party setting, a natural idea is to
have each party encrypt its own input xi, and use a k input CktFE scheme kFE [BKS16, KS17], to

6



“aggregate” these into the “input” ciphertext CT(x) for one long input x = (x1‖x2‖ . . . ‖xk), under a
different CktFE scheme 1FE. Note that the length of x is unknown hence it may not be encoded “all at
once” but must be encoded bit by bit as in the previous scheme. Now, by additionally providing the 1FE
ciphertext encoding the start state of the Turing machine CT(qst), and a function key to compute the
transition table of the TM as in the previous scheme, we may proceed with the computation exactly as
before.

Formalizing this idea must contend with several hurdles. In the multi-input setting, the ith encryptor
may encode multiple inputs and functionality permits “mix and match” of ciphertexts in the sense that any
input encoded by party i may be combined with any input encoded by parties j ∈ [k], j 6= i. Therefore,
if each of k parties encodes T ciphertexts, there are T k valid input combinations that the TM may execute
on. However, when the TM is executing on any input combination, we must ensure that it cannot mix and
match symbol, state pairs across different input combinations. Moreover, an encryption for a symbol,
state pair produced by some machine Mi should not be decryptable by any machine Mj for j 6= i. These
issues are handled by careful design of the aggregate functionality to ensure that an execution thread of
any input combination by any machine is separate from any other. The proof extends naturally from the
single input case. Please see Section 4 for details.

Distributional Indistinguishability. As discussed above, our constructions rely on the security notion of
distributional indistinguishability (DI) for functional encryption for circuits [GHRW14]. Intuitively, this
notion says that if the outputs produced by a circuit on two input distributions are merely indistinguishable
(as against exactly equal), then the ciphertexts encoding those inputs must also be indistinguishable. In
Appendix E we give a construction of DI secure single input FE from standard FE.

Indistinguishability Obfuscation. Constructing iO for TMs given miFE for TM is straightforward,
and adapts the miFE to iO circuit compiler by [GGG+14] to the TM setting. As in the circuit case, an
miFE for TM that supports two ciphertext queries and single key query suffices for this transformation.
Please see Section 5 for details. Since our security proof for miFE for TM is tight, this compiler yields iO
for TM from sub-exponentially secure FE for circuits rather than sub-exponentially secure iO for circuits.

Organization of the paper. The paper is organized as follows. In Section 2 we provide the definitions
and preliminaries used by our constructions. In Section 3, we provide our construction for single input FE
for Turing machines. In Section 4, we provide our construction for multi-input FE for Turing machines
for any fixed arity k and in Section 5 we describe the construction of iO for Turing machines for bounded
inputs. Our constructions use constrained PRFs which are instantiated in Appendix D and decomposable
FE which is constructed in Appendix F.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the paper. We use bold letters
to denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to
denote the set [1, n]. Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n) to
denote a polynomial function of n. We use the abbreviation PPT for probabilistic polynomial-time. We
say an event occurs with overwhelming probability if its probability is 1− negl(n). The function log x is
the base 2 logarithm of x.

7



2.1 Definitions: FE for Circuits

In this section, we define functional encryption for circuits, in both the single and multi-input setting.

2.1.1 Single Input Functional Encryption for Circuits

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let
F =

{
Fλ
}
λ∈N denote an ensemble where each Fλ is a finite collection of circuits, and each circuit

f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.
A functional encryption scheme CktFE for F consists of four algorithms

CktFE = (CktFE.Setup,CktFE.Keygen, CktFE.Enc,CktFE.Dec) defined as follows.

• CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation of the security
parameter and outputs the master public and secret keys (PK,MSK). Sometimes, the CktFE.Setup
algorithm may also accept as input a parameter 1`, denoting the length of the input. In this case,
the input lives in domain X `.

• CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master secret key MSK and a
circuit f ∈ Fλ and outputs a corresponding secret key SKf .

• CktFE.Enc(PK,x) is a PPT algorithm that takes as input the master public key PK and an input
message x ∈ Xλ and outputs a ciphertext CT.

• CktFE.Dec(SKf ,CTx) is an (a deterministic) algorithm that takes as input the secret key SKf and
a ciphertext CTx and outputs f(x).

Definition 2.1 (Correctness). A functional encryption scheme CktFE is correct if for all λ ∈ N, all
f ∈ Fλ and all x ∈ Xλ,

Pr

[
(PK,MSK)← CktFE.Setup(1λ);

CktFE.Dec
(

CktFE.Keygen(MSK, f),CktFE.Enc(PK,x)
)
6= f(x)

]
= negl(λ)

where the probability is taken over the coins of CktFE.Setup, CktFE.Keygen, and CktFE.Enc.

Definition 2.2 ( Compactness [AJ15]). A functional encryption scheme for circuits is said to be compact
if for any input message x, the running time of the encryption algorithm is polynomial in the security
parameter and the size of x. In particular, it does not depend on the circuit description size or the output
length of any function f supported by the scheme.

A weaker version of compactness, known as succinct or semi-compact FE, allows the run time of
the encryption algorithm to depend on the output length of the functions. Equivalently, a semi-compact
FE scheme is simply a compact FE scheme when we restrict our attention to functions with single-bit
outputs.

Distributional Indistinguishability for Circuit FE. In this section we define the notion of distri-
butional indistinguishability for functional encryption for circuits. The notion was first defined by
[GHRW14, Sec 3.4] in the context of reusable garbled circuits, i.e. single key functional encryption but
may be generalized to the multi-key setting in a straightforward way. Intuitively, this notion says that if
the outputs produced by a circuit on two input distributions are indistinguishable, then the ciphertexts
encoding those inputs must also be indistinguishable.

8



Definition 2.3. A functional encryption scheme F for a circuit family G is secure in the distributional
indistinguishability game, if for all PPT adversaries A, the advantage of A in the following experiment
is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any circuits gi ∈ G. In response, A
is given the corresponding keys SKgi . This step may be repeated any polynomial number of times
by the attacker.

3. Challenge Declaration: A(1λ,PK) outputs two ensembles of challenge distributions
(
D0(λ), D1(λ)

)
5

to the challenger, subject to the restriction that for any x0 ← D0,x1 ← D1, it holds that
gi(x0)

c
≈ gi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a random bit b,
samples xb ← Db and returns the ciphertext CTxb .

5. Key Queries: The adversary may continue to request keys for additional functions gi, subject to the
same restriction that for any x0 ← D0,x1 ← D1, it holds that gi(x0)

c
≈ gi(x1) for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and 1/2. In
the selective game, the adversary is required to declare the challenge distributions in the very first step,
without seeing the public key.

Comparison with Standard Indistinguishability. We note that the standard insitinguishability
game is implied by the above by restricting the adversary to choose distributions D0, D1 above to simply
be two messages x0,x1 with probability 1 and requesting keys that satisfy gi(x0) = gi(x1) for all i,
which is a special case of gi(x0)

c
≈ gi(x1).

Decomposable functional encryption for circuits In this section, we recall the notion of decompos-
able functional encryption (DFE) defined by [AS17a]. Decomposable functional encryption is analogous
to the notion of decomposable randomized encodings [AIK14]. Intuitively, decomposability requires
that the public key PK and the ciphertext CTx of a functional encryption scheme be decomposable into
components PKi and CTi for i ∈ [|x|], where CTi depends on a single deterministic bit xi and the public
key component PKi. In addition, the ciphertext may contain components that are independent of the
message and depend only on the randomness.

Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decomposable if there exists
a deterministic function E : P × {0, 1} ×R1 ×R2 → C such that:

1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where PKi ∈ P for i ∈ [k].
The component PKindpt ∈ Pj for some j ∈ N.

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption. Apart from the
common randomness r, each CTi may additionally make use of independent randomness r̂i ∈ R2.

5We omit the parameter λ in what follows for brevity of notation.

9



We note that if a scheme is decomposable “bit by bit”, i.e. into k components for inputs of size k,
it is also decomposable into components corresponding to any partition of the interval [k]. Thus, we
may decompose the public key and ciphertext into any i ≤ k components of length ki each, such that∑
ki = k. We will sometimes use Ē(y) to denote the tuple of function values obtained by applying

E to each component of a vector, i.e. Ē(PK,y, r) ,
(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where

|y| = k. We assume that given the security parameter, the spaces P, R1, R2, C are fixed, and the length
of the message |x| can be any polynomial.

2.1.2 Multi-Input Functional Encryption for Circuits

We define the notion of private-key t-input functional encryption for circuits here. Our definition follows
that of [BKS16, KS17].

Let ∀i ∈ [t],Xi = {(Xi)}λ∈N and Y = {Yλ}λ∈N be ensembles of finite sets, and let F = {Fλ}λ∈N
be an ensemble of finite t-ary function families. For each λ ∈ N, each function f ∈ Fλ takes as input t
strings, x1 ∈ (X1)λ, . . . ,xt ∈ (Xt)λ, and outputs a value f(x1, . . . ,xt) ∈ Yλ.

A private-key t-input functional encryption scheme t-CktFE for F consists of four algorithms
t-CktFE = (t-CktFE.Setup, t-CktFE.Keygen, t-CktFE.Enc, t-CktFE.Dec) defined as follows.

• t-CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation of the security
parameter and outputs the master secret key MSK.

• t-CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master secret key MSK and a
circuit f ∈ Fλ and outputs a corresponding secret key SKf .

• t-CktFE.Enc(MSK,m, ind) is a PPT algorithm that takes as input the master secret key MSK, an
input message m = xi ∈ (Xi)λ if ind = i, i ∈ [t], and outputs a ciphertext CTind.

• t-CktFE.Dec(SKf , (CT1, . . . ,CTt)) is an (a deterministic) algorithm that takes as input the secret
key SKf and t ciphertexts CT1, . . . ,CTt and outputs a string y ∈ Yλ ∪ ⊥.

Definition 2.4 (Correctness). A private-key t-input functional encryption scheme t-CktFE is correct if
for all λ ∈ N, f ∈ Fλ and all (x1, . . . ,xt) ∈ (X1)λ × . . .× (Xt)λ,

Pr

[
t-CktFE.Dec

(
t-CktFE.Keygen(MSK, f),

(
t-CktFE.Enc(MSK,x1, 1), . . . ,

t-CktFE.Enc(MSK,xt, t)
))
6= f(x1, . . . ,xt)

]
= negl(λ)

Here, MSK ← t-CktFE.Setup(1λ) and probability is taken over the random coins of t-CktFE.Setup,
t-CktFE.Enc and t-CktFE.Keygen.

Distributional Indistinguishability. We define the notion of distributional indistinguishability for a
t-input functional encryption scheme for circuits. To begin, we describe a valid t-input adversary.

Definition 2.5 (Valid t-Input Adversary). A PPT algorithm A is a valid t-input adversary if for all
private-key t-input functional encryption schemes over message space (X1)λ × . . .× (Xt)λ, and a circuit
space F , for any (f0, f1) queried by the adversary, and any t pairs of input distribution ensembles
(D01(λ), D11(λ)), . . . , (D0t(λ), D1t(λ))6 output by the adversary such that Dbj is a distribution over Xj
for b ∈ {0, 1}, j ∈ [t], it holds that

f0(x01, . . . ,x0t)
c
≈ f1(x11, . . . ,x1t),

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [t].
6We omit the argument λ where it is implicit for notational brevity.

10



We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for pairs of functions (f0, f1) ∈ F . In
response, A is given the corresponding keys SKfb for some random bit b chosen by the challenger.
This step may be repeated any polynomial number of times by the attacker.

2. Ciphertext Queries. A(1λ) submits ciphertext requests for pairs of challenge distribution
ensembles (D01, D11), . . . , (D0t, D1t) to the challenger. The challenger samples xj ← Dbj for
j ∈ [t] and returns t-CktFE.Enc(MSK,xj , j),∀j ∈ [t]. This step may be repeated any polynomial
number of times by the attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any order. The advantage of A
is the absolute value of the difference between its success probability and 1/2. In the selective game, the
adversary is required to declare the challenge ciphertext distributions in the very first step, without seeing
the public key.

Definition 2.6. A t-input functional encryption scheme t-CktFE for a circuit family F is secure in the
distributional indistinguishability game, if for all valid PPT adversaries A, the advantage of A in the
above game is negligible in the security parameter λ.

We note that the standard indistinguishability game is the special case where the adversary submits
challenge messages rather than distributions and all queried functions must output exactly the same rather
than indistinguishable values.

2.2 Definitions: FE for Turing Machines

In this section, we will define functional encryption for Turing Machines (TM). The definition of Turing
machines and oblivious Turing machines is recalled in Appendix A. Functional encryption for TMs is
defined analogously to functional encryption for circuits, except that secret keys correspond to TMs rather
than circuits. Thus, secret keys can be used to decrypt ciphertexts of messages of arbitrary length and
the decryption time depends only the input-specific run time of the TM on the message, not the worst
case run time. We denote the runtime of a TM M (i.e. number of steps the head takes) on an input w by
runtime(M,w).

2.2.1 Single Input Functional Encryption for Turing Machines

LetM = {Mλ}λ∈N be a family of Turing machines with alphabet Σ = {Σλ}λ∈N and the running time
upper-bounded by a polynomial in λ. A functional encryption scheme TMFE for a Turing machine family
M consists of four algorithms TMFE = (TMFE.Setup,TMFE.KeyGen, TMFE.Enc,TMFE.Dec)
defined as follows.

• TMFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation of the security
parameter and outputs the master public and secret keys (PK,MSK).

• TMFE.KeyGen(MSK,M ) is a PPT algorithm that takes as input the master secret key MSK and a
TM M and outputs a corresponding secret key SKM .

• TMFE.Enc(PK,x) is a PPT algorithm that takes as input the master public key PK, and an input
message x ∈ Σ∗λ of arbitrary length, outputs a ciphertext CTx.

11



• TMFE.Dec(SKM ,CTx) is an (a deterministic) algorithm that takes as input the secret key SKM

and a ciphertext CTx and outputs a bit b.

Definition 2.7 (Correctness). A functional encryption scheme TMFE is correct if for all M ∈M and all
x ∈ Σ∗,

Pr

[
(PK,MSK)← TMFE.Setup(1λ);

TMFE.Dec
(

TMFE.KeyGen(MSK,M ),TMFE.Enc(PK,x)
)
6= M (x)

]
= negl(λ)

where the probability is taken over the coins of TMFE.Setup, TMFE.KeyGen, and TMFE.Enc.

Efficiency [AS16]. The efficiency property of a public-key FE scheme for Turing machines says
that the algorithm TMFE.Setup on input 1λ should run in time polynomial in λ, TMFE.KeyGen on
input the Turing machine M and the master key MSK should run in time polynomial in (λ, |M |),
TMFE.Enc on input a message x and the public key should run in time polynomial in (λ, |x|). Finally,
TMFE.Dec on input a functional key of M and an encryption of x should run in time polynomial in
(λ, |M |, |x|, runtime(M,x)).

Distributional Indistinguishability for TMFE. In this section we define the notion of distributional
indistinguishability based security for functional encryption for Turing machines. This notion was first
considered by [GHRW14] in the context of single key FE for circuits.

Definition 2.8. A functional encryption scheme F for a TM familyM is secure in the distributional
indistinguishability game, if for all PPT adversaries A, the advantage of A in the following experiment
is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any TMs Mi ∈M. In response, A
is given the corresponding keys SKMi . This step may be repeated any polynomial number of times
by the attacker.

3. Challenge Declaration: A(1λ,PK) outputs two challenge distribution ensembles (D0(λ), D1(λ))7

to the challenger, subject to the restriction that for any x0 ← D0,x1 ← D1, it holds that
Mi(x0)

c
≈Mi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a random bit b,
samples xb ← Db and returns the ciphertext CTxb .

5. Key Queries: The adversary may continue to request keys for additional functions, subject to the
same restriction that for any x0 ← D0,x1 ← D1, it holds that Mi(x0)

c
≈Mi(x1) for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and 1/2. In
the selective game, the adversary is required to declare the challenge distributions in the very first step,
without seeing the public key.

Comparison with Standard Indistinguishability. We note that the standard indistinguishability
game is implied by the above by restricting the adversary to choose distributions D0, D1 above to simply
be two messages x0,x1 with probability 1 and requesting keys that satisfy Mi(x0) = Mi(x1) for all i.

7We omit the argument λ where it is implicit for notational brevity.

12



2.2.2 Multi-Input Functional Encryption for Turing Machines

In this section, we define multi input functional encryption (miFE) for Turing machines. Our definition
generalizes the CktFE definitions of [BKS16, KS17]. Our definition supports a fixed number of encryptors,
where each of k (say) encryptors is associated with an index ind ∈ [k]. An encryptor may choose an input
string of unbounded length, denoted by `ind. We note that our definition is weaker than that of [BGJS15],
who allow for unbounded number of encryptors and each encryptor to have a unique encryption key,
a subset of which may be requested by the adversary. By contrast, our definition, following [BKS16],
requires all encryptors to use the same MSK and evidently cannot allow the attacker to request this.

LetM = {Mλ}λ∈N be a family of Turing machines with alphabet Σ = {Σλ}λ∈N and the running
time upper-bounded by a polynomial in λ. A multi-input functional encryption scheme forM consists
of a tuple of four algorithms kTMFE = (kTMFE.Setup, kTMFE.KeyGen, kTMFE.Enc, kTMFE.Dec)
defined as follows.

• kTMFE.Setup(1λ, 1k ) is a PPT algorithm that takes as input the unary representation of the
security parameter and the number of users k and outputs the master secret key MSK.

• kTMFE.KeyGen(MSK,M ) is a PPT algorithm that takes as input master secret key MSK and a
TM M and outputs a corresponding secret key SKM .

• kTMFE.Enc(MSK,xind, ind) is a PPT algorithm that takes as input the master secret key MSK,
an index ind ∈ [k] denoting the party number, and an input message xind of arbitrary length and
outputs a ciphertext CTwind

.

• kTMFE.Dec(SKM , {CTxind
}ind∈[k]) is an (a deterministic) algorithm that takes as input the

functional secret key SKM and k ciphertexts CTx1 , . . . ,CTxk and outputs a bit b.

Definition 2.9 (Correctness). A functional encryption scheme kTMFE is correct if for all M ∈M and
all xi ∈ Σ∗ for i ∈ [k],

Pr

[
kTMFE.Dec

(
kTMFE.KeyGen(MSK,M ), kTMFE.Enc(MSK,x1, 1),

. . . , kTMFE.Enc(MSK,xk , k)
)
6= M(x1‖ . . . ‖xk )

]
= negl(λ)

where MSK← kTMFE.Setup(1λ, 1k ) and the probability is taken over the coins of kTMFE.Setup,
kTMFE.KeyGen, and kTMFE.Enc.

Efficiency is as defined in Section 2.2.

Distributional Indistinguishability for kTMFE. In this section we define the notion of distributional
indistinguishability based security for multi-input functional encryption for Turing machines. To begin,
we define the notion of a valid k-input adversary analogously to the case of circuits [BKS16].

Definition 2.10 (Valid k-Input Adversary). A PPT algorithm A is a valid k-input adversary, if
for a Turing machine space M with alphabet Σ, for all private key k-input functional encryption
schemes kTMFE over message space X ∗1 × . . . × X ∗k such that X ∗j ⊂ Σ∗ for all j ∈ [k],
for any M ∈ M queried by the adversary, and any k pairs of input distribution ensembles
(D01(λ), D11(λ)), (D02(λ), D12(λ)), . . . , (D0k(λ), D1k(λ))8 output by the adversary such that Dbj is a
distribution over X ∗j for b ∈ {0, 1}, j ∈ [k], it holds that

M(x01‖ . . . ‖x0k)
c
≈M(x11‖ . . . ‖x1k)

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [k].
8We omit the argument λ where it is implicit for notational brevity.

13



We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for TMs Mi ∈M. In response, A is given
the corresponding keys SKMi for some random bit b chosen by the challenger. This step may be
repeated any polynomial number of times by the attacker.

2. Ciphertext Queries. A(1λ) submits ciphertext requests for k pairs of challenge distribution
ensembles (D01, D11), (D02, D12), . . . , (D0k, D1k) to the challenger. The challenger samples
xbj ← Dbj for j ∈ [k] and returns kTMFE.Enc(MSK,xbj , j) for all j ∈ [k]. This step may be
repeated any polynomial number of times by the attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any order. The advantage of A
is the absolute value of the difference between its success probability and 1/2. In the selective game, the
adversary is required to declare the challenge ciphertext distributions in the very first step, without seeing
the public key.

Definition 2.11. A multi input functional encryption scheme kTMFE for a TM familyM is secure in
the distributional indistinguishability game, if for all valid PPT adversaries A, the advantage of A in the
above game is negligible in the security parameter λ.

We note that the standard indistinguishability game is the special case where the adversary submits
challenge messages rather than distributions and all queried machines must output exactly the same rather
than indistinguishable values.

2.2.3 Indistinguishability Obfuscation for Turing Machines

As in prior work, we construct iO for Turing machines (TMs) in the setting where the input length is fixed
a-priori. A uniform PPT machine iO is an indistinguishability obfuscator for a class of Turing machines
{Mλ}λ∈N with input length L, if the following conditions are satisfied:

1. Correctness. For all security parameters λ ∈ N, for any M ∈Mλ and every input x ∈ {0, 1}≤L,
we have that:

Pr
[
M ′ ← iO(1λ,M,L) : M ′(x) = M(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.

2. Indistinguishability of Equivalent TMs. For every ensemble of pairs of Turing machines
{M0,λ,M1,λ}λ∈N, such thatM0,λ(x) = M1,λ(x) for every x ∈ {0, 1}≤L and runtime(M0,λ,x) =
runtime(M1,λ,x), we have that the following ensembles of pairs of distributions are indistinguish-
able to any PPT adversary Adv:{

M0,λ,M1,λ, iO(1λ,M0,λ)
}

c
≈
{
M0,λ,M1,λ, iO(1λ,M1,λ)

}
3. Succinctness. For all security parameters λ ∈ N, for any M ∈ Mλ , we have that the running

time of iO(1λ,M,L) is poly(λ, |M |, L) and the evaluation time of iO(M) on input x where
x ∈ {0, 1}≤L, is poly(|M |, L, t) where t = runtime(M,x).

