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ABSTRACT: 

 

In the last few years, the 3D GIS domain has developed rapidly, and has become increasingly accessible to different disciplines. 3D 

Spatial analysis of Built-up areas seems to be one of the most challenging topics in the communities currently dealing with spatial 

data. One of the most basic problems in spatial analysis is related to visibility computation in such an environment. Visibility 

calculation methods aim to identify the parts visible from a single point, or multiple points, of objects in the environment. 

In this work, we present a unique method combining visibility analysis in 3D environments with dynamic motion planning 

algorithm, named Visibility Velocity Obstacles (VVO) with Markov process defined as spatial visibility analysis for routes in 3D 

dense city environment.  

Based on our VVO analysis, we use Reinforcement Learning (RL) method in order to find an optimal action policy in dense 3D city 

environment described as Markov decision process, navigating in the most visible routes.   

As far as we know, we present for the first time a Reinforcement Learning (RL) solution to the visibility analysis in 3D dense 

environment problem, generating a sequence of viewpoints that allows an optimal visibility in different routes in urban city. Our 

analysis is based on fast and unique solution for visibility boundaries, formulating the problem with RL methods. 
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1. INTRODUCTION 

Trajectory planning has developed alongside the increasing 

numbers of Unmanned Aerial Vehicles (UAVs) all over the 

world, with a wide range of applications such as surveillance, 

information gathering, suppression of enemy defenses, air to air 

combat, mapping buildings and facilities, etc. 

Most of these applications are involved in very complicated 

environments (e.g. urban), with complex terrain for civil and 

military domains (Office Report, 2002). With these growing 

needs, several basic capabilities must be achieved. One of these 

capabilities is the need to avoid obstacles such as buildings or 

other moving objects, while autonomously navigating in 3D 

urban environments. 

Path planning problems have been extensively studied in the 

robotics community. These problems include finding a 

collision-free path in static or dynamic environments, i.e., 

environments having moving or static obstacles. Over the past 

twenty years, many kinds of path planning methods have been 

proposed, such as starting roadmap, cell decomposition, and 

potential field (Latombe, 1990). 

In this paper, we present a unique method combining visibility 

analysis in 3D environments with dynamic motion planning 

algorithm, named Visibility Velocity Obstacles (VVO) with 

Markov process defined as spatial visibility analysis for routes 

in 3D dense city environment.  

Our method is based on two major steps. The first step is based 

on analytic visibility boundaries calculation in 3D 

environments, taking into account sensors' capabilities 

including probabilistic consideration. In the second step, we 

generate VVO transferring visibility boundaries from the 

position space to the velocity space, for each object. Each VVO 

represents velocity's set of possible future collision and 

visibility boundaries. 

Based on our VVO analysis, we use Reinforcement Learning 

(RL) method in order to find an optimal action policy in dense 

3D city environment described as Markov decision process, 

navigating in the most visible routes.   

As far as we know, we present for the first time a Reinforcement 

Learning (RL) solution to the visibility analysis in 3D dense 

environment problem, generating a sequence of viewpoints that 

allows an optimal visibility in different routes in urban city. Our 

analysis is based on fast and unique solution for visibility 

boundaries, formulating the problem with RL methods. 

 

2. RELATED WORK 

Path planning becomes trajectory planning when a time 

dimension is added for dynamic obstacles (Erdmann and 

Lozano-Perez, 1987). Later on, a vehicle's dynamic and 

kinematic constraints have been taken into account, in a process 

called kinodynamic planning (LaValle and Kuffner, 1999). All 

of these methods focus solely on obstacle avoidance. 

Trajectory planning for air traffic control and ground vehicles 

has been well studied (Mao et al. 2001), based on short path 

algorithms using 2D polygons, 3D surfaces (Bellingham et al. 

2002). UAVs navigation has also been explored with vision-

based methods (Sinopoli et al. 2001), with local planning or a 

predefined global path (Sasiadek and Duleba, 2000). 

UAV path planning is different from simple robot path 

planning, due to the fact that a UAV cannot stop, and must 

maintain its velocity above the minimum, as well as not being 

able to make sharp turns. 

The visibility problem has been extensively studied over the last 

twenty years, due to the importance of visibility in GIS and 

Geomatics, computer graphics and computer vision, and 

robotics (Elber et al. 2005).. Accurate visibility computation in 

3D environments is a very complicated task demanding a high 

computational effort, which could hardly have been done in a 

very short time using traditional well-known visibility methods 

(Plantinga and Dyer, 1990). The exact visibility methods are 

highly complex, and cannot be used for fast applications due to 
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their long computation time. Previous research in visibility 

computation has been devoted to open environments using 

DEM models, representing raster data in 2.5D (Polyhedral 

model), and do not address, or suggest solutions for, dense 

built-up areas. Most of these works have focused on 

approximate visibility computation, enabling fast results using 

interpolations of visibility values between points, calculating 

point visibility with the Line of Sight (LOS) method (Doytsher 

and Shmutter, 1994). Other fast algorithms are based on the 

conservative Potentially Visible Set (PVS) (Durand, 1999). 

These methods are not always completely accurate, as they may 

render hidden objects' parts as visible due to various 

simplifications and heuristics. 

 

 

3. VISIBILITY BOUNDARIES ANALYSIS 

We extend our previous work (Gal and Doytsher, 2012) 

developed for a fast and efficient visibility analysis for 

buildings in urban environments, and consider also a basic 

structure of cylinders, which allows us to model pedestrians and 

trees. Based on our probabilistic visibility computation of 

dynamic objects, we test the effect of these by using data 

gathered from web-oriented GIS sources to update our 

estimation and prediction on these entities. 

 
3.1 Dynamic Objects - Modeling and Probabilistic Visibility  

Dynamic objects such as moving cars and pedestrians, directly 

affect visibility in urban environments. 

Due to modeling limitations, these entities are usually neglected 

in spatial analysis aspects. We focus on three major dynamic 

objects in an urban case: moving cars and pedestrians. Each 

object is modeled with 3D boxes or 3D cylinders, which allow 

us to extend the use of our previous visibility analysis in urban 

environments presented for static objects (Gal and Doytsher, 

2012). 

 

3.2 Moving Car 

 

3.2.1 3D Modeling: As we mentioned earlier, web-cameras 

in urban environments can record the moving cars at any 

specific time. Image sources such as web cameras, like other 

similar sensors sources, demand an additional stage of 

Automatic Target Detection (ATD) algorithms to extract these 

objects from the image (Song, 2010). In this research we do not 

focus on ATD, which must be implemented when shifting from 

the research described in the paper toward an applicable system. 

The common car structure can be easily