14



2.3 Constrained Pseudorandom Functions

Constrained pseudorandom functions (introduced concurrently by Boneh and Waters (CCS 2013), Boyle,
Goldwasser, and Ivan (PKC 2014), and Kiayias, Papadopoulos, Triandopoulos, and Zacharias (CCS
2013)), are pseudorandom functions (PRFs) that allow the owner of the secret key K to compute a
constrained key Kf , such that anyone who possesses Kf can compute the output of the PRF on any
input x such that f(x) = 1 for some predicate f . The security requirement of constrained PRFs state that
the PRF output must still look indistinguishable from random for any x such that f(x) = 0. We will also
require the property of delegatability, formalized below.

Definition 2.12. [BW13] Let F : {0, 1}seed(λ) × {0, 1}in(λ) → {0, 1}out(λ) be an efficient function,
where seed, in and out are all polynomials in the security parameter λ. We say that F is a delegatable
constrained pseudorandom function with respect to a set system S ⊆ 2{0,1}

in(λ)
if there exist algorithms

(Setup,Constrain,Eval,KeyDel) that satisfy the following:

• Setup(1λ, 1in(λ)) outputs a pair of keys pk, sk.

• Constrain(sk, S) outputs a constrained key KS which enables evaluation of F (sk,x) on all x ∈ S
and no other x.

• KeyDel(KS , S
′) outputs a constrained key KS∩S′ which enables the evaluation of F (sk,x) for all

x ∈ S ∩ S′ and no other x. We note that in systems where KeyDel is supported, the Constrain
algorithm above can be expressed as a special case of KeyDel by letting sk correspond to the set of
all inputs, i.e. sk = K{0,1}in(λ) .

• Eval(KS ,x) outputs F (sk,x) if x ∈ S, ⊥ otherwise.

Note that a set system is equivalent to a function family by defining set S as the set of inputs where
the function evaluates to 1. For our purposes, it will be more convenient to represent sets as functions.

Security. Constrained security is defined using the following two experiments denoted EXP(0) and
EXP(1) with an adversary A. For b ∈ {0, 1} experiment EXP(b) proceeds as follows:

First, a random key k ∈ {0, 1}seed(λ) is selected and two helper sets C, V ⊆ {0, 1}in are initialized
to ∅. The set V will keep track of all the points at which the adversary can evaluate. The set C will
keep track of the points where the adversary has been challenged. The sets C and V will ensure that the
adversary cannot trivially decide whether challenge values are random or pseudorandom. In particular,
the experiments maintain the invariant that C ∩ V = ∅.

The adversary A is presented with three oracles as follows:

1. F.Eval: Given x ∈ {0, 1}in, if x /∈ C, the oracle returns F (sk,x), else it returns ⊥. The point x is
added to set V .

2. F.Constrain: Given a set S ∈ S from A, if S ∩ C = ∅ the oracle returns F.Constrain(sk, S),
otherwise returns ⊥. The set V is updated to contain S.

3. Challenge: Given x fromA, where x /∈ V , if b = 0, the adversary is given F (sk,x), else a random
(consistent) element y. The set C is updated to contain x.

When the adversary is done interrogating the oracles, it outputs a bit b′. Let Wb be the event that b′ = 1 in
EXP(b). The adversary’s advantage is defined as |Pr[W0]− Pr[W1]|. We say that the PRF F is a secure
constrained PRF with respect to a set system S if all PPT adversaries A have negligible advantage in the
above game.

15



3 Construction: Single Input FE for Turing Machines

In this section, we construct a single input functional encryption scheme for Turing machines, denoted by
TMFE from the following ingredients:

1. Two compact functional encryption schemes for circuits, 1FE1 and 1FE2. We will assume that the
scheme 1FE2 is decomposable as defined in Section 2.

2. A symmetric encryption scheme SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec).

3. A delegatable constrained pseudorandom function (cPRF), denoted by F which supports T
delegations for the function family ft : {0, 1}2·λ → {0, 1} defined as follows. Let x, t denote
integers whose binary representations are x, t of λ bits. Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

Intuitively, the function is parametrized by a value t and evaluates to 1 if the first half of its input, x ≥ t.
We will denote the constrained PRF key Kft corresponding to function ft by Kt for ease of notation. By
the delegation property of constrained PRFs (Section 2.3), we have that if t′ ≥ t then Kt′ can be derived
from Kt. In our construction the parameter t will represent the time step in the computation, which means
that a PRF key of the current time step can be used to derive PRF keys for future time steps. We will
denote a PRF for this functionality by F. The security proof makes use a punctured version of the above
cPRF, please see Sections 3.3 and D for details.

3.1 Construction

Below we provide our construction for single input FE for Turing machines.
Notation. Note that since 1FE2 is decomposable, there exists an encoding function E which encodes

each bit of the input and since it is compact, the output length of E is independent of the circuit class
supported by 1FE2. Thus, by choosing the encoding function first, the CktFE scheme may support a
circuit class that outputs its own ciphertext components. We denote by Ē the encoding function E applied
bitwise to a vector, i.e. Ē(w) = E(w1) . . . E(wn).

TMFE.Setup(1λ): Upon input the security parameter 1λ, do the following:

1. Let (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1λ), where 1FE2 is a decomposable functional
encryption scheme for the circuit family

Next :
((
{SYM} × {0, 1}4λ × Σ× Trap

)
×
(
{ST}×Q

))
→
(
C1FE2

)2
∪{ACC,REJ,⊥}

Here, Σ and Q are the alphabet and state space respectively of the Turing machine family.
The tokens SYM and ST are flags denoting a symbol and a state respectively. The set {0, 1}4λ
encodes in order, a random value key-id associated with a TM M , a cPRF key, the current
time step in the computation and the length of the input string, each of λ bits. Here, Trap is a
data structure of fixed polynomial length which will be used in the proof. Since we do not
need it in the construction, we do not discuss it here, please see Figure 6 for its definition.
C1FE2 denotes the ciphertext space of 1FE2, and ACC and REJ are bits indicating accepting
and a rejecting states of a TM respectively.

2. Let (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), where 1FE1 is a compact, public-key CktFE
scheme for the circuit family

ReRand :
(
{0, 1}3λ × Σ× Trap

)
→ C1FE2 ×

(
C1FE2 ∪ {⊥}

)
16



Again, {0, 1}3λ encodes in order, a root cPRF key, a time step and the length of the input
string respectively, while Σ, Trap and C1FE2 are as described above.

3. Output PK = 1FE1.PK and MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).

TMFE.Enc(PK,w): Upon input the public key PK, and message w of arbitrary length ` = |w|, do the
following:

1. Sample the root key K0 for function ft where t = 0 for the cPRF F described above.

2. For i ∈ [`], let CTi = 1FE1.Enc(PK, (K0, i, `, wi,Trap)), where Trap is a data structure
which is only relevant in the proof. Here, all fields of Trap are set to ⊥ except a flag
Trap.mode-real = 1 which indicates that we are in the real world. Please see Figure 6 for the
definition of Trap.

3. Output CTw = {CTi}i∈[`].

TMFE.KeyGen(MSK,M ): Upon input the master secret key MSK and the description of a Turing
machine M , do the following. We will assume, w.l.o.g. that the TM is oblivious (see Appendix A
for a justification) and qst ∈ Q is the start state of M .

1. Sample a random value salt← {0, 1}λ.

2. Interpret MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).

3. Let SKReRand = 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥) where Figure 2
defines the circuit ReRand1FE2.PK,salt,qst,⊥,⊥.

4. Let SKNext = 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,⊥,⊥) where Figure 4 defines the
circuit Next1FE2.PK,salt,M ,⊥,⊥.

5. Output SKM = (SKReRand,SKNext).

TMFE.Dec(SKM ,CTw): Upon input secret key SKM and ciphertext CTw, do the following:

1. Interpret SKM = (SKReRand, SKNext) and CTw =
(
CT1, . . . ,CT|w|

)
.

2. For i ∈ [|w|], do the following:

(a) If i = 1, invoke 1FE1.Dec(SKReRand,CT1) to obtain (CTsym,1,CTst,1).
(b) Else, invoke 1FE1.Dec(SKReRand,CTi) to obtain (CTsym,i,⊥).

3. Denote
(
(CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,|w|

)
as the new sequence of ciphertexts

obtained under the Next scheme.

4. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE2.Dec
(
SKNext, (CTsym,t ,CTst,t)

)
to obtain:

• ACC or REJ. In this case, output “Accept” or “Reject” respectively, and exit the
loop.
•
(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at time step t will be
accessed again.

(b) Let t = t+ 1 and go to start of loop.

17



Function ReRand1FE2.PK,salt,qst,C1,C2
(
(K0, i, `, wi,Trap)

)
(a) Initialization and Choosing Real or Trapdoor mode.

Initialize an input vector inp = (wi, qst). If Trap.mode-real = 1, set out = (c1, c2), where c1 = c2 = ⊥. If
i 6= 1, set inp = (wi,⊥). Else invoke Trap-ModeReRand

(
Trap, inp, salt, `, C1, C2, i

)
as described in Figure

3 to obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(b) Computing Encrypted Symbols using randomness derived from cPRF. If out.c1 = ⊥, do the following.

i. Noting that i > 0, derive delegated cPRF key Ki from K0 as Ki = F.KeyDel(K0, fi). Compute
randomness for encryption as ri = F.Eval(Ki, (i‖salt)).

ii. Derive delegated cPRF key Ki+1 = F.KeyDel(Ki, fi+1). Set key-id = salt.

iii. Compute the 1FE2 ciphertext component encoding wi = inp.u1 for time step i as

CTsym,i = Ē
(
1FE2.PK1, (SYM, key-id,Ki+1, i, `, wi,Trap); ri

)
iv. Set out.c1 = CTsym,i.

(c) Computing Encrypted State for First Time Step. If
(
(out.c2 = ⊥) ∧ (i = 1)

)
, do the following.

i. Compute 1FE2 ciphertext component to encode the starting state qst = inp.u2 as

CTst,1 = Ē
(
1FE2.PK2, (ST, qst); r1

)
ii. Set out.c2 = CTst,1.

(d) Output. If i = 1, output out = (CTsym,1,CTst,1), else output out = (CTsym,i,⊥).

Figure 2: This circuit re-randomizes the ciphertexts provided during encryption to use randomness derived
from a cPRF. The seed for the cPRF is specified in the ciphertext and the input is specified by the key.
This ensures that each ciphertext, key pair form a unique “thread” of execution.

3.2 Correctness and Efficiency of single input TMFE

We now argue that the above scheme is correct. The TMFE.Dec algorithm takes as input a secret
key SKM = (SKReRand, SKNext) and a ciphertext CTw =

(
CT1, . . . ,CT|w|

)
under the 1FE1 scheme

supporting the functionality ReRand := ReRand1FE2.PK,salt,qst,C2,C2 . Firstly, note that given a secret key
SKReRand along with a ciphertext CTw, we have as follows.

1. Since CT1 encodes Trap with Trap.mode-real = 1, hence by the correctness of the 1FE1 scheme,
we get 1FE1.Dec(SKReRand,CT1) = (CTsym,1,CTst,1) as output.

2. For i ∈ [2, |w|], since CTi encodes Trap with Trap.mode-real = 1, hence by the correctness of
the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CTi) = (CTsym,i ,⊥) as the correct output.

The new sequence of 1FE2 ciphertexts output by ReRand are now sequenced as
(
(CTsym,1,CTst,1),

CTsym,2, . . . ,CTsym,|w|
)
. The 1FE2 scheme supports the functionality Next := Next1FE2.PK,salt,M ,C1,C2 .

Throughout the 1FE2 decryption, we maintain the invariant that at any time step t, apart from a secret
key SKNext, the input to the 1FE2.Dec algorithm is an entire 1FE2 ciphertext decomposed into two
components corresponding to a symbol and a state ciphertext both of which are computed with the same
randomness, which is computed as F.Eval(K0, (t‖salt))9.

We show that given a secret key SKNext and the sequence of ciphertexts
(
(CTsym,1,CTst,1),

CTsym,2, . . . ,CTsym,|w|
)

generated from the outputs of the 1FE1.Dec algorithm, 1FE2.Dec correctly

9We do not explicitly construct ciphertext components corresponding to blank tape cells in the Next functionality for ease of
exposition; we assume w.l.o.g that any non-input cell that is accessed by the OTM has been written to by the Next functionality
in a previous step, thus generating the requisite symbol ciphertext.

18



Subroutine Trap-ModeReRand
(
Trap, inp, salt, `, C1, C2, i

)
Interpret inp = (u1, u2) = (wi, qst) and initialize out = (c1, c2), where c1 = c2 = ⊥.

If Trap.key-id = salt, do the following.

(a) If Trap.mode-trap3 = 1, do the following:

i. If
(
(Trap.Sym TS = i) ∧ (i ≤ `)

)
, compute the 1FE2 ciphertext CTsym,i =

SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,i.

ii. If
(
(Trap.ST TS = i) ∧ (i = 1)

)
, compute the 1FE2 ciphertext CTst,i = SKE.Dec(Trap.SKE.K, C2)

and set out.c2 = CTst,1.

(b) If Trap.mode-trap1 = 1, do the following:

i. If
(
(Trap.Sym TS1 = i) ∧ (i ≤ `)

)
, set inp.u1 = Trap.Sym val1 with the symbol to be encrypted

and output at time step i.

ii. If
(
(Trap.ST TS1 = i) ∧ (i = 1)

)
, set inp.u2 = Trap.ST val1 with the start state to be encrypted and

output at time step 1.

(c) If Trap.mode-trap2 = 1, do the following:

i. If
(
(Trap.Sym TS2 = i) ∧ (i ≤ `)

)
, set inp.u1 = Trap.Sym val2 with the symbol to be encrypted

and output at time step i.

ii. If
(
(Trap.ST TS2 = i) ∧ (i = 1)

)
, set inp.u2 = Trap.ST val2 with the start state to be encrypted and

output at time step 1.

If Trap.key-id 6= salt, do the following.

(a) If salt > Trap.key-id set b = 0; else set b = 1a.

(b) If i 6= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

Output. Return (inp, out).

aWe assume a lexicographic ordering on the salt values and a generalized comparison operator.

Figure 3: Subroutine handling the trapdoor modes in ReRand. This is “active” only in the proof.

computes the decomposed ciphertext components of a symbol and a state that occur along the
computation path and finally outputs the value of machine M on the sequenced input. Define
τ = runtime(M,w). Formally, by the correctness of 1FE2 scheme, at any time step t ∈ [τ − 2],
1FE2.Dec(SKNext, (CTsym,t ,CTst,t)) correctly outputs either (CTsym,t′ ,CTst,t+1) with t < t′ ≤ τ − 1.
Further, for any time step t ∈ [τ − 2], we have:

1. Let t ∈ [τ − 2] \ [`]. If the current work tape cell was accessed10, at some time step t̃ < t, then
CTsym,t encoding (SYM, key-id,Kt+1, t, `, σt,Trap) was constructed at time step t̃. Note that σt
may be the blank symbol β. When t ∈ [`], CTsym,t is constructed at time step t via the ReRand
circuit.

2. The ciphertext component CTst,t encoding (ST, qt) at time step t was constructed at time step t− 1
for t > 1 and at time step 1, when t = 1.

10We assume that every time a cell is accessed, it is written to, by writing the same symbol again if no change is made.

19



Function Next1FE2.PK,salt,M ,C1,C2
(
(z1, z2)

)
(a) Reading Current (Symbol, State) Pair and Looking up Transition Table.

i. Interpret z1 = (type, key-id,Kt+1, t, `, s,Trap), z2 = (type, s). If ((z1.type 6= SYM) ∨ (z2.type 6=
ST) ∨ (z1.key-id 6= salt)), output ⊥ and abort.

ii. Interpret (z1.s, z2.s) = (σt, qt) as the symbol, state pair for the current time step t = z1.t, input
Kt+1 = z1.Kt+1 as the constrained PRF key for future time steps. Denote key-id = z1.key-id, ` =
z1.` and Trap = z1.Trap. Using the transition table of the machine M , look up the next state qt+1 as
well as the symbol σt′ to be written on the work-tape, where t′ is the time step the current work tape
cell will next be read by M . If qt+1 is an accept or reject state, then output ACC or REJ and exit.

iii. Initialize inp = (σt′ , qt+1).

(b) Choosing Real or Trapdoor mode. If Trap.mode-real = 1, initialize an output vector out = (c1, c2),
where c1 = c2 = ⊥. Else invoke Trap-ModeNext

(
Trap, inp, salt, `, C1, C2, t, t′

)
as described in Figure 5 to

obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(c) Computing Next Encrypted Symbol. If out.c1 = ⊥, do the following.

i. Noting that t′ > t, derive the randomness at time step t′ using the delegated key Kt+1 as rt′ =
F.Eval(Kt+1, (t

′‖salt)). Compute the delegated PRF key Kt′+1 = F.KeyDel(Kt+1, ft′+1).

ii. Compute the 1FE2 ciphertext component encoding the symbol σt′ = inp.u1 for time step t′ as

CTsym,t′ = Ē
(
1FE2.PK1, (SYM, key-id,Kt′+1, t

′, `, σt′ ,Trap); rt′)

iii. Set out.c1 = CTsym,t′ .

(d) Computing Next Encrypted State. If out.c2 = ⊥, do the following.

i. Derive the randomness at time step t+ 1 as rt+1 = F.Eval(Kt+1, (t+ 1‖salt)) and compute the 1FE2

ciphertext component encoding the state qt+1 = inp.u2 for time step t+ 1 as

CTst,t+1 = Ē
(
1FE2.PK2, (ST, qt+1); rt+1)

ii. Set out.c2 = CTst,t+1.

(e) Output : out =
(
CTsym,t′ ,CTst,t+1

)
Figure 4: Function to mimic TM computation. It reads the current symbol, state pair and outputs an
encryption of the new state and symbol to be written under the appropriate randomness generated using a
cPRF.

3. The randomness rt = F.Eval(Kt̃+1, (t‖salt)) = F.Eval(Kt, (t‖salt)) binds the components
CTsym,t and CTst,t .

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE2 which may be fed again
with SKNext to 1FE2.Dec in order to proceed with the computation. Thus, the execution of 1FE2.Dec at
the (τ − 2)th time step provides the complete pair (CTsym,τ−1,CTst,τ−1). By the correctness of 1FE2

scheme again, at time step t = τ − 1, invoking 1FE2.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs either
“Accept” or “Reject” by simulating the execution of M for the final time step τ inside the function Next,
thus correctly outputting M(w).

Efficiency. The TMFE construction described above inherits its efficiency from the underlying CktFE
constructions. Note that the ciphertext is compact and is of size poly(λ, |w|). Also, the running time
of the decryption procedure is input specific since it mimics the computation of M on w using secret

20



Subroutine Trap-ModeNext
(
Trap, inp, salt, `, C1, C2, t, t

′)
Interpret the input vector inp = (u1, u2) = (σt′ , qt+1) and initialize the output vector out = (c2, c2), where
c1 = c2 = ⊥.

(a) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap3 = 1)

)
, do the following.

i. If
(
(Trap.Sym TS = t) ∧ (Trap.Target TS = t′) ∧ (t > `)

)
, compute the 1FE2 symbol ciphertext

CTsym,t′ = SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,t′ .

ii. If
(
(Trap.ST TS = t) ∧ (Trap.Target TS = t + 1) ∧ (t > 1)

)
, compute the 1FE2 state ciphertext

CTst,t+1 = SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,t+1.

(b) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS1 = t) ∧ (Trap.Target TS1 = t′) ∧ (t > `)

)
, set inp.u1 = Trap.Sym val1 with the

symbol σt′ = Trap.Sym val1 to be encrypted and given as output for time step t′.

ii. If
(
(Trap.ST TS1 = t)∧ (Trap.Target TS1 = t+ 1)∧ (t > 1)

)
, set inp.u2 = Trap.ST val1 with the

state qt+1 = Trap.ST val1 to be encrypted and given as output for time step t+ 1.

(c) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS2 = t) ∧ (Trap.Target TS2 = t′) ∧ (t > `)

)
, set inp.u1 = Trap.Sym val2 with the

symbol σt′ = Trap.Sym val2 to be encrypted and given as output for time step t′.

ii. If
(
(Trap.ST TS2 = t)∧ (Trap.Target TS2 = t+ 1)∧ (t > 1)

)
, set inp.u2 = Trap.ST val2 with the

state qt+1 = Trap.ST val2 to be encrypted and given as output for time step t+ 1.

(d) Exit the subroutine returning (inp, out).

Figure 5: Subroutine handling the trapdoor modes in Next. This is “active” only in the proof.

key encoding M and ciphertext encoding all the intermediate states of the computation. Additionally,
the public parameters are short poly(λ), since these are just the public parameters of a compact CktFE
scheme. The function keys are also short, since they are CktFE function keys for circuits ReRand and
Next which are of size poly(λ) and poly(|M |, λ) respectively.

3.3 Proof of Security for Single Input TMFE

Next, we prove that the above TMFE scheme satisfies distributional indistinguishability (DI) for
single (or constant) length outputs, as long as the underlying CktFE scheme satisfies distributional
indistinguishability for any output length. In Appendix E, we provide an instantiation of a CktFE scheme
satisfying distributional indistinguishability.

Theorem 3.1. Assume that the functional encryption schemes for circuits 1FE1 and 1FE2 are DI secure
(according to definition 2.3) and that F is a secure cPRF for the function family defined above (according
to definition 2.12). Then, the construction of functional encryption for Turing machines TMFE is selective
DI secure for single bit outputs (according to definition 2.8).

Since the intuition was discussed in Section 1, we proceed to the formal proof.

The Trapdoor Data Structure. To implement the approach discussed in Section 1, we will make use
of a data-structure Trap that lets us store all the requisite trapdoor information needed for the security
proof within the ciphertext. In our construction, decryption of a particular input by a particular function

21



key results in a chain of ciphertexts, each of which contain the trapdoor data structure. In the real world,
this information is not used but as we progress through the proof, different fields become relevant. The
data structure is outlined in Figure 6.

mode-real key-id val0 val1 SKE.K ⊥
mode-trap1 Target TS1 Sym TS1 Sym val1 ST TS1 ST val1
mode-trap2 Target TS2 Sym TS2 Sym val2 ST TS2 ST val2
mode-trap3 Target TS Sym TS ⊥ ST TS ⊥

Figure 6: Data Structure Trap used for Proof

Row 1. Above, key-id refers to the particular function key being considered and we switch the execution
chain from b = 0 to b = 1 key by key. All the ciphertexts in a given execution chain share the
key-id value. We assume a lexicographic order on the key-id fields, this can be easily ensured by
having a counter as part of the key-id field. We do not make this explicit below for notational
brevity. If key-id∗ is the key identity programmed in a particular execution chain, then all keys
with values smaller than key-id∗ will decrypt the chain using the input bit b = 1, and all keys with
values larger than key-id∗ will use b = 0. Hence, the 1FE1 ciphertexts provided by the encryptor
must encode messages corresponding to both values of b, the fields val0 and val1 are designed
for this purpose11. Note that 1FE2 ciphertexts computed by decryption need not track messages
corresponding to both values of b, since the “chain is extended” via decryption corresponding to
exactly one of b = 0 or b = 1 depending on the relation between the key identities in the ciphertext
and the function key. The field SKE.K refers to the key of a symmetric key encryption scheme,
which is used to decrypt some encrypted value embedded in the function key. This is a standard
trick when the key must hide something in the public key setting. The flag mode-real means the
scheme operates in the real world mode and the trapdoor information is not used.

Rows 2 and 3. The fields Target TS1 and Target TS2 refer to the time steps corresponding to the
“broken link” in the decryption chain, namely the two time steps for which the ciphertext and
function key are being programmed so as to switch from b = 0 to b = 1. The fields Sym TS1 and
ST TS1 are the time steps when the symbol and state ciphertexts for time step Target TS1 are
generated; for instance ST TS1 = Target TS1− 1 since the state ciphertext for a given time step is
always generated in the previous time step, while the symbol ciphertext for a given time step may
be generated much earlier. Sym TS2 and ST TS2 are defined analogously. The fields Sym val1 and
ST val1 contain the symbol and state values which will be encrypted in the hybrid at the time steps
Sym TS1 and ST TS1 when mode-trap1 is set; Sym val2 and ST val2 are defined analogously.

Row 4. When mode-trap3 is set, the symbol and state values are set to ⊥, and the values hard coded
in the function key are used for the target time step. In more detail, the function key contains
SKE encryptions of symbol and state ciphertexts corresponding to time step Target TS hard-coded
within itself. If key-id∗ = key-id, where key-id∗ is the key identity programmed in a particular
execution chain and key-id is the key identity of the function key in question, and mode-trap3 = 1,
then at time steps SYM TS and ST TS the SKE secret key in row 1 of the Trap data structure is
used to decrypt the SKE encryptions and output the encrypted values.

The Hybrids. We now proceed to describe our hybrids. For simplicity we first describe the hybrids for
a single function request, for some Turing machine M . We denote by T the time taken by M to run on
the challenge messages. Since the proof is very involved, we describe it first for the weak selective game,

11For the knowledgeable reader, this is similar to what was done by [AJ15].

22



where the adversary specifies the challenge vectors and machine at the same time. We discuss how to
remove this restriction to obtain selective security at the end of the detailed proof.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 = mode-trap3 = ⊥.

H(1, 1): In this world, all ciphertexts (constructed by the encryptor as well as function keys) have
mode-real = ⊥, mode-trap1 = 1, mode-trap2 = 1, mode-trap3 = ⊥. We program the last link
in the decryption chain for switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol and state ciphertext pieces
are generated for time step T −1, and the fields Sym val1 and ST val1 contain the symbol and state
values which must be encrypted by the function key in the above time steps when mode-trap1 is
set. Note that these fields exactly mimic the behaviour in the real world, namely the time steps and
values are set to be exactly what the real world decryption would output. The fields corresponding
to TS2 are defined analogously.

Indistinguishability follows from security of 1FE1, since the decryption values in both hybrids are
exactly the same.

H(1, 2): Hardwire the key with an SKE encryption of symbol and state ciphertexts output at step T − 1
for b = 0. Use the same ciphertexts as would be generated in the previous hybrid.

Indistinguishability follows from security of SKE, since the only difference is the value of the
message encrypted using SKE which is embedded in the key.

H(1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS = T − 1. In this
hybrid the hardwired value in the key is used to be output as step T − 1 ciphertext.

Indistinguishability follows from security of 1FE1, since the decryption values in both hybrids are
exactly the same.

H(1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures all delegated keys at

point (T − 1‖key-id).

Indistinguishability follows from security of 1FE1. Note that we evaluate the cPRF at point
(T − 1‖key-id) only to construct the 1FE2 ciphertext output at time step T − 1 identified with
key-id. This ciphertext is currently hardwired in the function key, and is computed exactly the
same way in both hybrids. Thus, the cPRF key is only required to compute randomness of points
6= (T − 1‖key-id), for which the punctured key suffices, and which moreover evaluates to the same
value as the normal key on all such points. Hence, we have that the decryption values in both
hybrids are exactly the same. Note that the punctured key is not used to evaluate on the punctured
points.

H(1, 5): Switch the randomness in the 1FE2 ciphertexts for time step T − 1 which are hardwired in the
key to true randomness.

Indistinguishability follows from security of punctured cPRF for the aforementioned function
family, since the remainder of the distribution only uses the punctured key.

H(1, 6): Switch the value encoded in the 1FE2 ciphertexts for time step T − 1 which are hardwired in
the key to correspond to b = 1.

Indistinguishability follows from security of 1FE2. Formally, we do a reduction which plays the
security game against the 1FE2 challenger and simulates the TMFE adversary. The reduction

23



simulates 1FE1 itself and receives the 1FE2 public and function keys from the challenger. The only
difference between the two hybrids is the 1FE2 ciphertext for time step T − 1 which is embedded
in the function key as received from the 1FE2 challenger.

H(1, 7): Switch randomness back to PRF randomness in the ciphertext hardwired in key, using the
punctured key for all but the hardwired ciphertext.

Indistinguishability follows from security of cPRF as discussed above.

H(1, 8): Switch the punctured root key to the normal root key.

Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 1): Switch ciphertext in slot 1 for target T − 1 to be for b = 1. Slot 2 remains b = 0. Set
mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of 1FE1, since the decryption values in both hybrids are
exactly the same.

H(2, 2): Hardwire key with SKE encryption of 1FE2 ciphertext for time step T − 2 and bit b = 0 (same
as hybrid (1, 2) but for T − 2).

Indistinguishability follows from security of SKE as above.

H(2, 3): Set mode-trap1 = 1 with target T − 1, mode-trap2 = ⊥, and mode-trap3 = 1 with target
T − 2.

Indistinguishability follows from security of 1FE1, since the decryption values in both hybrids are
exactly the same.

H(2, 4): Switch normal root key to punctured key at point (T − 2‖key-id).

Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 5): Switch randomness to true in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(2, 6): Switch hardwired 1FE2 ciphertext for step T − 2 to correspond to bit b = 1.

Indistinguishability follows from security of 1FE2.

H(2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(2, 8): Switch punctured root key to normal root key.

Indistinguishability follows from security of 1FE1 as discussed above.

H(3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-steps to T − 2 and
T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds to b = 1 and slot 2 for T − 3 to b = 0.
Set mode-real = mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of 1FE1, since the decryption values in both hybrids are
exactly the same. Note that now slot T − 1 is redundant, since T − 2 ciphertext is already switched
to b = 1.

HybridH(3, i) will be analogous toH(2, i) for i ∈ [8].

As we proceed left in the execution chain one step at a time, we reach step ` where ` = |w|, i.e.
time steps for which 1FE1 ciphertexts are provided by the encryptor. At this point we will hardwire

24



the ReRand key with symbol ciphertexts for ` time steps, one at a time, and the Next key for the
state ciphertexts12. Moreover, we must now add an additional hybrid in which the challenge 1FE1

ciphertext at position ` contains the message bit corresponding to b = 1; intuitively, we must
switch the bit before we slide the trapdoor since the ciphertext for this position is not generated by
decrypting the previous ciphertext. In more detail, inH(T − `, 8), analogously to hybrid (1, 8), the
T − (T − `) = `th bit hard-wired in the trapdoor is changed to 1. We now add one more hybrid,
namely:

H(T − `, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position ` as follows: the
encoded message is changed corresponding to b = 1 and flag mode-real = 1. The other flags
mode-trap1 = mode-trap2 = mode-trap3 = ⊥.

Note that all ciphertexts previous to time step ` remain unchanged, and output their corresponding
symbol ciphertexts correctly. The Next circuit outputs the state ciphertext for time step `
corresponding to bit b = 1. The only difference between this hybrid and the previous one is
that here we use the real mode to output the symbol ciphertext for b = 1 whereas previously we
used the trapdoor mode to output the same symbol ciphertext. Hence, decryption values in both
hybrids are exactly the same, and indistinguishability follows from security of 1FE1.

Finally inH(T − 1, 9), the entire chain has been replaced to use b = 1 and all the challenge 1FE1

ciphertexts have encoded messages corresponding to b = 1 with mode-real = 1.

H(T ): In this hybrid, all the other fields in the trapdoor data structure, excepting mode-real are disabled
and set to ⊥. This is the real world with b = 1.

Since all the encoded messages use b = 1, decryption values are all exactly the same as in
H(T − 1, 9), hence indistinguishability follows from security of 1FE1.

The formal reductions are provided in Appendix B.

Multiple Keys. We handle multiple keys by repeating the above set of hybrids key by key. Each key
carries within it an identifier key-id, and if this is less than the key identifier encoded in the ciphertext,
the bit b = 1 is used, if it is greater then the bit b = 0 is used and if it is equal, then the above sequence
of hybrids is performed to switch from b = 0 to b = 1. To support this, the 1FE1 ciphertexts provided
by the encryptor must encode messages corresponding to both values of b, the fields val0 and val1 in the
trapdoor data structure of Figure 6 are provided for this purpose. Security follows by a standard hybrid
argument as in [AJ15].

3.4 Constructing the cPRF.

In Appendix D, we provide a construction for a cPRF F which supports puncturing and delegation
as required; the T cPRFs Fi for i ∈ [T ] may each be constructed similarly. To begin, note that we
require the root key of F to be punctured at a point i∗ (say). The cPRF construction for punctured PRF
[BW13, KPTZ13, BGI14](which is in turn inherited from the standard PRG based GGM [GGM86])
immediately satisfies this constraint, so we are left with the question of delegation.

Recall that we are required to delegate T times, where T is the (polynomial) runtime of the Turing
machine on the encrypted input (please see Section 3), and the jth delegated key must support evaluation
of points {(k‖z) : z ∈ {0, 1}λ} for k ≥ j, except when (k‖z) = i∗. This may be viewed as the jth key
being punctured on points [1, j − 1] ∪ i∗. We show that the GGM based construction for puncturing a

12There is an exception at time step 1 when both the symbol ciphertext and the start state ciphertexts are hardwired in the
ReRand key

25



single point can be extended to puncturing an interval (plus an extra point). Intuitively, puncturing an
interval corresponds to puncturing at most λ internal nodes in the GGM tree. In more detail, we show that
regardless of the value of j, it suffices to puncture at most λ points in the GGM tree to achieve puncturing
of the entire interval [1, j − 1]. Please see Appendix D for details.

4 Construction: Multi-Input FE for Turing Machines

In this section we construct a multi-input functional encryption scheme for Turing machines. Our
construction supports a fixed number of encryptors (say k), who may each encrypt a string wi of
unbounded length. Function keys may be provided for Turing machines, so that given k ciphertexts for
wi and a function key for TM M , decryption reveals M(w1‖ . . . ‖wk) and nothing else. We use the
following ingredients for our construction:

1. A compact, k-input functional encryption scheme for circuits, kFE and a compact, public-key
functional encryption scheme 1FE. As before, we will assume that the scheme 1FE is decomposable
as defined in Section 2.

2. A symmetric encryption scheme SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec).

3. A delegatable constrained pseudorandom function (cPRF), denoted by F which supports T
delegations for the function family ft : {0, 1}(k+2)·λ → {0, 1} defined as follows. Let x, t
denote integers whose binary representations are x, t of λ bits. Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

The functionalities supported by kFE and 1FE are called Agg and Next respectively, described
next. Agg aggregates the inputs w1, . . . ,wk of all k parties into one long “global” string (w1‖ . . . ‖wk),
encrypted under the scheme 1FE. Since the length of this aggregate string is unbounded, a single
invocation of Agg produces an encryption of a single symbol in the string, and the function is invoked
repeatedly to produce ciphertexts for the entire string. Each ciphertext output by the Agg scheme contains
a symbol wi as well as the position of the symbol within the global string. The encryption of the symbols
(and the initial state) also contains a global salt which Agg computes from the random salts provided in
the ciphertexts under the kFE scheme by the individual encryptors. The global salt identifies the particular
input combination that is aggregated, and serves as input to the PRF in the Next functionality.

Our k-input CktFE scheme may be either private or public key, and will result in the corresponding
notion for k-input TMFE. Since the multi input setting for FE is considered more interesting in the
symmetric key setting (see [BKS16] for a discussion), we present our construction in the symmetric key
setting – the public key adaptation is straightforward.

We note that ciphertexts output by Agg, which are encryptions of the symbols in the aggregate string
under the 1FE scheme, are exactly the same as the output of the ReRand function in the single input
scheme of Section 3. Therefore, as before, we may have the functionality Next of the 1FE scheme
mimic the computation of the Turing machine on the global string (w1‖ . . . ‖wk). As in the previous
construction, 1FE.Dec accepts as its inputs a ciphertext decomposed into two components encoding
the current symbol on the worktape and the current state in the computation, both of which have been
encrypted using the same randomness, and outputs a ciphertext component corresponding to the symbol
written on the tape, as well as the next state. The global salt in the ciphertext, along with a random
nonce chosen by KeyGen are used as input to a cPRF as before, to compute the randomness used to
generate ciphertexts. This ensures that the execution of a given machine on a given input combination is
maintained separate from any other execution, and thwarts “mix and match” attacks, where, for instance,

26



an attacker may try to combine a state generated at some time step t in one execution with a symbol
generated at time step t from a different execution.

If we instantiate the underlying multi-input CktFE by the construction of [KS17], we may let the arity
k be poly-logarithmic in the security parameter. If we instantiate multi-input CktFE by the construction
of [GGG+14], we may support fixed polynomial arity at the cost of worsening the assumption. Note
that [GGG+14] rely on iO while [KS17] rely on compact FE. Note that [BGJS15] support unbounded
polynomial arity, but from public coin DiO as discussed in Section 1.

4.1 Construction of multi-input TMFE

In the following, we denote a k-input, private-key CktFE scheme by k-CktFE and a decomposable, public
key CktFE scheme by 1FE. Since our scheme supports an a-priori fixed number of parties, say k, we
assume that every user is pre-assigned an index ind ∈ [k].

kTMFE.Setup(1λ, 1k ): Upon input the security parameter 1λ and the bound 1k, do the following:

1. Choosing the functionality for 1FE. Let 1FE be a decomposable, public-key CktFE for the
following circuit family.

Next :
((
{SYM}×{0, 1}(k+4)λ×Σ×Trap

)
×
(
{ST}×Q×{0, 1}k·λ

))
→
(
C1FE

)2
∪{ACC,REJ,⊥}

The tokens SYM and ST are flags denoting a symbol and a state respectively of a Turing
machine M which has Σ and Q as the alphabet and state space respectively. The set
{0, 1}(k+4)λ encodes in order, a random value key-id associated with a TM M , a constrained
PRF key, the current time step in the computation, the length of the input string, each of
λ bits and a string of length k ·λ bits encoding a random value gsalt. Here, Trap is a data
structure of fixed polynomial length which will be used in the proof. Since we do not need
it in the construction, we do not discuss it here, please see Figure 17 for its definition. The
set {0, 1}k·λ encodes again a random value gsalt associated with the message component for
state. C1FE is the ciphertext space of 1FE. ACC and REJ denote tokens when M reaches an
accepting state and a rejecting state respectively.

2. Choosing the functionality for kFE. Let kFE be a k-CktFE for the following circuit family.

Agg : ({SYM,SP} × {0, 1}4λ × [k]× Σ× Trap)k → C1FE ×
(
C1FE ∪ {⊥}

)
The special token SP denotes an encryption of the length of an input string corresponding
to any user. The set {0, 1}4λ encodes in order, a constrained PRF key, the time step of the
current symbol, the input length and a random salt each of λ bits. Σ,Trap and C1FE are as
described above.

3. Choosing keys for kFE and 1FE.

Let kFE.MSK←kFE.Setup(1λ, 1k ), (1FE.PK, 1FE.MSK)←1FE.Setup(1λ, 1k )

4. Output MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

kTMFE.Enc(MSK,wind, ind): Upon input the master key MSK, and message wind of arbitrary length
`ind and an index ind ∈ [k], do the following:

27



1. Interpret the input MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

2. Let wind = w1w2 . . . w`ind . Sample saltind ← {0, 1}λ.

3. Construct the data structure Trap and set all its fields to ⊥ except a flag Trap.mode-real = 1
which indicates that we are in the real world. The data structure Trap is only relevant in the
proof. Please see Figure 6 for the definition of Trap.

• Encoding Input String and Its Length

4. If ind = 1, do the following:

(a) Sample a root key for the constrained PRF F as K0 ← F.Setup(1λ).
(b) Construct the input message len1 = (SP,K0,⊥, `1, salt1, 1,⊥,Trap).
(c) Encrypt `1 as a special ciphertext CT1,SP = kFE.Enc(kFE.MSK, len).
(d) For i ∈ [`1] do the following:

i. Construct the input message y1,i = (SYM,K0, i, `1, salt1, 1, wi,Trap).
ii. Compute the ciphertext CT1,SYM,i = kFE.Enc(kFE.MSK,yi).

5. If ind ∈ [2, k], do the following:

(a) Construct the input message lenind = (SP,⊥,⊥, `ind, saltind, ind,⊥,Trap).
(b) Encrypt `ind as a special ciphertext CTind,SP = kFE.Enc(kFE.MSK, len).
(c) For i ∈ [`ind] do the following:

i. Construct the input message yind,i = (SYM,⊥, i, `ind, saltind, ind, wi,Trap).
ii. Compute the ciphertext CTind,SYM,i = kFE.Enc(kFE.MSK,yi).

6. Output CTwind
=
(
CTind,SP, {CTind,SYM,i}i∈[`ind]

)
.

kTMFE.KeyGen(MSK,M ): Upon input the master secret key MSK and the description of a Turing
machine M , do the following. We will assume, w.l.o.g. that the TM is oblivious (see Appendix A
for a justification) and qst ∈ Q is the start state of M .

1. Sample a random value rand← {0, 1}λ.

2. Interpret MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

3. Let SKAgg = kFE.KeyGen(kFE.MSK,Agg1FE.PK,rand,qst,⊥,⊥), where Figure 7 defines the
circuit Agg1FE.PK,rand,qst,⊥,⊥.

4. Let SKNext = 1FE.KeyGen(1FE.MSK,Next1FE.PK,rand,M ,⊥,⊥), where Figure 9 defines the
circuit Next1FE.PK,rand,M ,⊥,⊥.

5. Output the secret key as SKM = (SKAgg,SKNext).

kTMFE.Dec(SKM , {CTwi}i∈[k]): Upon input secret key SKM and k ciphertexts CTw1 , . . . ,CTwk , do
the following:

1. Interpret the secret key as SKM = (SKAgg,SKNext).

2. Parse CTwind
= (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,`ind)) for all ind ∈ [k].

• Aggregate the ciphertexts of all users.

3. For i = 1 to k, do the following:

28



Function Agg1FE.PK,rand,qst,C1,C2
(
x1,x2, . . . ,xk

)
(a) Interpret xi = (type,K, t, `, salt, ind, s,Trap), for i ∈ [k] and set a flag proceed1 = proceed2 = 0.

(b) For all i, j ∈ [k], if xi.ind 6= xj .ind for i 6= j, set proceed = 1. If there exists exactly one i ∈ [k] for which
xi.type = SYM and xj .type = SP,∀j ∈ [k] \ {i} and proceed1 = 1, set proceed2 = 1. If proceed2 = 0,
output ⊥ and abort.

(c) Initialization and Choosing Real or Trapdoor mode.
Let i ∈ [k] be such that xi.type = SYM. Initialize an input vector inp = (σ, qst), where σ = xi.s. Let
gsalt = (x1.salt‖x2.salt‖ . . . ‖xk.salt) and ` =

∑k
i=1 xi.` denote the global salt and the aggregate input

length respectively. Denote pos = xi.t and do the following:

i. Computing Global Symbol Position : If 1 < xi.ind ≤ k, compute the new position of the symbol
as pos = pos +

∑
r∈S xr.`, where the set S = {r | xr.ind < xi.ind} ⊂ [k].

ii. If Trap.mode-real = 1, set out = (c1, c2), where c1 = c2 = ⊥. If pos 6= 1, set inp = (σ,⊥).

iii. Else obtain
(
inp=(u1, u2), out=(c1, c2)

)
= Trap-ModeAgg

(
Trap, inp, rand, gsalt, `, C1, C2, pos

)
as

described in Figure 8.

(d) If ((out.c1 = ⊥) ∨ (out.c2 = ⊥)), do the following.

i. Let p ∈ [k] be such that xp.ind = 1 and denote K0 = xp.K as the root key for cPRF.

ii. Derive the randomness for encryption at time step pos as rpos = F.Eval(K0, (pos‖rand‖gsalt)).

iii. Computing Encrypted Symbols using randomness derived from cPRF. If out.c1 = ⊥, do the
following.

• Compute the delegated PRF key Kpos+1 = F.KeyDel(K0, fpos+1). Set key-id = rand.

• Compute the 1FE symbol ciphertext encoding σ = inp.u1 as CTsym,pos = Ē (1FE.PK1,y1; rpos),
where y1 = (SYM, key-id,Kpos+1, pos, `, gsalt, σ,Trap).

iv. Computing Encrypted State for First Time Step. If ((out.c2 = ⊥) ∧ (pos = 1)), do the following.

• Compute the 1FE state ciphertext encoding qst = inp.u2 as CTst,1 = Ē(1FE.PK2,y2; r1), where
y2 = (ST, qst, gsalt). Set out.c2 = CTst,1.

(e) If pos = 1, output out = (CTsym,1,CTst,1). Otherwise, output out = (CTsym,pos,⊥).

Figure 7: This circuit aggregates and re-randomizes the ciphertexts provided during encryption to use
randomness derived from a cPRF. The seed for the cPRF is specified in the ciphertext for first party and
the input is specified by the key. This ensures that each ciphertext, key pair form a unique “thread” of
execution.

(a) For j = 1 to `i, do the following:
i. If ((i = 1) ∧ (j = 1)), invoke kFE.Dec

(
SKAgg,

(
CT1,SYM,1, {CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,1,CTst,1).

ii. If ((i = 1) ∧ (j > 1)), invoke kFE.Dec
(
SKAgg,

(
CT1,SYM,j , {CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,j ,⊥).

iii. Else, invoke kFE.Dec
(
SKAgg,

(
CTi,SYM,j , {CTn,SP}n∈[k]\{i}

))
to obtain (CT

sym,L̃i+j
,⊥),

where L̃i =
∑i−1

m=1 `m.

• Execute the TM on aggregated input.

4. The aggregated sequence of ciphertexts under the Next scheme, of length Lk =
∑k

j=1 `j

29



Subroutine Trap-ModeAgg
(
Trap, inp, rand, gsalt, `, C1, C2, pos

)
Interpret inp = (u1, u2) = (wi, qst) and initialize out = (c1, c2), where c1 = c2 = ⊥.

If Trap.key-id = rand, do the following.

(a) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap3 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS = pos) ∧ (pos ≤ `)

)
, compute CTsym,pos = SKE.Dec(Trap.SKE.K, C1) and set

out.c1 = CTsym,pos.

ii. If
(
(Trap.ST TS = pos) ∧ (pos = 1)

)
, compute CTst,pos = SKE.Dec(Trap.SKE.K, C2) and set

out.c2 = CTst,1.

(b) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS1 = pos) ∧ (pos ≤ `)

)
, set inp.u1 = Trap.Sym val1 with the symbol to be

encrypted and output at time step pos.

ii. If
(
(Trap.ST TS1 = pos)∧(pos = 1)

)
, set inp.u2 = Trap.ST val1 with the start state to be encrypted

and output at time step 1.

(c) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS2 = pos) ∧ (pos ≤ `)

)
, set inp.u1 = Trap.Sym val2 with the symbol to be

encrypted and output at time step pos.

ii. If
(
(Trap.ST TS2 = pos)∧(pos = 1)

)
, set inp.u2 = Trap.ST val2 with the start state to be encrypted

and output at time step 1.

(d) If Trap.global-salt < gsalt, set b = 0, if Trap.global-salt > gsalt, set b = 1.

i. If pos 6= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

If Trap.key-id > rand, set b = 1, if Trap.key-id < rand set b = 0.

(a) If pos 6= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

Output. Return (inp, out).

Figure 8: Subroutine handling the trapdoor modes in Agg. This is “active” only in the proof.

computed above is expressed as:
((CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,`1 ,CTsym,`1+1, . . . ,CTsym,Lk).

5. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE.Dec
(
SKNext, (CTsym,t ,CTst,t)

)
to obtain:

• ACC or REJ. In this case, output “Accept” or “Reject” respectively, and exit the
loop.
•
(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at time step t will be
accessed again.

(b) Let t = t+ 1 and go to start of loop.

30



Function Next1FE.PK,rand,M,C1,C2
(
(z1, z2)

)
(a) Reading Current (Symbol, State) Pair and Looking up Transition Table.

i. Interpret z1 = (type, key-id,Kt+1, t, `, gsalt, s,Trap), z2 = (type, s, gsalt). If ((z1.type 6= SYM) ∨
(z2.type 6= ST) ∨ (z1.key-id 6= rand) ∨ ∧(z1.gsalt 6= z2.gsalt)), output ⊥ and abort.

ii. Interpret (z1.s, z2.s) = (σt, qt) as the symbol, state pair for the current time step z1.t = t, input
z1.Kt+1 = Kt+1 as the constrained PRF key for future time steps. Denote key-id = z1.key-id, ` =
z1.`, gsalt = z1.gsalt and Trap = z1.Trap. Using the transition table of the machine M , look up the
next state qt+1 as well as the symbol σt′ to be written on the work-tape, where t′ is the time step the
current work tape cell will next be read by M . If qt+1 is an accept or reject state, then output ACC or
REJ and exit.

iii. Initialize inp = (σt′ , qt+1).

(b) Choosing Real or Trapdoor mode. If Trap.mode-real = 1, initialize an output vector out = (c1, c2),
where c1 = c2 = ⊥. Else invoke Trap-ModeNext

(
Trap, inp, rand, gsalt, `, C1, C2, t, t′

)
as described in

Figure 10 to obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(c) Computing Next Encrypted Symbol. If out.c1 = ⊥, do the following.

i. Noting that t′ > t, derive the randomness at time step t′ using the delegated key Kt+1 as rt′ =
F.Eval(Kt+1, (t

′‖rand‖gsalt)). Compute the delegated PRF key Kt′+1 = F.KeyDel(Kt+1, ft′+1).

ii. Compute the 1FE ciphertext component encoding the symbol σt′ = inp.u1 for time step t′ as

CTsym,t′ = Ē
(
1FE.PK1, (SYM, key-id,Kt′+1, t

′, `, gsalt, σt′ ,Trap); rt′)

iii. Set out.c1 = CTsym,t′ .

(d) Computing Next Encrypted State. If out.c2 = ⊥, do the following.

i. Derive the randomness at time step t+ 1 as rt+1 = F.Eval(Kt+1, (t+ 1‖rand‖salt)) and compute the
1FE2 ciphertext component encoding the state qt+1 = inp.u2 for time step t+ 1 as

CTst,t+1 = Ē
(
1FE2.PK2, (ST, qt+1, gsalt); rt+1)

ii. Set out.c2 = CTst,t+1.

(e) Output : out =
(
CTsym,t′ ,CTst,t+1

)
Figure 9: Function to mimic TM computation. It reads the current symbol, state pair and outputs an
encryption of the new state and symbol to be written under the appropriate randomness generated using a
cPRF.

4.2 Correctness of Multi-Input TMFE

The proof of correctness is split into two parts. In the first part we argue that, given as input the secret
key SKAgg along with k ciphertexts under the kFE scheme, exactly one of which encodes a symbol and
the other (k − 1) encode the individual input lengths, the kFE.Dec algorithm computes a 1FE ciphertext
component of the symbol with its updated position in the global string. By repeating this process for all
symbols encoded by all users, we obtain a sequence of 1FE ciphertext components, each containing its
updated position in the aggregated string. Additionally, each of these ciphertext components contains a
global/aggregate salt that is generated from concatenating each individual encryptor’s randomly generated
salts. This global salt identifies the particular input combination being aggregated.

Correctness of the second part corresponds to the correct execution of the Turing machine on the
aggregate sequence of ciphertexts, and this is exactly the same as in Section 3. As before, we maintain
the invariant that at any time step t, the input to the 1FE.Dec algorithm is a complete 1FE ciphertext

31



Subroutine Trap-ModeNext
(
Trap, inp, rand, gsalt, `, C1, C2, t, t

′)
Interpret the input vector inp = (u1, u2) = (σt′ , qt+1) and initialize the output vector out = (c2, c2), where
c1 = c2 = ⊥.

1. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap3 = 1)

)
, do the following.

(a) If
(
(Trap.Sym TS = t) ∧ (Trap.Target TS = t′) ∧ (t > `)

)
, compute the 1FE2 symbol ciphertext

CTsym,t′ = SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,t′ .

(b) If
(
(Trap.ST TS = t) ∧ (Trap.Target TS = t + 1) ∧ (t > 1)

)
, compute the 1FE2 state ciphertext

CTst,t+1 = SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,t+1.

2. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

(a) If
(
(Trap.Sym TS1 = t) ∧ (Trap.Target TS1 = t′) ∧ (t > `)

)
, set inp.u1 = Trap.Sym val1 with the

symbol σt′ = Trap.Sym val1 to be encrypted and given as output for time step t′.

(b) If
(
(Trap.ST TS1 = t)∧ (Trap.Target TS1 = t+ 1)∧ (t > 1)

)
, set inp.u2 = Trap.ST val1 with the

state qt+1 = Trap.ST val1 to be encrypted and given as output for time step t+ 1.

3. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

(a) If
(
(Trap.Sym TS2 = t) ∧ (Trap.Target TS2 = t′) ∧ (t > `)

)
, set inp.u1 = Trap.Sym val2 with the

symbol σt′ = Trap.Sym val2 to be encrypted and given as output for time step t′.

(b) If
(
(Trap.ST TS2 = t)∧ (Trap.Target TS2 = t+ 1)∧ (t > 1)

)
, set inp.u2 = Trap.ST val2 with the

state qt+1 = Trap.ST val2 to be encrypted and given as output for time step t+ 1.

4. Exit the subroutine returning (inp, out).

Figure 10: Subroutine handling the trapdoor modes in Next. This is “active” only in the proof.

decomposed into two components corresponding to symbol and state (along with additional auxiliary
inputs), both computed with the same randomness F.Eval(K0, (t‖rand‖gsalt)).

In more detail, we have the following. Correctness of Aggregation. Formally, let there be k
users so that k ciphertexts {CTwind

}ind∈[k] are given as input to kTMFE.Dec algorithm. For all
ind ∈ [k], let `ind be the length of input string of user ind. Each ciphertext CTwind

is a sequence
(CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,`ind)) of ciphertexts, where the first component CTind,SP encodes
the input string length of user ind and the second component {CTind,SYM,i}i∈[`ind] encodes in order the
i-th symbol wi of the actual input string wind = (w1, w2, . . . , w`ind) of the same user. These ciphertexts
are generated under the kFE scheme with the master secret key kFE.MSK which supports a k-input
functionality Agg := Agg1FE.PK,rand,qst,⊥,⊥. Therefore, given secret key SKAgg, we have:

1. Invoking kFE.Dec on the ciphertext CT1,SYM,1 encoding the first symbol of w1 along with
the special ciphertexts CTind,SP encoding |wind| for ind 6= 1 gives (CTsym,1,CTst,1). By
correctness of kFE decryption, we have: kFE.Dec

(
SKAgg,

(
CT1,SYM,1, {CTind,SP}ind∈[k]\{1}

))
=

(CTsym,1,CTst,1).

2. Invoking kFE.Dec on the ciphertext CT1,SYM,j encoding the jth symbol of w1 along with the
special ciphertexts CTind,SP encoding |wind| for ind 6= 1 gives (CTsym,j ,⊥). By correctness of
kFE decryption, we have: kFE.Dec

(
SKAgg,

(
CT1,SYM,j , {CTind,SP}ind∈[k]\{1}

))
= (CTsym,j ,⊥).

3. Finally, ∀ ind ∈ [k]\{1}, invoking kFE.Dec on the ciphertext CTind,SYM,j encoding the jth symbol
of wind along with the special ciphertexts CTind′,SP encoding |wind′ | for ind 6= ind′ computes the

32



new global position of the symbol in the aggregated string and outputs
(
CT

sym,L̃i+j
,⊥
)
. By correct-

ness of kFE decryption, we have: kFE.Dec
(

SKAgg,
(

CTind,SYM,j , {CTind′,SP}ind′∈[k]\{ind}

))
=(

CT
sym,L̃i+j

,⊥
)
, where L̃i =

∑ind−1
m=1 `m.

Note that F.Eval(K0, (pos‖rand‖gsalt)) is the randomness used to compute each of these ciphertext
components, where pos refers to the global position specific to a symbol in the aggregate input string.

Correctness of TM Execution. The 1FE scheme supports the functionality Next := Next1FE.PK,rand,M ,⊥,⊥.
Let the newly generated and organized sequence of ciphertexts based on time steps be as follows:(

(CTsym,1,CTst,1) , {CTsym,i}i∈[2,Lk]

)
with Lk =

∑k
i=1 `i. Let w = (w1, w2, . . . , w`1 , w`1+1,

w`1+2, . . . , w`1+`2 , . . . , wLk) be the aggregated input string and define τ = runtime(M,w). For any
time step t ∈ [τ − 2], we have

1. Let t ∈ [τ − 2] \ [`]. If the current work tape cell was accessed13, at some time step t̃ < t, then
CTsym,t encoding (SYM, key-id,Kt+1, t, `, gsalt, σt,Trap) was constructed at time step t̃. Note
that σt may be the blank symbol β. When t ∈ [`], CTsym,t is constructed at time step t via the Agg
circuit.

2. The ciphertext component CTst,t encoding (ST, qt, gsalt) at time step t was constructed at time
step t− 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖rand‖gsalt)) = F.Eval(Kt, (t‖rand‖gsalt)) binds CTsym,t

and CTst,t and both the encoded messages also share the same global salt.

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE which may be fed again
with SKNext to 1FE.Dec in order to proceed with the computation. Thus, the execution of 1FE.Dec at the
(τ − 2)th time step provides the complete pair (CTsym,τ−1,CTst,τ−1). By the correctness of 1FE scheme
again, at time step t = τ − 1, invoking 1FE.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs either “Accept”
or “Reject” by simulating the execution of M for the final time step τ inside the function Next, thus
correctly outputting M(w).

4.3 Proof of Security for multi-input TMFE

Security of the above construction follows the same blueprint as the proof in Section 3 except that
instead of single input functionality ReRand, we now use a k-input functionality Agg to aggregate and
rerandomize the inputs. We emphasize that the outputs produced by the Agg functionality are exactly
the same as the outputs produced by ReRand functionality in Section 3: namely a sequence of 1FE
ciphertexts encoding the symbol and global position, computed using randomness derived from a cPRF.
Hence, the chief new ingredient in the security proof is the security of Agg functionality, which is derived
from the security of the kFE scheme.

Formally, we argue that:

Theorem 4.1. Assume that the k input FE for circuits kFE satisfies standard indistinguishability
(Definition 2.5), and the single input FE for circuits 1FE satisfies distributional indistinguishability
(Definition 2.3). Assume that the cPRF is secure according to definition 2.12. Then, the above construction
of k input kTMFE satisfies standard indistinguishability (Definition 2.8).

The proof follows the outline of the single input case, except that now we must additionally keep
track of multiple execution threads corresponding to various combinations of ciphertexts across multiple

13We assume that every time a cell is accessed, it is written to, by writing the same symbol again if no change is made.

33



users, i.e. various “global salt” values. In more detail, if each of k users makes Q ciphertext requests,
then we have Qk total possible combinations of ciphertexts, each yielding a different execution thread per
key. Note that each of the Qk combinations is identified with a unique “global salt”. We will assume
w.l.o.g that there is a lexicographic ordering on all the global salt values; this can be easily ensured by
associating a counter value with each random salt. We do not explicitly include this for notational brevity.

In the single input case, we replaced the execution chain of a machine over an input string from b = 0
to b = 1, step by step, and enumerated over all keys. Now, we again replace an execution chain step by
step as in the single input case, but additionally enumerate over all Qk combinations for each key, as well
as over all keys as before. The number of hybrids grows multiplicatively by Qk. Since the proof structure
follows mostly like the single input case, we provide below only the conceptual description of the main
ideas and the hybrids’ sequence in the proof. Details are provided in Appendix C.

5 Indistinguishability Obfuscation for Turing Machines

In this section we construct indistinguishability obfuscation for Turing machines with bounded length
input, i.e. the input length n = n(λ) is any fixed polynomial in the security parameter.

Our construction is a straightforward adaptation of the miFE to iO compiler for circuits [GGG+14]
to Turing machines. To support inputs of length n, we need an (n+ 1)-ary miFE for Turing machines
denoted as (n+1)-TMFE; we instantiate this with our construction from Section 4.

In more detail, the obfuscation of M comprises the secret key SKU for the Universal Turing
machine and (2n + 1) ciphertexts under the (n + 1)-TMFE scheme, where the first 2n ciphertexts
{CTbi}i∈[n],b∈{0,1} encode bits 0 and 1 respectively for each of n positions while the last ciphertext
CTM encodes machine 〈M〉. To evaluate iO(M) on an input x = (x1, . . . , xn) ∈ Σn

λ, the evaluator
runs (n+1)-TMFE.Dec

(
SKU, ({CTxii }i∈[n],CTM )

)
to get M(x). To argue security we only need the

(n+1)-TMFE scheme to be selectively secure against two ciphertext queries per slot and a single key
query, as in the case of circuits.

5.1 Construction

LetM = {Mλ}λ∈N denote an ensemble of Turing machines with alphabet Σλ = {0, 1}. Let Encode =
{Encodeλ :Mλ → Σ∗enc}λ∈N be an ensemble of encoding schemes forM on alphabet Σenc such that
for any M ∈Mλ,Encodeλ (M) = 〈M〉. Further, let U = {Uλ}λ∈N denote the set of Universal Turing
machines parameterized by the security parameter with alphabet ΣU = Σenc ∪Σλ such that for all λ ∈ N,
for any M ∈ Mλ and any x = (x1, . . . , xn) ∈ Σn

λ, Uλ(x, 〈M〉) takes x and an encoding 〈M〉 of M ,
simulates M on x and outputs M(x).

Let (n+1)-TMFE denote the (n + 1)-ary multi-input functional encryption scheme for Turing
machines with alphabet ΣU . We construct an ensemble of indistinguishability obfuscators iO = {iOλ}λ∈N
with iOλ = (iO.Obf, iO.Eval) forMλ with inputs x ∈ Σn

λ as follows.

iO.Obf(1λ, 1n,M): On input the security parameter λ, a bound n ∈ N and a Turing machine M ∈Mλ,
do the following:

1. Compute the encoding of M as Encodeλ (M) = 〈M〉.
2. Compute a master secret key MSK← (n+1)-TMFE.Setup (1λ, 1n+1).

3. Compute the secret key for machine Uλ as SKU ← (n+1)-TMFE.KeyGen(MSK,Uλ).

4. For i ∈ [n], compute the encryptions CTbi = (n+1)-TMFE.Enc(MSK, (b, i)), b ∈ Σλ.

5. Compute the encoding of M as CTn+1 = (n+1)-TMFE.Enc(MSK, (〈M〉, n+ 1)).

6. Output the obfuscated machine as M̃ =
(
SKU,

(
{CTbi}i∈{1,...,n},b∈Σλ ,CTn+1

))
.

34



iO.Eval(M̃,x): On input the obfuscated machine M̃ and an input x ∈ Σn
λ, do the following:

1. Parse M̃ =
(
SKU,

(
{CTbi}i∈{1,...,n},b∈Σλ ,CTn+1

))
and x = (x1, . . . , xn).

2. Compute and output (n+1)-TMFE.Dec (SKU, (CTx11 , . . . ,CTxnn ,CTn+1)).

Correctness and Efficiency. Correctness is directly followed by the correctness of (n+1)-TMFE
scheme. Since the (n+1)-TMFE we use is compact, the obfuscation size obtained by the above scheme
is poly(λ, |U|, |M |, n).

5.2 Proof of Security

We show that the construction is secure. Formally:

Theorem 5.1. Assume that (n+1)-TMFE is a 1-key, 2-ciphertext selectively secure (n+ 1)-ary multi-
input functional encryption scheme for Turing machines which satisfies standard indistinguishability
(Section 2.2.2). Then the construction in Section 5.1 is a secure indistinguishability obfuscator for the
Turing machines (Section 2.2.3) with bounded input length n.

Proof. Consider two Turing machines M0,M1 ∈ Mλ such that ∀x ∈ Σn
λ,M0(x) = M1(x). We now

show that if there exists a PPT adversaryA that distinguishes between M̃0 = iO(M0) and M̃1 = iO(M1)
with non-negligible advantage, then there exists another PPT adversary B which breaks the (n+1)-TMFE
scheme with the same advantage. We construct B as follows.
B runs A to get two functionally equivalent machines M0,M1 ∈Mλ. It does the following:

1. B prepares a pair of sequences (x0,x1), each containing two challenge message vectors for the
(n+1)-TMFE challenger C such that for all b ∈ {0, 1},xb =

{
(xb1,1, . . . , x

b
n+1,1), (xb1,2, . . . , x

b
n+1,2)

}
.

– For all i ∈ [n], B sets x0
i,1 = x1

i,1 = 0 and x0
i,2 = x1

i,2 = 1

– For i = n+ 1, B sets xbn+1,1 = xbn+1,2 = 〈Mb〉, where Encodeλ(Mb) = 〈Mb〉.

B sends the pair (x0,x1) to C and receives (CT1,j , . . . ,CTn+1,j)j∈[2].

2. B requests C for a secret key corresponding to machine Uλ and receives SKU.

3. B sends M̃ = (SKU, ({CT1,j , . . . ,CTn,j}j∈[2],CTn+1,1)) as the challenge obfuscation to A and
outputs a bit b′ returned by A.

This completes the description of the reduction B. We first observe that for any x = (x1, . . . , xn) ∈ Σn
λ,

since M0 and M1 are functionally equivalent Turing machines, we have that:

Uλ(x, 〈M0〉) = M0 (x) = M1 (x) = Uλ(x, 〈M1〉)

Further, A being a valid iO adversary, we have runtime(M0,x) = runtime(M1,x). Thus B is a valid
(n+1)-TMFE adversary. Hence, if the (n+1)-TMFE challenger had chosen challenge bit 0, then the
obfuscation M̃ is of M0, else of M1. Thus the advantage of A in distinguishing the two cases translates
exactly to the advantage of B against the (n+1)-TMFE scheme.

Acknowledgement. We thank Vinod Vaikuntanathan for suggesting the generic transformation from
FE to decomposable FE.

35



References

[AB08] Sanjeev Arora and Boaz Barak. Complexity theory: A modern approach. Online draft at
http://www. cs. princeton. edu/theory/complexity, 2008.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective
to adaptive security in functional encryption. In Crypto, 2015.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Delegating
ram computations with adaptive soundness and privacy. In Theory of Cryptography
Conference, pages 3–30. Springer, 2016.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm
Springs, CA, USA, October 22-25, 2011, pages 120–129, 2011.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
SIAM J. Comput., 43(2):905–929, 2014.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, pages 308–326. Springer, 2015.

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation for
turing machines: Constant overhead and amortization. In Crypto. Springer, 2017.

[AS16] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In Theory
of Cryptography Conference (TCC), pages 125–153. Springer, 2016.

[AS17a] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite automata
from lwe. In ICALP, 2017.

[AS17b] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In EUROCRYPT, 2017.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Public Key Cryptography, pages 501–519, 2014.

[BGJS15] Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-
input functional encryption for unbounded arity functions. In Advances in Cryptology–
ASIACRYPT 2015, pages 27–51. Springer, 2015.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. In Eurocrypt, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In Theory of Cryptography Conference,
pages 391–418. Springer, 2016.

36



[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a
nash equilibrium. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 1480–1498. IEEE, 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In FOCS, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Asiacrypt. Springer, 2013.

[CCC+15] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai Lin, and
Hong-Sheng Zhou. Computation-trace indistinguishability obfuscation and its applications.
IACR Cryptology ePrint Archive, 2015, 2015.

[CCHR15] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Succinct adaptive garbled
ram. Cryptology ePrint Archive, Report 2015/1074, 2015. https://eprint.iacr.
org/2015/1074.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled ram. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pages 169–178. ACM,
2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguishabil-
ity obfuscation of iterated circuits and ram programs. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC ’15, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 1115–1127. ACM, 2016.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In CRYPTO, 2013.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC, 2015.

[CMR17] Brent Carmer, Alex J Malozemoff, and Mariana Raykova. 5gen-c: multi-input functional
encryption and program obfuscation for arithmetic circuits. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 747–764.
ACM, 2017.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In
EUROCRYPT, pages 578–602, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
FOCS, 2013. http://eprint.iacr.org/.

37

https://eprint.iacr.org/2015/1074
https://eprint.iacr.org/2015/1074
http://eprint.iacr.org/


[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of
the ACM, 33(4):792–807, 1986.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private RAM
computation. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS,
2014.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run turing machines on encrypted data. In CRYPTO (2), pages 536–553,
2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In STOC, pages
555–564, 2013.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic
hardness of finding a nash equilibrium. In CRYPTO, pages 579–604. Springer, 2016.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the
sub-exponential barrier in obfustopia. Technical report, Cryptology ePrint Archive, Report
2016/102, 2016. http://eprint. iacr. org/2016/102, 2016.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption
with polynomial loss. In Theory of Cryptography Conference, pages 419–442. Springer,
2016.

[Imp] Russell Impagliazzo. Notes on turing machines. http://cseweb.ucsd.edu/
classes/sp11/cse201A-a/ln412.pdf.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistinguishable
garbled circuits. In Theory of Cryptography Conference, pages 40–71. Springer, 2017.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation
for turing machines with unbounded memory. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC ’15, 2015.

[KNT17] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability obfuscation
for all circuits from secret-key functional encryption. IACR Cryptology ePrint Archive,
2017:361, 2017.

[KNT18a] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key
functional encryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 603–648. Springer, 2018.

[KNT18b] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Simple and generic constructions
of succinct functional encryption. In IACR International Workshop on Public Key
Cryptography, pages 187–217. Springer, 2018.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer &#38; Communications Security, CCS ’13, 2013.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key functional
encryption. In EUROCRYPT, 2017.

38

http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf
http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf


[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs.
In Crypto, 2017.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Theory of Cryptography Conference, pages 443–468. Springer, 2016.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Advances in Cryptology –
EUROCRYPT, 2013.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing randomized
encodings and applications. In TCC-A, 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local prgs. In Crypto, 2017.

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework for building
applications of obfuscation from polynomial hardness. In Theory of Cryptography
Conference, pages 138–169. Springer, 2017.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[PF79] Nicholas Pippenger and Michael J Fischer. Relations among complexity measures. Journal
of the ACM (JACM), 26(2):361–381, 1979.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In STOC, 2014. http://eprint.iacr.org/2013/454.
pdf.

APPENDICES

A Definitions: Turing Machines

We recall the definition of a Turing machine (TM). A TMM is represented by the tuple (Q,Γ, β,Σ, δ, qst, F )
where Q is a finite set of states, Γ is a finite alphabet, β ∈ Γ is the blank symbol, Σ ⊆ Γ \ {β} is the set
of input symbols, qst is the start state, F = {qacc, qrej} where qacc ∈ Q is the accept state, qrej ∈ Q is
the reject state and δ : Q \ F × Γ→ Q× Γ× {L,R} is the transition function (stored as a table). Upon
input w = (w1, . . . , wk) ∈ Σk for some arbitrary polynomial k, the machine M accepts the input if and
only if given a tape initialised with the input w and the head at w1, following the TM’s transition function
leads to qacc. We say M(w) = 1 iff M accepts w and 0 otherwise. We also denote the runtime of a TM
M (i.e. number of steps the head takes) on an input w by runtime(M,w).

Oblivious Turing Machines

Our construction makes use of oblivious Turing machines.

Definition A.1 (Oblivious Turing Machine [Imp]). An Oblivious Turing Machine (OTM) is a Turing
Machine for which there exists a function t such that, at every timestep i the machine head is at cell t(i)
regardless of the input.

39

http://eprint.iacr.org/2013/454.pdf
http://eprint.iacr.org/2013/454.pdf


Moreover there exist efficient transformations that convert any Turing machine M that takes time T
to decide an input to an oblivious one that takes time T log T to decide the same input [PF79]. Here, we
describe a simple transformation that incurs a quadratic blowup in running time.

Given a TM M , a simple OTM construction adds an additional marker for the head location. Now, to
simulate step i in the TM, the OTM, scans from cell 1 to cell i, ensuring that it reads the current head
location. Now, it moves back from cell i to 1, writing the correct symbol for the next step, while also
updating the state. Once back at cell 1, simulation of step i is complete, and the OTM moves to a state
simulate qi+1 and if qi+1 is not an accepting or rejecting state, it moves to simulating step i+ 1. Since in
step i, we would need to scan at most i cells (as that is the farthermost the head could have moved), a
O(t) computation, now takes O(t2). Also, if we are willing to reveal the runtime of the given input on
the Turing Machine, then we can stop simulating after the last timestep t. A more efficient transformation
due to Pippenger-Fischer[PF79] reduces the time required to O(t log t).

We note that a slightly different definition of OTMs [AB08] requires that the head movements are the
same for all inputs of the same size, which would imply that the OTM runs in worst case time. However,
if we are willing to reveal the running time of a machine on a given input, then the OTM can be made to
halt once the input has been decided. In particular, if runtime(M1,w1) = runtime(M2,w2), then the
head movements of the OTM corresponding to M1 and the OTM corresponding to M2 are exactly the
same.

In our construction, the OTM will be provided the input length of the message as an explicit input,
and can use this to compute the head movements at any given time step.

B Missing Details in Proof of Theorem 3.1

Proof. In the following we argue that consecutive hybrids as defined in Section 3.3 are indistinguishable.

Claim B.1. If 1FE1 is a secure CktFE scheme, then hybridsH(0) andH(1, 1) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(0) and H(1, 1), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it samples
by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ and two random strings
ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space of the SKE scheme.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1) and

(σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time steps

(T ′, T − 2) and (T ′′, T − 3) when the individual components of these two (symbol, state)
pairs are generated and then prepares a new pair of challenge distributions (D̂`0, D̂`1) for the
1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap0),
with Trap0.mode-real = 1 and all other fields set to ⊥.

40



mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥
mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ0

T−1 ST TS1 : T − 2 ST val1 : q0
T−1

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0

T−2
mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure 11: Trap1 configuration inH(1, 1)

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (K0, i, `, w0,i,Trap1),
with the modified fields in Trap1 as shown in Figure 11.

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.

(d) To simulate a function key for M , B first requests for a function key to the 1FE1 challenger
for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives SKReRand. B computes by itself
SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and returns a function key
for M as SKM = (SKReRand,SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′, T − 2, T ′′, T − 3}, the decryption outputs are exactly the same
ciphertexts in both the H(0) and H(1, 1), since these ciphertexts are computed according to the real
world functionality of Next. At a time step t ∈ {T ′, T − 2, T ′′, T − 3} in H(1, 1), the decryption
mimics the real world decryption ofH(0) due to the execution paths in the Next function conditioned on
Trap1.mode-trap1 = Trap1.mode-trap2 = 1. Therefore, B is an admissible adversary against the 1FE1

challenger since the outputs for the two challenge message sets are exactly the same. If b = 0, A sees
the distribution of H(0), while if b = 1, A sees the distribution of H(1, 1). Thus the advantage of A
translates to the advantage of B.

Claim B.2. If SKE is a secure symmetric-key encryption scheme, then hybridsH(1, 1) andH(1, 2) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 1) and H(1, 2), we construct another PPT
adversary B who breaks the security of the SKE scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1λ)
and salt← {0, 1}λ. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T − 2) and (T ′′, T − 3) when the individual components of these two (symbol,
state) pairs are generated. It then simulates the encryption oracle by computing CTi =
1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [`], x1,i = (K0, i, `, w0,i,Trap1) and Trap1 is as per
Figure 11. It returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

41



i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1) as follows.

• Compute a delegated cPRF key KT = F.KeyDel(K0, fT ) and generate the
encryption randomness for time step T − 1 as rT−1 = F.Eval(K0, (T − 1‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′ for the
future time step T − 1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1, z
0
1; rT−1), where

z0
1 = (SYM, salt,KT , T − 1, `, σ0

T−1,Trap1) and Trap1 is as per Figure 11.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2 for
the future time step T − 1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−1), where

z0
2 = (ST, q0

T−1).

iii. It sends the 1FE2 ciphertexts CT0
sym,T−1,CT0

st,T−1 to the challenger of the SKE scheme
and gets back ct1, ct2.

iv. B then computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference between the two hybrids is that the SKE encryptions programmed in the
function key is random inH(1, 1) and are valid SKE encryptions of (CT0

sym,T−1,CT0
st,T−1) encoding the

(symbol, state) pair for time step T −1 inH(1, 2). Hence the advantage of an adversary who distinguishes
between the two hybrids translates to an advantage of an adversary against the SKE scheme.

Claim B.3. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 2) andH(1, 3) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 2) and (1, 3), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ and a key K ←
SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1) and

(σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time steps

(T ′, T − 2) and (T ′′, T − 3) when the individual components of these two (symbol, state)
pairs are generated and then prepares a new pair of challenge distributions (D̂`0, D̂`1) for the
1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap0)
with the fields of Trap0 being same as that of in Trap1 inH(1, 2) as per Figure 11.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (K0, i, `, w0,i,Trap1),
with the modified fields in Trap1 as shown in Figure 12.

42



mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥
mode-trap1 : ⊥ Target TS1 : ⊥ Sym TS1 : ⊥ Sym val1 : ⊥ ST TS1 : ⊥ ST val1 : ⊥
mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0

T−2 ST TS2 : T − 3 ST val2 : q0
T−2

mode-trap3 : 1 Target TS : T − 1 Sym TS : T ′ ⊥ ST TS : T − 2 ⊥

Figure 12: Trap1 configuration inH(1, 3)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.

(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger and
receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1) as follows.

• Compute a delegated cPRF key KT = F.KeyDel(K0, fT ) and generate the
encryption randomness for time step T − 1 as rT−1 = F.Eval(K0, (T − 1‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′ for the
future time step T − 1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1, z
0
1; rT−1), where

z0
1 = (SYM, salt,KT , T − 1, `, σ0

T−1,Trap1) and Trap1 is as per Figure 12 now.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2 for
the future time step T − 1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−1), where

z0
2 = (ST, q0

T−1).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−1 and CT0

st,T−1, it computes
two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−1) and ct2 = SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′, T − 2}, the decryption outputs are exactly the same ciphertexts in
bothH(1, 2) andH(1, 3). At time step t ∈ {T ′, T −2} inH(1, 2), Trap0.mode-trap1 = 1 (in Figure 11)
dictates the decryption to output two decomposed components of a single 1FE2 ciphertext, one component
encoding Trap0.Sym val1 = σ0

T−1 at time step T ′ and the other encoding Trap0.ST val1 = q0
T−1 at time

step T − 2. Alternatively in H(1, 3), Trap1.mode-trap3 = 1 (in Figure 12) dictates the decryption to
firstly use Trap1.SKE.K = K to decrypt the hardwired ciphertext ct1 and output CT0

sym,T−1 at time step
T ′ (respectively, ct2 and output CT0

st,T−1 at time step T − 2). In both the hybrids, these symbol and state
ciphertext pieces are computed for target time step T − 1. Thus B is an admissible 1FE1 adversary. If
b = 0, A sees the distribution ofH(1, 2), while if b = 1, A sees the distribution ofH(1, 3). Hence the
advantage of A translates to the advantage of B.

Claim B.4. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 3) andH(1, 4) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 3) and H(1, 4), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ and a key K ←
SKE.KeyGen(1λ).

43



2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T − 2) and (T ′′, T − 3) when the individual components of these two (symbol,
state) pairs are generated. It then computes a root key punctured at point (T − 1‖salt)
as KT−1

0 = F.Constrain(K0, (T − 1‖salt)) and then prepares a new pair of challenge
distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap1)
with the fields of Trap1 being same as that of in Trap1 inH(1, 3) as per Figure 12.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (KT−1
0 , i, `, w0,i,Trap1),

with Trap1 as per Figure 12.
(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.
(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger and
receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1), as follows.

• Compute a punctured, delegated key KT−1
T = F.KeyDel(KT−1

0 , fT ) and generate
the encryption randomness for time step T − 1 as rT−1 = F.Eval(K0, (T − 1‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′ for the
future time step T − 1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1, z
0
1; rT−1), where

z0
1 = (SYM, salt,KT−1

T , T − 1, `, σ0
T−1,Trap1) and Trap1 is as per Figure 12.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2 for
future time step T − 1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−1), where z0

2 =
(ST, q0

T−1).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−1 and CT0

st,T−1, it computes
two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−1) and ct2 = SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference inH(1, 3) andH(1, 4) is the replacement of the root cPRF key K0 with a
punctured root key KT−1

0 at point (T − 1‖salt) in time step T − 1 in the 1FE1 ciphertext. Moreover, in
both the hybrids, the field Trap1.mode-trap3 = 1 dictates the output at time step t ∈ {T ′, T − 2} to be a
ciphertext component for time step T − 1 as argued in Claim B.3. Thus, the cPRF key is only required
to compute randomness at points 6= (T − 1‖salt) for which the punctured root key suffices. Further, it
evaluates to the same value as the normal key on all such points in both the hybrids. As a consequence,
the decryption values are exactly the same for all the time steps proving the admissibility of B. Thus if
b = 0, A sees the distribution ofH(1, 3), while if b = 1, A sees the distribution ofH(1, 4). Hence the
advantage of A translates to the advantage of B.

44



Claim B.5. If F is a secure punctured, delegatable cPRF scheme, then hybridsH(1, 4) andH(1, 5) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 4) and H(1, 5), we construct another PPT
adversary B who breaks the security of the punctured, delegatable cPRF scheme F as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1λ),
salt← {0, 1}λ and K← SKE.KeyGen(1λ). It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It receives KT−1

0 on querying
for a punctured key at the point (T − 1‖salt) to the cPRF challenger for F.

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T − 2) and (T ′′, T − 3) when the individual components of these two (symbol,
state) pairs are generated. It then simulates the encryption oracle by computing CTi =
1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [`], x1,i = (KT−1

0 , i, `, w0,i,Trap1) and Trap1 is as
per Figure 12. It returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1), as follows.

• Compute a delegated key from the punctured root key as KT−1
T = F.KeyDel(KT−1

0 , fT ).

• Query the cPRF challenger at point (T−1‖salt) to receive an encryption randomness
RE for time step T − 1.

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′ for
the future time step T − 1 as CT0

sym,T−1 = 1FE2.Enc(1FE2.PK1, z
0
1;RE), where

z0
1 = (SYM, salt,KT−1

T , T − 1, `, σ0
T−1,Trap1) and Trap1 is as per Figure 12.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2 for
the future time step T − 1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2;RE), where

z0
2 = (ST, q0

T−1).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−1 and CT0

st,T−1, it computes
two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−1) and ct2 = SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that when RE is computed using K0 as a pseudorandom value, A’s view is identical to that of
H(1, 4), and when RE is sampled uniformly at random, A’s view is identical to that ofH(1, 5). Hence
the advantage of A in distinguishingH(1, 4) andH(1, 5) translates to the advantage of B in breaking the
security of the punctured, delegatable cPRF F.

Claim B.6. If 1FE2 is a secure CktFE scheme, then hybridsH(1, 5) andH(1, 6) are indistinguishable.

45



Proof. Given a PPT adversary A that distinguishes H(1, 5) and H(1, 6), we construct another PPT
adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), salt← {0, 1}λ and K← SKE.KeyGen(1λ)
and gets 1FE2.PK from the 1FE2 challenger. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state) pairs
(σ0
T−1, q

0
T−1) and (σ1

T−1, q
1
T−1) respectively at time step T − 1. Additionally, B also learns

the (symbol, state) pair (σ0
T−2, q

0
T−2) that is generated at time step T −2 whenM is executed

on w0. Further, it records the time steps (T ′, T − 2) and (T ′′, T − 3) when the individual
components of these (symbol, state) pairs for w0 and w1 are generated and then computes
a root key punctured at point (T − 1‖salt) as KT−1

0 = F.Constrain(K0, (T − 1‖salt)). It
then simulates the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where
∀i ∈ [`], x1,i = (KT−1

0 , i, `, w0,i,Trap1) and Trap1 is as per Figure 12. It returns the
ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. In order to construct a function key for Next, B needs to hardwire two SKE ciphertexts
which it computes with the help of 1FE2 challenger as follows.

• Delegate the punctured root key to compute KT−1
T = F.KeyDel(KT−1

0 , fT ).

• Create a 1FE2 challenge message pair as ((z0
1, z

0
2), (z1

1, z
1
2)) such that ∀b ∈ {0, 1},

zb1 = (SYM, salt,KT−1
T , T − 1, `, σbT−1,Trap1) and zb2 = (ST, qbT−1).

• It sends the challenge message pair ((z0
1, z

0
2), (z1

1, z
1
2)) to the 1FE2 challenger and

gets back (CTsym,T−1,CTst,T−1).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,T−1) and
ct2 = SKE.Enc(K,CTst,T−1).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,ct1,ct2 to the 1FE2

challenger and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next that outputs 1FE2

ciphertexts that are indistinguishable by the security of 1FE2 itself. Therefore, B is an admissible 1FE2

adversary. Further, when the ciphertext for time step T − 1 is computed as a 1FE2 encryption of a
(symbol, state) pair corresponding to bit b = 0, A’s view is identical to that of H(1, 5), and when the
ciphertext for time step T − 1 is computed as a 1FE2 encryption of a (symbol, state) pair corresponding
to bit b = 1, A’s view is identical to that ofH(1, 6). Thus, the advantage of A in distinguishingH(1, 5)
andH(1, 6) translates to the advantage of B in breaking the 1FE2 scheme.

Claim B.7. If F is a secure punctured, delegatable cPRF scheme, then hybridsH(1, 6) andH(1, 7) are
indistinguishable.

46



Proof. The proof is almost identical to Claim B.5 where the reduction plays as an adversary against the
cPRF challenger and simulates the TMFE adversary A. The only major exceptions now are that B runs
M on both the challenge messages w0 and w1 to know the (symbol, state) pairs for both of them at the
required time steps for constructing the data structure Trap and that the 1FE2 ciphertext for the symbol
and state corresponds to bit b = 1. Hence, we omit the details.

Claim B.8. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 7) andH(1, 8) are indistinguishable.

Proof. The proof is almost identical to Claim B.4 where the reduction plays as an adversary against the
1FE1 challenger and simulates the TMFE adversary A. The only major exceptions now are that B runs
M on both the challenge messages w0 and w1 to know the (symbol, state) pairs for both of them at the
required time steps for constructing the data structure Trap and that the 1FE2 ciphertext for the symbol
and state corresponds to bit b = 1. Hence, we omit the details.

Claim B.9. If 1FE1 is a secure CktFE scheme, then hybridsH(1, 8) andH(2, 1) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 8) and H(2, 1), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it samples
by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ and two random strings
ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space of the SKE scheme.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state) pairs
(σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respectively. Further, it

records the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual components of these
(symbol, state) pairs for w0 and w1 respectively are generated and then prepares a new pair
of challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap0)
with Trap0 being same as Trap1 from Figure 12.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (K0, i, `, w0,i,Trap1),
with the new fields in Trap1 as shown in Figure 13.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥
mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ1

T−1 ST TS1 : T − 2 ST val1 : q1
T−1

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0

T−2
mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure 13: Trap1 configuration inH(2, 1)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.

47



(d) To simulate a function key for M , B first requests for a function key to the 1FE1 challenger
for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives SKReRand. B computes by itself
SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and returns a function key
for M as SKM = (SKReRand,SKNext) to A.

3. When A outputs a guess, B does the same.

Note that for all time steps t /∈ {T ′, T−2}, the decryption outputs are exactly the same ciphertexts in both
theH(1, 8) andH(2, 1). At a time step t ∈ {T ′, T − 2} inH(2, 1), the decryption mimics the decryption
ofH(1, 8) dictated by (Trap1.mode-trap1 = 1 ∧ Trap1.mode-trap3 = ⊥). More specifically, inH(1, 8)
the symbol and state ciphertexts corresponding to time step T − 1 is first computed by decrypting
the SKE ciphertext components hardwired in Next and outputting them at time steps T ′ and T − 2
respectively. Alternatively, inH(2, 1), (Trap1.mode-trap1 = 1 ∧ Trap1.mode-trap3 = ⊥) dictates that
these ciphertext components are computed with the same randomness at exactly the same time steps T ′

and T − 2 respectively. Thus B is an admissible adversary against the 1FE1 challenger since the outputs
for the two challenge message sets are exactly the same. If b = 0, A sees the distribution of H(1, 8),
while if b = 1, A sees the distribution ofH(2, 1). Thus the advantage of A translates to the advantage of
B.

Claim B.10. If SKE is a secure symmetric-key encryption scheme, then hybridsH(2, 1) andH(2, 2) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 1) and H(2, 2), we construct another PPT
adversary B who breaks the security of the SKE scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1λ)
and salt← {0, 1}λ. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the (symbol, state) pairs
(σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respectively. It also records

the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual components of these two
(symbol, state) pairs are generated. It then simulates the encryption oracle by computing
CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [`], x1,i = (K0, i, `, w0,i,Trap1) and Trap1 is
as per Figure 13. It returns the ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2) as follows.

• Compute a delegated cPRF key KT−1 = F.KeyDel(K0, fT−1) and generate the
encryption randomness for time step T − 2 as rT−2 = F.Eval(K0, (T − 2‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′′ for the
future time step T − 2 as CT0

sym,T−2 = 1FE2.Enc(1FE2.PK1, z
0
1; rT−2), where

z0
1 = (SYM, salt,KT−1, T − 2, `, σ0

T−2,Trap1) and Trap1 is as per Figure 13.

48



• Compute the 1FE2 state ciphertext to be given as output at time step T − 3 for
the future time step T − 2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−2), where

z0
2 = (ST, q0

T−2).

iii. It sends the 1FE2 ciphertexts CT0
sym,T−2,CT0

st,T−2 to the challenger of the SKE scheme
and gets back ct1, ct2.

iv. B then computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference between the two hybrids is that the SKE ciphertexts hardwired in the
function key are random strings in H(2, 1) and are valid SKE encryptions of (CT0

sym,T−2,CT0
st,T−2)

encoding the (symbol, state) pair for time step T − 2 inH(2, 2). Hence the advantage of an adversary
who distinguishes between the two hybrids translates to an advantage of an adversary against the SKE
scheme.

Claim B.11. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 2) andH(2, 3) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 2) and H(2, 3), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it samples by
itself (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1λ), salt← {0, 1}λ,K← SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state) pairs
(σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respectively. Further, it

records the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual components of these
(symbol, state) pairs for w0 and w1 respectively are generated and then prepares a new pair
of challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap0)
with Trap0 being same as Trap1 from Figure 13.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (K0, i, `, w0,i,Trap1),
with the new fields in Trap1 as shown in Figure 14.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥
mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ1

T−1 ST TS1 : T − 2 ST val1 : q1
T−1

mode-trap2 : ⊥ Target TS2 : ⊥ Sym TS2 : ⊥ Sym val2 : ⊥ ST TS2 : ⊥ ST val2 : ⊥
mode-trap3 : 1 Target TS : T − 2 Sym TS : T ′′ ⊥ ST TS : T − 3 ⊥

Figure 14: Trap1 configuration inH(2, 3)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.

49



(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger and
receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2), as follows.

• Compute a delegated cPRF key KT−1 = F.KeyDel(K0, fT−1) and generate the
encryption randomness for time step T − 2 as rT−2 = F.Eval(K0, (T − 2‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′′ for the
future time step T − 2 as CT0

sym,T−2 = 1FE2.Enc(1FE2.PK1, z
0
1; rT−2), where

z0
1 = (SYM, salt,KT−1, T − 2, `, σ0

T−2,Trap1) and Trap1 is as per Figure 14.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 3 for
future time step T − 2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−2), where z0

2 =
(ST, q0

T−2).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−2 and CT0

st,T−2, it computes
two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−2) and ct2 = SKE.Enc(K,CT0
st,T−2).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′′, T − 3}, the decryption outputs are exactly the same ciphertexts
in both the H(2, 2) and H(2, 3). At time step t ∈ {T ′′, T − 3} in H(2, 2), (Trap0.mode-trap2 =
1∧Trap0.mode-trap3 = ⊥) (in Figure 13) dictates the decryption to output two decomposed components
of a single 1FE2 ciphertext, one component encoding Trap0.Sym val2 = σ0

T−2 at time step T ′′ and the
other encoding Trap0.ST val2 = q0

T−2 at time step T−3. Alternatively inH(2, 3), (Trap0.mode-trap2 =

⊥ ∧ Trap1.mode-trap3 = 1) (in Figure 14) dictates the decryption to firstly use Trap1.SKE.K = K to
decrypt the hardwired ciphertext ct1 and output CT0

sym,T−2 at time step T ′′ (respectively, ct2 and output
CT0

st,T−2 at time step T − 3). In both the hybrids these symbol and state ciphertext pieces are computed
for target time step T − 2. Thus B is an admissible 1FE1 adversary. If b = 0, A sees the distribution of
H(2, 2), while if b = 1, A sees the distribution of H(2, 3). Hence the advantage of A translates to the
advantage of B.

Claim B.12. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 3) andH(2, 4) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 3) and H(2, 4), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ and a key K ←
SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

50



(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state) pairs
(σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T −2 and T −1 respectively. Further, it records

the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual components of these (symbol,
state) pairs for w0 and w1 respectively are generated. It then computes a root key punctured
at point (T − 2‖salt) as KT−2

0 = F.Constrain(K0, (T − 2‖salt)) and prepares a new pair of
challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap1)
with Trap1 as per Figure 14.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (KT−2
0 , i, `, w0,i,Trap1),

with Trap1 as per Figure 14.

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.

(d) To simulate a function key for M , B does the following.

i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger and
receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2), as follows.

• Compute a punctured, delegated key KT−2
T−1 = F.KeyDel(KT−2

0 , fT−1) and generate
the encryption randomness for time step T − 2 as rT−2 = F.Eval(K0, (T − 2‖salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′′ for the
future time step T − 2 as CT0

sym,T−2 = 1FE2.Enc(1FE2.PK1, z
0
1; rT−2), where

z0
1 = (SYM, salt,KT−2

T−1, T − 2, `, σ0
T−2,Trap1) and Trap1 is as per Figure 14.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 3 for
future time step T − 2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−2), where z0

2 =
(ST, q0

T−2).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−2 and CT0

st,T−2, it computes
two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−2) and ct2 = SKE.Enc(K,CT0
st,T−2).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference inH(2, 3) andH(2, 4) is the replacement of the root cPRF key K0 with a
punctured root key KT−2

0 at point (T − 2‖salt) in time step T − 2 in the 1FE1 ciphertext. Moreover, in
both the hybrids, the field Trap1.mode-trap3 = 1 dictates the output at time step t ∈ {T ′′, T − 3} to be a
ciphertext component for time step T − 2 as argued in Claim B.11. Thus, the cPRF key is only required
to compute randomness at points 6= (T − 2‖salt) for which the punctured root key suffices. Further, it
evaluates to the same value as the normal key on all such points in both the hybrids. As a consequence,
the decryption values are exactly the same for all the time steps proving the admissibility of B. Thus if
b = 0, A sees the distribution ofH(2, 3), while if b = 1, A sees the distribution ofH(2, 4). Hence the
advantage of A translates to the advantage of B.

Claim B.13. If F is a secure punctured, delegatable cPRF scheme, then hybrids H(2, 4) and H(2, 5)
are indistinguishable.

Proof. The proof is almost identical to Claim B.5 where the reduction plays as an adversary against the
cPRF challenger and simulates the TMFE adversary A with the following major exceptions.

51



1. B runs M on both the sampled messages w0 and w1 to know the (symbol, state) pairs at the time
steps T − 2 and T − 1 respectively for constructing the data structure Trap as in H(2, 4). The
challenge ciphertext encodes KT−2

0 , i.e., a root key punctured at point (T − 2‖salt).

2. The cPRF challenger is queried at the point (T − 2‖salt) to receive an encryption randomness for
time step T − 2. This is used in computing the 1FE2 ciphertext encoding the (symbol, state) pair
generated at time steps (T ′′, T − 3) for time step T − 2 when M is run on w0.

The other details follow as before and hence we omit them.

Claim B.14. If 1FE2 is a secure CktFE scheme, then hybridsH(2, 5) andH(2, 6) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 5) and H(2, 6), we construct another PPT
adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), salt← {0, 1}λ and K← SKE.KeyGen(1λ)
and gets 1FE2.PK from the 1FE2 challenger. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state) pairs
(σ0
T−2, q

0
T−2) and (σ1

T−2, q
1
T−2) respectively at time step T − 2. Additionally, B also learns

the (symbol, state) pair (σ1
T−1, q

1
T−1) that is generated at time step T −1 whenM is executed

on w1. Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual
components of these (symbol, state) pairs for w0 and w1 are generated and then computes
a root key punctured at point (T − 2‖salt) as KT−2

0 = F.Constrain(K0, (T − 2‖salt)). It
then simulates the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where
∀i ∈ [`], x1,i = (KT−2

0 , i, `, w0,i,Trap1) and Trap1 is as per Figure 14. It returns the
ciphertext CT = {CTi}i∈[`] to A.

(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. In order to construct a function key for Next, B needs to hardwire two SKE ciphertexts
which it computes with the help of 1FE2 challenger as follows.

• Delegate the punctured root key to compute KT−2
T−1 = F.KeyDel(KT−2

0 , fT−1).

• Create a 1FE2 challenge message pair as ((z0
1, z

0
2), (z1

1, z
1
2)) such that ∀b ∈ {0, 1},

zb1 = (SYM, salt,KT−2
T−1, T − 2, `, σbT−2,Trap1) and zb2 = (ST, qbT−2), where Trap1

is as per Figure 14.

• It sends the challenge message pair ((z0
1, z

0
2), (z1

1, z
1
2)) to the 1FE2 challenger and

gets back (CTsym,T−2,CTst,T−2).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,T−2) and
ct2 = SKE.Enc(K,CTst,T−2).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,ct1,ct2 to the 1FE2

challenger and returns a function key for M as SKM = (SKReRand, SKNext) to A.

52



3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next that outputs 1FE2

ciphertexts that are indistinguishable by the security of 1FE2 itself. Therefore, B is an admissible 1FE2

adversary. Further, when the ciphertext for time step T − 2 is computed as a 1FE2 encryption of a
(symbol, state) pair corresponding to bit b = 0, A’s view is identical to that of H(2, 5), and when the
ciphertext for time step T − 2 is computed as a 1FE2 encryption of a (symbol, state) pair corresponding
to bit b = 1, A’s view is identical to that ofH(2, 6). Thus, the advantage of A in distinguishingH(2, 5)
andH(2, 6) translates to the advantage of B in breaking the 1FE2 scheme.

Claim B.15. If F is a secure punctured, delegatable cPRF scheme, then hybrids H(2, 6) and H(2, 7)
are indistinguishable.

Proof. The proof is similar to Claim B.7 and hence we omit the details.

Claim B.16. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 7) andH(2, 8) are indistinguishable.

Proof. The proof is similar to Claim B.8 and hence we omit the details.

Claim B.17. If 1FE1 is a secure CktFE scheme, then hybridsH(2, 8) andH(3, 1) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 8) and H(3, 1), we construct another PPT
adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it samples
by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), salt ← {0, 1}λ and two random strings
ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space of the SKE scheme.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M obeying the admissibility criteria that ∀b ∈ {0, 1},wb ← D`b,
runtime(M,w0) = runtime(M,w1) and M(w0)

c
≈M(w1), B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF
key K0 ← F.Setup(1λ).

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state) pairs
(σ0
T−3, q

0
T−3) and (σ1

T−2, q
1
T−2) at time steps T − 3 and T − 2 respectively. Further, it

records the time steps (T ′′′, T − 4) and (T ′′, T − 3) when the individual components of these
(symbol, state) pairs for w0 and w1 respectively are generated and then prepares a new pair
of challenge distributions (D̂`0, D̂`1) for the 1FE1 challenger as follows.

i. For b = 0, D̂`0 = {x0 = (x0,1, . . . , x0,`)}, where ∀i ∈ [`] x0,i = (K0, i, `, w0,i,Trap0)
with Trap0 being same as Trap1 from Figure 14.

ii. For b = 1, D̂`1 = {x1 = (x1,1, . . . , x1,`)}, where ∀i ∈ [`] x1,i = (K0, i, `, w0,i,Trap1),
with the new fields in Trap1 as shown in Figure 15.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥
mode-trap1 : 1 Target TS1 : T − 2 Sym TS1 : T ′′ Sym val1 : σ1

T−2 ST TS1 : T − 3 ST val1 : q1
T−2

mode-trap2 : 1 Target TS2 : T − 3 Sym TS2 : T ′′′ Sym val2 : σ0
T−3 ST TS2 : T − 4 ST val2 : q0

T−3
mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure 15: Trap1 configuration inH(3, 1)

53



(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to A.

(d) To simulate a function key for M , B first requests for a function key to the 1FE1 challenger
for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives SKReRand. B computes by itself
SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and returns a function key
for M as SKM = (SKReRand,SKNext) to A.

Note that the (symbol, state) pair for time step T − 2 has already been switched to correspond to b = 1
from the prior hybrid. Thus, maintaining the trapdoor information for time step T − 1 is now redundant
and follows by normal decryption from time step T − 2. The (symbol,state) pair for time step T − 3
now corresponds to bit b = 0 and therefore the decryption chain inconsistency arises at time step T − 2
now. Hence, intuitively we “slide” the trapdoor by replacing a new trapdoor data structure inH(3, 1) in a
way that still maintains functional equivalence withH(2, 8) at all the time steps but contains hardwired
information about the time steps T − 3 and T − 2 now. We show the admissibility of the reduction B as
follows.

Observe that for all time steps t /∈ {T ′′, T − 3, T ′′′, T − 4}, the decryption outputs are exactly the
same sequence of ciphertexts in both the hybrids which are output by the normal decryption. At a
time step t ∈ {T ′′, T − 3, T ′′′, T − 4} in H(3, 1), the decryption is dictated by Trap1.mode-trap1 =
Trap1.mode-trap2 = 1. In particular, the ciphertext components for time step T − 2 corresponding to
b = 1 is output at time steps T ′′ and T − 3 and is triggered by Trap0.mode-trap3 = 1 in H(2, 8) and
Trap1.mode-trap1 = 1 in H(3, 1). On the other hand, the ciphertext components for time step T − 3
corresponding to b = 0 is output at time steps T ′′′ and T − 4 and is triggered by the normal decryption
in H(2, 8) and by Trap0.mode-trap2 = 1 in H(3, 1). The ciphertext components for time step T − 1
corresponding to b = 1 is output at time steps T ′ and T − 2 and is triggered by Trap0.mode-trap1 = 1
in H(2, 8) and by the normal decryption (as a consequence of already having the outputs at time step
T − 2 switched to b = 1) inH(3, 1). Further, note that all these ciphertext components are exactly the
same for both the hybrids.

Therefore, B is an admissible adversary against the 1FE1 challenger since the outputs for the two
challenge message sets are exactly the same. Hence A sees the distribution ofH(2, 8), if b = 0, and that
ofH(3, 1), if b = 1. Thus the advantage of A translates to the advantage of B.

Note that H(3, i) is analogous to H(2, i), ∀i ∈ [8]. Now consider any pair of challenge message
vectors {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1} of arbitrary length ` with any TM M taking T time
steps to halt on either inputs. In general, we have that H(t, i) is analogous to H(t − 1, i), for all
t ∈ [3, T − (`+1)], i ∈ [8]. Observe further that for any given k ∈ [3, T − (`+1)], we have the following
computational indistinguishability chain via the intermediate hybrids.

H(k − 1, 1)
c
≈ H(k − 1, 2)

c
≈ · · ·

c
≈ H(k − 1, 8)

c
≈ H(k, 1)

c
≈ H(k, 2)

c
≈ · · ·

c
≈ H(k, 8)

We can easily extend this computational indistinguishability chain further to have the following.

H(0)
c
≈ H(1, 1)

c
≈ H(1, 8)

c
≈ H(2, 1)

c
≈ H(2, 8)

c
≈ · · ·

c
≈ H(T − (`+ 1), 1)

c
≈ H(T − (`+ 1), 8)

Note that in H(T − (`+ 1), 8), the (symbol, state) pair corresponding to the output at time step `+ 1
has already been switched to b = 1. Proceeding one step backward in the execution chain we reach time
step ` where the 1FE2 ciphertext components are computed partially by each of SKReRand and SKNext.
More specifically, at any time step j ∈ [2, `] the 1FE2 ciphertext component encoding the “symbol” wj is
output by ReRand. Accordingly, the 1FE2 ciphertext component encoding the “state” qj for the same
time step j is output by Next only when it gets (wj−1, qj−1) as input, i.e., the symbol and state at time
step j − 1, each of which is encrypted with the exact same randomness. Hence, to proceed with the
security proof at any time step j ∈ [2, `], while switching from b = 0 to b = 1 the reduction B simulating
1FE1 itself will now hardwire the SKE ciphertext encoding 1FE2.CT(wb,j) into ReRand and the SKE

54



ciphertext encoding 1FE2.CT(qbj) into Next after receiving them from the 1FE2 challenger. At time step
j = 1, B hardwires the SKE ciphertext encoding both 1FE2.CT(wb,1) and 1FE2.CT(qst) into ReRand
function only. This is since ReRand outputs the (symbol, state) ciphertext pair at the first time step as per
functionality. Indistinguishability between these hybrids is as before.

Similar to the transition fromH(2, 8) toH(3, 1), at time step j = `+1 we slide the trapdoor to switch
the ciphertext in slot 1 for time step `+1 (corresponding to b = 1) and slot 2 for time step ` (corresponding
to b = 0). We also set Trap1.mode-trap3 = ⊥,Trap1.mode-trap1 = Trap1.mode-trap2 = 1. The
decryption values being exactly the same inH(T − (`+ 1), 8) andH(T − `, 1), security follows from
1FE1.

However, once we reach time step ` atH(T − `, 8) when the bit b (for time step `) has already been
switched from 0 to 1 and we are about to slide the trapdoor to go to the next hybrid, we must add an
additional hybridH(T − j, 9) for all j ∈ [1, `], as discussed in Section 3.3, namely:
H(T − j, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position j as follows:

the encoded message is changed corresponding to b = 1 and flag mode-real = 1. The other flags
mode-trap1 = mode-trap2 = mode-trap3 = ⊥.

Consider j = `. Note that all ciphertexts previous to time step ` remain unchanged, and output their
corresponding symbol ciphertexts correctly. The Next circuit outputs the state ciphertext for time step `
corresponding to bit b = 1. The only difference between this hybrid and the previous one is that here we
use the real mode to output the symbol ciphertext for b = 1 whereas previously we used the trapdoor
mode to output the same symbol CT. Hence, decryption values in both hybrids are exactly the same, and
indistinguishability follows from security of 1FE1.

As before fromH(1, 8) toH(2, 5) andH(2, 6) toH(3, 1), we get two similar sequence of hybrids
fromH(T − (`+ 1), 8) toH(T − `, 5) and fromH(T − `, 6) toH(T − `, 8). Additionally we now go
fromH(T − `, 8) toH(T − (`− 1), 1) via the intermediate extra hybridH(T − `, 9) as follows.

H(T − (`+ 1), 8)

1FE1
c
≈ H(T − `, 1)

SKE
c
≈ H(T − `, 2)

1FE1
c
≈ H(T − `, 3)

1FE1
c
≈ H(T − `, 4)

cPRF
c
≈ H(T − `, 5)

H(T−`, 6)

cPRF
c
≈ H(T−`, 7)

1FE1
c
≈ H(T−`, 8) and H(T − `, 8)

1FE1
c
≈ H(T − `, 9)︸ ︷︷ ︸

1FE1
c
≈ H(T−(`−1), 1)

In the following claims, we show a formal reduction betweenH(T − `, 5) andH(T − `, 6) and sketch
a high level proof of computational indistinguishability for that of betweenH(T − `, 8) andH(T − `, 9)
thereby connecting the above computational indistinguishability chains into one when the symbol and
state at time step ` gets switched from b = 0 to b = 1 finally.

Claim B.18. If 1FE2 is a secure CktFE scheme, then hybrids H(T − `, 5) and H(T − `, 6) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishesH(T − `, 5) andH(T − `, 6), we construct another
PPT adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1λ), salt← {0, 1}λ and K← SKE.KeyGen(1λ)
and gets 1FE2.PK from the 1FE2 challenger. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (D`0,D`1) with support Σ` for any arbitrary
` = poly(λ) and a function query M which obeys the admissibility criteria, B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages (w0,w1)←
(D`0,D`1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,`)}b∈{0,1}. It also samples a root cPRF

55



key K0 ← F.Setup(1λ).

(b) B learns the two (symbol, state) pairs at time step ` when the oblivious TM M is run on
both w0 and w1. Denote these pairs as (σ0

` , q
0
` ) and (σ1

` , q
1
` ), where σb` = wb,` now. B also

learns the (symbol, state) pair at time step `+ 1 when M is run on w1 and denote this pair
as (σ1

`+1, q
1
`+1). Further, it also records the time steps (`, ` − 1) and (`′, `), `′ ≤ ` when

the individual components of the (symbol, state) pairs (σb` , q
b
`),∀b ∈ {0, 1} and (σ1

`+1, q
1
`+1)

respectively are generated and then computes a root key punctured at point (`‖salt) as
K`

0 = F.Constrain(K0, (`‖salt)). It then simulates the encryption oracle by computing
CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [`], x1,i = (K`

0, i, `, w0,i,Trap1) and Trap1 is
as perH(T − `, 3) shown in Figure 16. It returns the ciphertext CT = {CTi}i∈[`] to A.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥
mode-trap1 : 1 Target TS1 : `+ 1 Sym TS1 : `′ Sym val1 : σ1

`+1 ST TS1 : ` ST val1 : q1
`+1

mode-trap2 : ⊥ Target TS2 : ⊥ Sym TS2 : ⊥ Sym val2 : ⊥ ST TS2 : ⊥ ST val2 : ⊥
mode-trap3 : 1 Target TS : ` Sym TS : ` ⊥ ST TS : `− 1 ⊥

Figure 16: Trap1 configuration inH(T − `, 3)

(c) To simulate a function key for M , B does the following.

i. In order to construct a function key for ReRand and Next, B now needs to hardwire
an SKE ciphertext in each of the functions which it computes with the help of 1FE2

challenger as follows.

• Delegate the punctured root key to compute K`
`+1 = F.KeyDel(K`

0, f`+1).

• Create a 1FE2 challenge message pair as ((z0
1, z

0
2), (z1

1, z
1
2)) such that ∀b ∈ {0, 1},

zb1 = (SYM, salt,K`
`+1, `, `, σ

b
` ,Trap1) and zb2 = (ST, qb`).

• It sends the challenge message pair ((z0
1, z

0
2), (z1

1, z
1
2)) to the 1FE2 challenger and

gets back (CTsym,`,CTst,`).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,`) and ct2 =
SKE.Enc(K,CTst,`).

ii. B now computes by itself SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,ct1,⊥).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,⊥,ct2 to the 1FE2

challenger and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next that outputs 1FE2

ciphertexts that are indistinguishable by the security of 1FE2 itself. Therefore, B is an admissible 1FE2

adversary. Further, when the ciphertext for time step ` is computed as a 1FE2 encryption of a (symbol,
state) pair corresponding to bit b = 0,A’s view is identical to that ofH(T −`, 5), and when the ciphertext
for time step ` is computed as a 1FE2 encryption of a (symbol, state) pair corresponding to bit b = 1, A’s
view is identical to that of H(T − `, 6). Hence the advantage of A in distinguishing H(T − `, 5) and
H(T − `, 6) translates to the advantage of B in breaking the 1FE2 scheme.

Claim B.19. If 1FE1 is a secure CktFE scheme, then hybrids H(T − `, 8) and H(T − `, 9) are
indistinguishable.

56



Proof. We describe the proof at a high level and omit the details. Note that all ciphertexts previous to
time step ` remain unchanged, and output their corresponding symbol ciphertexts correctly. The Next
circuit outputs the state ciphertext for time step ` corresponding to bit b = 1. The only difference between
this hybrid and the previous one is that here we use the real mode to output the symbol ciphertext for
b = 1 whereas previously we used the trapdoor mode to output the same symbol ciphertext. Hence,
decryption values in both hybrids are exactly the same. When the 1FE1 ciphertext for time step ` is
computed corresponding to b = 0, A’s view is identical to that of H(T − `, 8), and when the 1FE1

ciphertext for time step ` is computed corresponding to b = 1,A’s view is identical to that ofH(T − `, 9).
Hence the advantage of A in distinguishingH(T − `, 8) andH(T − `, 9) translates to the advantage of
B in breaking the 1FE1 scheme.

Denoting τ = (T − j) for any j ∈ [`], we get a sequence of hybrids shown below, where we define

H(T, 1)
∆
= H(T ) and have the final Claim B.20 which completes the proof of Theorem 3.1.

H(τ, 8)

1FE1
c
≈ H(τ, 9)

1FE1
c
≈ H(τ + 1, 1)

SKE
c
≈ · · ·

cPRF
c
≈ H(τ + 1, 5)

1FE2
c
≈ H(τ + 1, 6)

cPRF
c
≈ · · ·

1FE1
c
≈

H(τ + 1, 8)

1FE1
c
≈ H(τ + 1, 9)

1FE1
c
≈ H(τ + 2, 1)

Claim B.20. If 1FE1 is a secure CktFE scheme, then hybridsH(T−1, 9) andH(T ) are indistinguishable.

Proof. Note that Trap1.mode-real = 1 for ciphertexts in both worlds. The only difference between both
these hybrids is that in the former Trap contains other information whereas in the latter all other fields
disabled with ⊥. However, since Trap1.mode-real = 1, these fields anyway play no role in decryption,
so the decryption values stay the same.

Selective Security. The above proof shows security as per the weak selective definition, in which the
adversary submits the challenge messages and keys at the same time. This can be easily strengthened
to selective security in which the key requests can be made after seeing the challenge ciphertext. Since
the full selective game requires an additional trapdoor structure, we did not show it here for ease of
exposition, as the current proof is already quite complex. Note that currently, the proof is restricted to
weak selective because in order to program the symbol and state messages for some time step in the Trap
data structure, the machine which produces these symbol, state pairs must be specified. This dependency
may be easily overcome by instead having an additional trapdoor data structure in the key, which contains
the above information. Thus, the challenge ciphertext can be programmed without knowledge of the keys,
and selective security can be achieved. We defer details to the full version of the paper.

C Missing Details in Proof of Theorem 4.1

The modified trapdoor data structure is shown in Figure 17. There is an additional field that records the
global salt value.

mode-real key-id global-salt val0 val1 SKE.K

mode-trap1 Target TS1 Sym TS1 Sym val1 ST TS1 ST val1
mode-trap2 Target TS2 Sym TS2 Sym val2 ST TS2 ST val2
mode-trap3 Target TS Sym TS ⊥ ST TS ⊥

Figure 17: Data Structure Trap used for Proof

57



The Hybrids. We consider the case where the adversary makes a single key query but makes Q
ciphertext queries in each co-ordinate. We assume a lexicographic ordering over the Qk global salt values,
and denote by gsaltj the jth member of this sequence.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 = mode-trap3 = ⊥
for all ciphertexts.

For j ∈ [Qk], do:

H(j, 1, 1): In this world, all ciphertexts (constructed by the encryptor as well as function keys) have
mode-real = ⊥, mode-trap1 = 1, mode-trap2 = 1, mode-trap3 = ⊥. We program the last link
in the decryption chain corresponding to gsaltj for switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol and state ciphertext pieces
are generated for time step T − 1, and the fields Sym val1 and ST val1 contain the symbol and
state values which must be encrypted by the function key in the above time steps when mode-trap1

is set.

Indistinguishability follows from security of kFE, since the decryption values in both hybrids are
exactly the same.

H(j, 1, 2): Hardwire the Next key with an SKE encryption of symbol and state ciphertexts output at
step T − 1 corresponding to execution thread gsaltj for b = 0. Use the same ciphertexts would be
generated in the previous hybrid.

Indistinguishability follows from security of SKE, since the only difference is the value of the
message encrypted using SKE which is embedded in the key.

H(j, 1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS = T − 1. In this
hybrid the hardwired value in the key is used to be output as step T − 1 ciphertext corresponding
to execution thread gsaltj .

Indistinguishability follows from security of kFE, since the decryption values in both hybrids are
exactly the same.

H(j, 1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures all delegated keys

at point (T − 1‖key-id‖gsaltj).

Indistinguishability follows from security of kFE.

H(j, 1, 5): Switch the randomness in the 1FE ciphertexts which are hardwired in the key to true
randomness.

Indistinguishability follows from security of punctured cPRF for the aforementioned function
family, since the remainder of the distribution only uses the punctured key.

H(j, 1, 6): Switch the value encoded in the 1FE ciphertexts which are hardwired in the key to correspond
to b = 1.

Indistinguishability follows from security of 1FE.

H(j, 1, 7): Switch randomness back to PRF randomness in the ciphertext hardwired in key, using the
punctured key for all but the hardwired ciphertext.

Indistinguishability follows from security of cPRF as discussed above.

58



H(j, 1, 8): Switch the punctured root key to the normal root key.

Indistinguishability follows from security of kFE as discussed above.

H(j, 2, 1): Switch ciphertext in slot 1 for target T − 1 to be for b = 1. Slot 2 remains b = 0. Set
mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of kFE, since the decryption values in both hybrids are
exactly the same.

H(j, 2, 2): Hardwire key with SKE encryption of 1FE ciphertext for time step T − 2 and bit b = 0
(same as hybrid (1, 2) but for T − 2).

Indistinguishability follows from security of SKE as above.

H(j, 2, 3): Set mode-trap1 = 1 with target T − 1, mode-trap2 = ⊥, and mode-trap3 = 1 with target
T − 2.

Indistinguishability follows from security of kFE, since the decryption values in both hybrids are
exactly the same.

H(j, 2, 4): Switch normal root key to punctured key at position T − 2.

Indistinguishability follows from security of kFE as discussed above.

H(j, 2, 5): Switch randomness to true in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(j, 2, 6): Switch hardwired 1FE ciphertext for step T − 2 to correspond to bit b = 1.

Indistinguishability follows from security of 1FE.

H(j, 2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in key.

Indistinguishability follows from security of cPRF as discussed above.

H(j, 2, 8): Switch punctured root key to normal root key.

Indistinguishability follows from security of kFE as discussed above.

H(j, 3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-steps to T − 2 and
T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds to b = 1 and slot 2 for T − 3 to b = 0.
Set mode-real = mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.

Indistinguishability follows from security of kFE, since the decryption values in both hybrids are
exactly the same. Note that now slot T − 1 is redundant, since T − 2 ciphertext is already switched
to b = 1.

HybridH(j, 3, i) will be analogous toH(j, 2, i) for i ∈ [8].

As we proceed left in the execution chain one step at a time, we reach step ` where ` = |w|, i.e.
time steps for which kFE ciphertexts are provided by the encryptor. At this point we will hardwire
the Agg key instead for the symbol ciphertexts and the Next key for the state ciphertexts with
the exception at time step 1 when we will hardwire both the symbol ciphertext and the start state
ciphertext in Agg key itself.

After going through all the global salt values and all the key values, we replace the challenge
ciphertext to have mode-real = 1 and message corresponding to b = 1, one step at a time. This
is analogous to the case of single input TMFE, except that we must additionally track global salt
values.

59



H(T ): In this hybrid all ciphertexts have mode-real = 1, all other trapdoor information is set to ⊥ and
b = 1 is used. This is the real world with b = 1.

Indistinguishability fromH(j + 1, 1, 1) follows from security of kFE since the decryption values
in both hybrids are exactly the same.

D Constrained PRF for our Function Family

Our proof makes use of a set of delegatable constrained pseudorandom functions (cPRF). We require
T delegatable cPRFs, denoted by Fi for i ∈ [T ], where each cPRF in turn supports T delegations. The
sequence of delegated keys for Fi are denoted by {Ki,t}i,t∈[T ], corresponding to functions fi,t, such that
the satisfying set of fi,t+1 is strictly contained within the satisfying set of fi,t, for all i, t ∈ [T ].

In more detail, for any polynomial poly(λ), define fi,t : {0, 1}λ+poly(λ) → {0, 1} as follows.

fi,t(x‖z) = 1 if x ≥ t ∧ (x‖z) 6= i

= 0 otherwise

Thus, the root key (and hence all delegated keys) of Fi are punctured at the point i.

Overview. We provide a construction for a cPRF F which supports puncturing and delegation as
required; the T cPRFs Fi for i ∈ [T ] may each be constructed similarly. To begin, note that we
require the root key of F to be punctured at a point i∗ (say). The cPRF construction for punctured PRF
[BW13, KPTZ13, BGI14] (which is in turn inherited from the standard PRG based GGM [GGM86])
immediately satisfies this constraint, so we are left with the question of delegation.

Recall that we are required to delegate T times, where T is the (polynomial) runtime of the Turing
machine on the encrypted input (please see Section 3), and the jth delegated key must support evaluation
of points {(k‖z) : z ∈ {0, 1}λ} for k ≥ j, except when (k‖z) = i∗. This may be viewed as the jth key
being punctured on points [1, j − 1] ∪ i∗. We show that the GGM based construction for puncturing a
single point can be extended to puncturing an interval (plus an extra point). Intuitively, puncturing an
interval corresponds to puncturing at most λ internal nodes in the GGM tree. In more detail, we show that
regardless of the value of j, it suffices to puncture at most λ points in the GGM tree to achieve puncturing
of the entire interval [1, j − 1].

Construction. Formally, the cPRF F is defined as follows. Our constrain algorithm takes as input the
set of points on which to puncture the PRF, as opposed to the satisfying set. We compute the GGM tree
as in Figure 18 and number the leaves from 1 to 2(λ+poly(λ)).

Setup(1λ): Sample a standard length doubling PRG G with seed s0. Output pk = G and K0 = s0. As
usual, we will denote by G0 the first half of the PRG output and by G1 the second half.

Constrain(K0, [1, j − 1] ∪ i∗): Upon input the root key K0 and the set of points to be punctured, do the
following:

1. Compute puncturing set P: Initialize P to contain the point i∗. Compute the path from the
root node to node corresponding to point j− 1. For any right edge (a, b) along the path, mark
the left child of a grey. Mark the final node j − 1 grey. At this point we have a set of grey
nodes which must be punctured. Minimize this set by checking whether both children of a
node are grey, in which case, also mark the parent grey. Finally, add the grey nodes which do
not have grey parents to a set P .

60



K

0G0(K)

00G0(G0(K))

000 001

01 G1(G0(K))

010 011

1 G1(K)

10G0(G1(K))

100 101

11 G1(G1(K))

110 111

i∗j − 1

Figure 18: To puncture i∗ = 010 draw path from root to i∗ and reveal nodes that are siblings along the
path. To puncture interval [1, 2]∪{i∗} = {000, 001}∪{010}, compute the set Grey = {000, 001, 00} and
the punctured set P = {00, 010}. Further compute the initial revealed setR0 = {(1, 01), (1, 00, 011)}
and replace 00 and 01 by 011 to get the final revealed setRf = {1, 011}.

2. Computing revealed setR: For every node in the set P , compute the punctured key (as in
GGM) as follows. For every node k ∈ P , compute the path from the root to k, and add the
siblings of all nodes along the path to the set R 14. Trim this set so as to remove conflicts
caused by overlapping paths as follows: if any punctured node b in P is a descendent of some
node a inR, remove a fromR, compute the path from a to b and add all the siblings of the
nodes on this path toR. Repeat until there are no more changes toR.

3. Output Kj = R.

KeyDel(Kj , fj+1): Given the punctured key for set [1, j], compute the punctured key for [1, j + 1] as
follows. Note that it suffices to delegate from j to j + 1 to imply delegation from j to any j′ for
j′ > j.

1. Consider the case when j is a left child and j + 1 is a right child of the same parent. In this
case, the set Kj contains the node corresponding to j + 1. Delete this node and return the
resultant set as Kj+1.

2. Consider the case when j is a right child and j + 1 is a left child of the neighbouring parent.
In this case Kj contains the parent of node j + 1. Use the parent to evaluate the value
corresponding to node j + 2, remove the parent and add the value corresponding to node
j + 2.

Eval(Kj , y): Evaluate the GGM tree on input y as Gy1 ◦ . . . ◦ Gyn(s0) and output it. Note that Kj

contains enough information to compute the path from root to y as long as y is supported by Kj .

Correctness. We argue correctness of the Constrain algorithm first. To begin, we claim that to puncture
the interval [1, j − 1], it suffices to compute the path from the root node to j − 1, and puncture the left
siblings of any right edges along the path, i.e. if (a, b) is a right edge along the path, we puncture the left
child of a. Since a descendent of the left child of a must necessarily have value < j − 1, it is necessary
to puncture these nodes. Moreover it is sufficient, along with j − 1 to puncture these nodes, because i)

14Note that this is exactly the constrained key provided for a single punctured point in the GGM based construction.

61



any node of value < j − 1 must have an ancestor, say aj−1 which lies along the path P from root to
j − 1 ii) If (aj−1, bj−1) ∈ P for some bj−1, then (aj−1, bj−1) is a right edge. Since Constrain algorithm
populates P with this set of points and then minimizes this set, we have that P represents the punctured
points in the tree. Next, we argue that the nodes returned via the setR is correct: to see this, note thatR
is initially populated with all the constrained keys for each punctured point in P , and this set is trimmed
to remove conflicts caused by overlapping paths. Thus, the resultant nodes returned in the setR capture
the intersection of points whose evaluation is admitted by each punctured key.

Finally, note that the Constrain algorithm runs in polynomial time: this is because we may use
binary search to compute the path from the root to any node in the graph, and all operations deal with
listing the siblings along these paths which take O(poly(λ)). Moreover, we note that there is at most one
punctured point at every level for any interval [1, j − 1], which implies that the total runtime of Constrain
is O((poly(λ))2).

Correctness of Eval is immediate, since evaluation is exactly the same as GGM evaluation. Correctness
of KeyDel is also straightforward, since we only delegate one step at a time, hence it suffices to simply
puncture one additional node corresponding to a point j + 1, which is either the right child of the same
parent as j, or the left child of the neighbouring parent. Puncturing a single node is immediate in either
of these cases, as described in KeyDel above.

Security. We argue that given a punctured key, an adversary cannot distinguish a pseudorandom value
from a random value on any input y that is not supported by the punctured key. Since by construction of
the constrained key, the adversary does not possess any node along the path from the root to the node
corresponding to y, we have that the node corresponding to y is pseudorandom by the standard hybrid
argument for GGM security.

E Constructing DI Secure Functional Encryption

Let 1FE be a single input functional encryption scheme which satisfies standard indistinguishability based
security. We will construct a single input functional encryption scheme DiFE satisfying distributional
indistinguishability as shown below. Our proof follows the strategy of embedding a hidden thread in
the functionality which is only active during simulation [CIJ+13, ABSV15]. We note that the scheme
presented below is public key, but directly lends itself to a private key version by instead relying on
private key 1FE.

DiFE.Setup(1λ, 1n): Upon input the security parameter and length of input message, do the following:

1. Invoke (PK,MSK)← 1FE.Setup(1λ, 1n+λ+1) and output (PK,MSK).

DiFE.Enc(PK,x): Upon input the public key PK and a vector x ∈ X n, do the following:

1. Output CTx = 1FE.Enc
(
PK, (x,0, 0)

)
.

DiFE.KeyGen(MSK, f): Upon input the master secret key MSK and a circuit f , do the following:

1. Choose CT randomly from the space of Sym ciphertexts.

2. Output SKf = 1FE.KeyGen(MSK, f ′) where f ′ is as defined in Figure 19.

DiFE.Dec(PK,CTx, SKf ): Upon input the public key PK, a ciphertext CTx and a function key SKf ,
compute 1FE.Dec(PK,CTx,SKf ) and output it.

62



Functionality f ′f,CT(x,Sym.K,mode)

If mode = 0, output y = f(x) else output y = Sym.Dec(K,CT).

Figure 19: Functionality f ′f,CT

Correctness. We have by correctness of 1FE that decryption recovers f(x) as desired.

Proof of Security.

Next, we argue that the DiFE scheme constructed above is secure.

Theorem E.1. Assume that 1FE is an FE scheme that satisfies standard indistinguishability based
security and that Sym is a secure symmetric key encryption scheme. Then, the DiFE scheme constructed
above satisfies distributional indistinguishability based security.

Proof. The proof proceeds via a sequence of hybrids where the first hybrid corresponds to an encryption
of vector x0 chosen from distribution D0 and the last hybrid corresponds to an encryption of vector x1

chosen from distribution D1.

Hybrid 0: This is the real world with x0 ← D0.

Hybrid 1: In this world, we hardwire the output of the function y = f(x0), where x0 ← D0 into the
function key using symmetric key encryption. That is, let CT = Sym.Enc(Sym.K, y).

Hybrid 2: In this world, change the message in the ciphertext, i.e. message encoded is (⊥, Sym.K,mode =
1).

Hybrid 3: In this world, we change the value of y to y = f(x1).

Hybrid 4: In this world, we change the message encrypted to (x1,0,mode = 0) where x1 ← D1.

Hybrid 5: In this world, we change the value of CT hardwired in the key back to random.

Next, we argue that consecutive hybrids are indistinguishable.

Lemma E.2. Hybrids 0 and 1 are indistinguishable assuming the security of Sym.

Proof. The only thing that changes between Hybrid 0 and 1 is the choice of CT, so that in the former
it is chosen randomly and in the latter case it is an honest encryption of the scheme Sym. Given an
adversary A who distinguishes between Hybrid 0 and Hybrid 1, we construct an adversary B who breaks
the semantic security of Sym.
B generates the public key honestly and returns it to A. When A outputs two challenge distributions

D0, D1, B samples x0 ← D0. It honestly computes ciphertexts for (x0,0,mode = 0) and returns these
to A. When A requests a function key f , B computes the value y = f(x0), and sends y to the Sym
challenger. The Sym challenger responds with CT which is either an honest encryption of y or an element
chosen randomly from the ciphertext space. B uses CT in constructing the function key and returns this
to A. Now, if CT is random, A sees the view of Hybrid 0 and if it is an encryption of y, it sees the view
of Hybrid 1.

Lemma E.3. Hybrids 1 and 2 are indistinguishable assuming the security of 1FE.

63



Proof. The only difference between Hybrids 1 and 2 is that in the former the encrypted message is
(x0,0,mode = 0) and in the latter it is (⊥,Sym.K,mode = 1). Assume there is an adversary A who
distinguishes between Hybrid 1 and Hybrid 2, we construct an adversary B who can break the security of
1FE.
B does the following:

1. It obtains the public key from the 1FE challenger and returns this to A.

2. When A outputs two distribution pairs (D0, D1), it samples x0 ← D0, Sym.K and returns
challenges (x0,0,mode = 0) and (⊥,Sym.K,mode = 1) to the 1FE challenger. It obtains an
encryption of one of them chosen at random and returns this to A.

3. When A outputs a function f , B constructs the function f ′ as described in Figure 19 and sends this
to the 1FE challenger. Here, CT is computed as Sym.Enc(Sym.K, y) where y = f(x0). It returns
the obtained key to A.

4. When A outputs a guess bit, it outputs the same.

When the 1FE challenger returns an encryption of (x0,0,mode = 0), A sees the view of Hybrid 1, and
when it returns an encryption of (⊥,Sym.K,mode = 1), it sees the view of Hybrid 2. Note that in either
case the decrypted value is the same. Thus, the advantage of A translates to the advantage of B.

Lemma E.4. Hybrids 2 and 3 are indistinguishable since f(x0) ≈ f(x1).

Proof. The only thing that differs in these 2 hybrids is the value of y. Given an adversary A who
distinguishes between hybrids 2 and 3, we construct an adversary B who distinguishes between f(x0)
and f(x1). B does the following:

1. It samples the public key honestly and gives it to A.

2. WhenA outputs challenge distributionsD0 andD1, it computes the ciphertext for (⊥, Sym.K,mode =
1) honestly and returns this.

3. When A outputs a key request for function f , B outputs (D0, D1, f) to the distribution challenger.
B receives y0 = f(x0) or y1 = f(x1), where xb ← Db for b ∈ {0, 1}. It uses this to construct the
circuit f ′. It then computes the key for f ′ honestly and returns this to A.

4. When A outputs a guess, B outputs the same.

If B receives y0, A sees the distribution of Hybrid 2, else it sees the distribution of Hybrid 3. The
advantage of A therefore translates to an advantage of B.

Lemma E.5. Hybrids 3 and 4 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 3 and 4 is that in the former, the message encoded in the
ciphertext is (⊥,Sym.K,mode = 1) and in the latter the message encrypted is (x1,0,mode = 0). Note
that in both cases, we have the same output of decryption hence the two ciphertexts are indistinguishable
by security of 1FE.

Lemma E.6. Hybrids 4 and 5 are indistinguishable assuming the security of Sym.

Proof. The proof is similar to Lemma E.2.

64



F Constructing Decomposable Functional Encryption for Circuits

Given any single-input circuit FE scheme 1FE satisfying standard indistinguishability based security, a
projective garbled circuit scheme GC = (GCirc,GInp,GEval) with indistinguishability based security
[JSW17] supporting a circuit class C = {Cλ}λ∈N with n-bit inputs, a simple PRF F = (F.Setup,F.Eval)
and a symmetric encryption scheme SYM, we can construct a single-input decomposable FE scheme
DFE supporting the circuit class C. We note that projective garbled circuit schemes satisfying
indistinguishability based security are implied from one-way functions [JSW17]. The intuition behind
the construction is as follows.

Intuition: The public key and master secret key for DFE would be the same as that of 1FE. Given an
n-bit message x = (x1, . . . , xn), the DFE encryption algorithm samples a PRF key K and generates n
1FE ciphertexts encoding (K, i, xi). DFE key generation takes the master secret key and a circuit C as
input and generates a secret key for a circuit ĈC,salt. The circuit ĈC,salt takes a 1FE message (K, i, xi) as
input and generates a garbled circuit C̃ corresponding to C and a garbled input label for the ith bit xi
using randomness PRF(K, salt). This relies on the projective property of GC [JSW17], i.e., each bit of
the garbled input x̃ only depends on one bit of the actual input x. For decryption, DFE runs the 1FE
decryption on all the n 1FE ciphertexts to obtain the garbled circuit C̃ and the garbled input x̃ and then
evaluates the garbled circuit to get the output C(x).

For proving security, we additionally need to rely on a symmetric key scheme following standard
techniques employing trapdoor modes from [CIJ+13, ABSV15]. The details follow as shown below.

DFE.Setup(1λ, 1n): On input the security parameter λ and input message size n, do the following:

1. Generate (1FE.PK, 1FE.MSK)← 1FE.Setup(1λ, 12λ+logn+2).

2. Output (PK,MSK) = (1FE.PK, 1FE.MSK).

DFE.Enc(PK,x): On input the public key PK and a message x = (x1, . . . , xn) of length n = |x|, do
the following:

1. Sample a PRF key K← F.Setup(1λ) and set a flag mode = 0.

2. Compute CTxi = 1FE.Enc(PK, (K,0, i, xi,mode)),∀i ∈ [n] and output CTx = {CTxi}i∈[n].

DFE.KeyGen(MSK, C): On input the master secret key MSK and a circuit C ∈ Cλ, do the following:

1. Sample a random salt← {0, 1}λ, CTi ← {0, 1}`(λ),∀i ∈ [0, n].

2. Output SK
Ĉ

= 1FE.KeyGen(MSK, ĈC,salt,{CTi}i∈[n],CT0
), where ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃

is a circuit described in Figure 20.

DFE.Dec(SK
Ĉ
,CTx): On input a function key SK

Ĉ
and a decomposed ciphertext CTx = {CTxi}i∈[n],

do the following:

1. For i = 1, invoke 1FE.Dec(SK
Ĉ
,CTx1) to obtain a pair (`1,x1 , C̃).

2. For all i ∈ [2, n], invoke 1FE.Dec(SK
Ĉ
,CTxi) to obtain (`i,xi ,⊥).

3. Note that x̃ = {`i,xi}i∈[n] represents the labels corresponding to the garbled input underlying
CTx generated as outputs of Ĉ, while C̃ represents the garbled circuit for C.

4. Run GEval(C̃, x̃) to get y.

Correctness. We have by correctness of 1FE.Dec that it outputs the garbled input x̃ and the garbled
circuit C̃ correctly. The correctness of GEval implies that decryption recovers C(x) as desired.

65



Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ (K, SYM.K, i, xi,mode)

(a) Initialize the vector out = (c1, c2), where cj = ⊥,∀j ∈ [2].

(b) If mode = 1, do the following:

i. Let out.c1 = SYM.Dec(SYM.K,SYM.CTi).

ii. If i = 1, let out.c2 = SYM.Dec(SYM.K, SYM.CT
C̃

).

(c) If mode = 0, do the following:

i. Compute randomness r = F.Eval(K, salt).

ii. Use randomness r to generate the garbled circuit for C as (C̃, sk) = GCirc(1λ, C; r) as well
as to generate the label corresponding to the ith input wire as `i,xi = GInp(sk, (xi, i); r).

iii. Let out.c1 = `i,xi . If i = 1, let out.c2 = C̃.

(d) Output : out.

Figure 20: Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃

Proof of Security.

Next, we argue that the DFE scheme constructed above is secure.

Theorem F.1. Assume that 1FE is an FE scheme satisfying standard indistinguishability based security,
GC is a projective garbling scheme for circuits satisfying indistinguishability based security, Sym is a
secure symmetric key encryption scheme and F is a secure PRF. Then, the DFE scheme constructed
above is a single-input, decomposable FE scheme satisfying standard indistinguishability based security.

Proof. The proof proceeds via a sequence of hybrids where the first hybrid corresponds to an encryption
of message x0 ∈ {0, 1}n and the last hybrid corresponds to an encryption of message x1 ∈ {0, 1}n.

Hybrid 1: This is the real world with message x0 = (x0
1, . . . , x

0
n) ∈ {0, 1}n.

Hybrid 2: In this world, we hardwire Ĉ with its output, namely the garbled circuit (C̃, sk) and input
labels {`i,x0i }i∈[n], using symmetric key encryption.

Hybrid 3: In this world, we change the message in each of the n 1FE ciphertexts from (K,0, i, x0
i , 0) to

(⊥,Sym.K, i,⊥, 1), i.e., the message encoded in CTxi is (⊥,Sym.K, i,⊥,mode = 1), ∀i ∈ [n].

Hybrid 4: In this world, we use true randomness to generate the garbled circuit and garbled inputs
instead of using randomness generated by PRF. Everything else remains the same as that of
the previous hybrid. Note that the garbled input labels {`i,x0i }i∈[n] encoded by {SYM.CTi}i∈[n]

correspond to the input message bits of x0 = (x0
1, . . . , x

0
n) from the previous hybrids.

Hybrid 5: In this world, we change the garbled input labels to {`i,x1i }i∈[n] corresponding to the input

message bits of x1 = (x1
1, . . . , x

1
n) encoded by {SYM.CTi}i∈[n] and hardwired in the key for Ĉ.

Hybrid 6: In this world, we change the true randomness back to randomness generated by the PRF for
computing the garbled circuit and garbled inputs. Everything else remains the same as that of the

66



previous hybrid. Note that the garbled input labels {`i,x1i }i∈[n] encoded by {SYM.CTi}i∈[n] now
correspond to the input message bits of x1 = (x1

1, . . . , x
1
n) from the previous hybrid.

Hybrid 7: In this world, we change the message in each of the n 1FE ciphertexts from (⊥, Sym.K, i,⊥, 1)
to (K,0, i, x1

i , 0), i.e., the message encoded in CTxi now is (K,0, i, x1
i , 0),∀i ∈ [n].

Hybrid 8: In this world, we change the hardwired values in Ĉ corresponding to the {SYM.CTi}i∈[n]

and SYM.CT
C̃

slots back to random strings from the ciphertext space of SYM. Note that this
corresponds to the real world with message x1 = (x1

1, . . . , x
1
n) ∈ {0, 1}n.

Next, we argue that consecutive hybrids are indistinguishable.

Lemma F.2. Hybrids 1 and 2 are indistinguishable assuming the security of SYM.

Proof. The only thing that changes between Hybrid 1 and 2 are the choices of {SYM.CTi}i∈[0,n], so that
in the former it is chosen randomly and in the latter case it is an honest encryption of the scheme SYM.
Given an adversary A which distinguishes between Hybrid 1 and Hybrid 2, we construct an adversary B
which breaks the semantic security of SYM. B does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2) honestly and
returns PK to A.

2. When A outputs a pair of challenge messages (x0,x1), B samples a PRF key K← F.Setup(1λ)
and honestly computes CTxi = 1FE.Enc(PK, (K,0, i, x0

i ,mode = 0)), ∀i ∈ [n] and returns
CTx={CTxi}i∈[n] to A.

3. When A requests a function key for C, B samples salt ← {0, 1}λ and computes r =
F.Eval(K, salt). It then generates the garbled circuit (C̃, sk) = GCirc(1λ, C; r) and the input
labels {`i,x0i = GInp(sk, (i, xi); r)}i∈[n] honestly. B then sends

(
{`i,x0i }i∈[n], C̃

)
to the SYM

challenger. The SYM challenger responds with
(
{SYM.CTi}i∈[n], SYM.CT

C̃

)
upon which B

constructs the circuit ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ and further generates a secret key SK
Ĉ

=

1FE.KeyGen
(
MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃

)
honestly. B sends SK

Ĉ
to A.

4. When A outputs a guess bit, it outputs the same.

Now, A sees the view of Hybrid 1 if
(
{SYM.CTi}i∈[n],SYM.CT

C̃

)
is random and A sees the view of

Hybrid 2 if
(
{SYM.CTi}i∈[n], SYM.CT

C̃

)
is an encryption of

(
{`i,x0i }i∈[n], C̃

)
.

Lemma F.3. Hybrids 2 and 3 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 2 and 3 is that in the former the encrypted messages are
{(K,0, i, x0

i ,mode = 0)}i∈[n] and in the latter as {(⊥,SYM.K, i,⊥,mode = 1)}i∈[n]. Assuming there
is an adversary A which distinguishes between Hybrid 2 and Hybrid 3, we construct an adversary B
which breaks the security of 1FE.
B does the following:

1. It obtains the public key PK from the 1FE challenger and returns this to A.

2. When A outputs a pair of challenge messages (x0,x1), it samples K← F.Setup(1λ), a symmetric
encryption key SYM.K and then returns n 1FE challenge message pairs {(K,0, i, x0

i ,mode = 0)
, (⊥,SYM.K, i,⊥,mode = 1)}i∈[n] w.l.o.g. to the 1FE challenger. It obtains CTx = {CTxi}i∈[n]

and returns this to A.

67



3. When A outputs a function query for C, B constructs the function ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃
as described in Figure 20 and sends this to the 1FE challenger. Here, SYM.CT

C̃
is computed

as SYM.Enc(SYM.K, C̃) where (C̃, sk) = GCirc(1λ, C; F.Eval(K, salt)) while SYM.CTi are
computed as SYM.Enc(SYM.K, `i,x0i ) where `i,x0i = GInp(sk, (i, x0

i ); F.Eval(K, salt)), ∀i ∈ [n].
It returns the obtained key SK

Ĉ
to A.

4. When A outputs a guess bit, it outputs the same.

When the 1FE challenger returns encryptions of {(K,0, i, x0
i ,mode = 0)}i∈[n], A sees the view of

Hybrid 1, and when it returns an encryption of {(⊥, SYM.K, i,⊥,mode = 1)}i∈[n], it sees the view of
Hybrid 2. Note that in either case the decrypted value is the same and thus the reduction B is a valid 1FE
adversary. Thus, the advantage of A translates to the advantage of B.

Lemma F.4. Hybrids 3 and 4 are indistinguishable assuming the security of PRF F.

Proof. The only difference in Hybrid 4 from Hybrid 3 is that instead of randomness generated by the
PRF, true randomness is used now to generate the garbled circuit and garbled input. Note that the PRF
key is not explicitly needed in the Hybrid 3. Thus, assuming there is an adversary A which distinguishes
between Hybrid 3 and Hybrid 4, we construct an adversary B which breaks the security of PRF F. B
does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2) honestly and
returns PK to A.

2. When A outputs a pair of challenge messages (x0,x1), B samples SYM.K and simulates the chal-
lenge message as CTx = {CTxi}i∈[n] where CTxi = 1FE.Enc(PK, (⊥, SYM.K, i,⊥, 1))}i∈[n].

3. When A outputs a function query for C, B first queries the PRF challenger upon which it receives
r. It then uses r to compute the garbled circuit (C̃, sk) = GCirc(1λ, C; r) as well as the garbled
input labels `i,x0i = GInp(sk, (i, x0

i ); r)∀i ∈ [n], honestly. B then samples salt ← {0, 1}λ and

computes {SYM.CTi = SYM.Enc(SYM.K, `i,x0i )}i∈[n] and SYM.CT
C̃

= SYM.Enc(SYM.K, C̃).

It then computes SK
Ĉ

= 1FE.KeyGen(MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ ) for the function

ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ as described in Figure 20 and returns SK
Ĉ

to A.

4. When A outputs a guess bit, B outputs the same.

If B had received r = F.Eval(K, salt) from the the PRF challenger, A sees the distribution of Hybrid 3,
else it sees the distribution of Hybrid 4 if r was sampled uniformly at random by the PRF challenger.
The advantage of A therefore translates to an advantage of B.

Lemma F.5. Hybrids 4 and 5 are indistinguishable assuming the security of GC.

Proof. The only difference between Hybrids 4 and 5 is that in the former, the messages encoded in
{SYM.CTi}i∈[n] ciphertexts hardwired in Ĉ were {`i,x0i }i∈[n] while in the later, the encoded messages
are {`i,x1i }i∈[n]. Note that in both cases, we have the same output of decryption since C(x0) = C(x1)
and hence the two hybrids are indistinguishable by indistinguishability based security of GC. More
formally, we show that if there is an adversary A which distinguishes between Hybrid 4 and Hybrid 5,
we construct an adversary B which breaks the security of GC. B does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2) honestly and
returns PK to A.

68



2. When A outputs a pair of challenge messages (x0,x1), B samples SYM.K and simulates the chal-
lenge message as CTx = {CTxi}i∈[n] where CTxi = 1FE.Enc(PK, (⊥, SYM.K, i,⊥, 1))}i∈[n].

3. When A outputs a function query for C, B first constructs and sends the challenge message
pair ((C,x0), (C,x1)) to the GC challenger. On receiving (C̃, x̃ = {`i,xi}i∈[n]) from the
GC challenger, B computes {SYM.CTi = SYM.Enc(SYM.K, `i,xi)}i∈[n] and SYM.CT

C̃
=

SYM.Enc(SYM.K, C̃). It then samples salt← {0, 1}λ and generates a function key for the function
ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ as SK

Ĉ
= 1FE.KeyGen(MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CTC̃ ). B

returns SK
Ĉ

to A.

4. When A outputs a guess bit, B outputs the same.

Note that since A is a valid DFE adversary satisfying C(x0) = C(x1), this implies B is a valid GC
adversary. Further, if the GC challenger had returned (C̃, x̃ = {`i,x0i }i∈[n]), then A sees the view of

Hybrid 4 and if the GC challenger had returned (C̃, x̃ = {`i,x1i }i∈[n]), then A sees the view of Hybrid 5.
The advantage of A therefore translates to an advantage of B.

Lemma F.6. Hybrids 5 and 6 are indistinguishable assuming the security of PRF F.

Proof. The proof is similar to Lemma F.4.

Lemma F.7. Hybrids 6 and 7 are indistinguishable assuming the security of 1FE.

Proof. The proof is similar to Lemma F.3.

Lemma F.8. Hybrids 7 and 8 are indistinguishable assuming the security of SYM.

Proof. The proof is similar to Lemma F.2.

F.1 Decomposable Functional Encryption for Circuits: Instantiations

We note that most functional encryption schemes in the literature are already decomposable, since a long
input x is typically encoded bit by bit, using a separate public key component. Indeed, we do not know of
any exceptions in the literature. For instance, recall the ciphertext of [ABSV15]:

CT0 ← OneCT.Enc(OneCT.SK,x) and

CT1 ← Sel.Enc(Sel.MPK, (OneCT.SK,K, 0λ, 0)).

Above, CT1 is a ciphertext component which is independent of the message (and depends only on
randomness), hence it may be denoted as CTindpt in the notation above. Therefore, it remains to show
that CT0 is decomposable. This depends on the particular OneCT scheme that is chosen, but for instance,
it was shown in [AS17a] that the OneCT succinct FE scheme from LWE constructed by [GKP+13b] is
decomposable. We refer the reader to [AS17a] for details.

We note that the recent constructions of FE from constant degree multilinear maps [Lin17, LT17]
also satisfy decomposability, despite the fact that they precompute high degree monomials which are
encoded. To see this, note that the encrypt algorithm in [Lin17, LT17] takes as input a message x
and chooses a PRG seed s (say) represented as a matrix. The encryptor computes a long message y
(say) that consists of monomials computed over x, s. While the computation of arbitrary monomials
would violate decomposability, in the above constructions, the monomials are linear in bits of x, and the
high degree terms are all computed over the bits of the seed s. Our construction requires that the bits

69



corresponding to the symbol and state of a TM be encoded separately, and these would form the input
x in the constructions of [Lin17, LT17]. Intuitively, the PRG seed is used to derive randomness meant
for computing a randomized encoding and is chosen independently of the input message x. Hence, the
constructions of [Lin17, LT17] also satisfy decomposability required by our compilers.

Next, we sketch how the construction of [GGH+13] can be seen to satisfy decomposability, with
minor modifications. The ciphertext for a single bit message m in this scheme is (e1, e2, π), where
e1 = Enc(PK1,m) and e2 = Enc(PK2,m) and π is a NIZK proof that e1 and e2 both encrypt the same
bit. Note that here the two ciphertexts e1 and e2 are using distinct public key encryption schemes (i.e.
these are not ciphertext components in decomposable FE). To argue decomposability, consider message
m = (m1, . . . ,mn) as a vector of n bits rather than a single bit. Then, we may compute the encryptions
bit by bit, and also test equality bit by bit in the NIZK, tying together all bits ofm by common randomness,
satisfying the given definition of decomposability.

In more detail, we may compute e1 = (e1,1, . . . , e1,n) and e2 = (e2,1, . . . , e2,n) as well as e∗ =
Enc(PK3,R) where:

• ∀i ∈ [n], e1,i and e2,i encode message (mi,R) where R is shared across all i. Note that R here is
part of the encoded message (the encryption randomness used to construct the ciphertexts e1,i and
e2,i is different and not denoted here).

• Denote by πi the NIZK proof that e1,i and e2,i encode the same bit mi and that e1,i, e2,i encode the
same R as e∗.

Then, the n ciphertext components of the decomposable FE are (e1,1, e2,1, π1), . . . , (e1,n, e2,n, πn)
and the independent ciphertext component is e∗ (CTindpt from Definition 2.1.1). Note that if an attacker
tried to replace any one piece in this set, the R would not match (except with negligible probability) and
the NIZK proof would not validate.

The proof of security is similar to [GGH+13].

70


	Introduction
	Preliminaries
	Definitions: FE for Circuits
	Single Input Functional Encryption for Circuits
	Multi-Input Functional Encryption for Circuits

	Definitions: FE for Turing Machines
	Single Input Functional Encryption for Turing Machines
	Multi-Input Functional Encryption for Turing Machines
	Indistinguishability Obfuscation for Turing Machines

	Constrained Pseudorandom Functions

	Construction: Single Input FE for Turing Machines
	Construction
	Correctness and Efficiency of single input TMFE
	Proof of Security for Single Input TMFE
	Constructing the cPRF.

	Construction: Multi-Input FE for Turing Machines
	Construction of multi-input TMFE
	Correctness of Multi-Input TMFE
	Proof of Security for multi-input TMFE

	Indistinguishability Obfuscation for Turing Machines
	Construction
	Proof of Security

	Definitions: Turing Machines
	Missing Details in Proof of Theorem 3.1
	Missing Details in Proof of Theorem 4.1
	Constrained PRF for our Function Family
	Constructing DI Secure Functional Encryption
	Constructing Decomposable Functional Encryption for Circuits
	Decomposable Functional Encryption for Circuits: Instantiations


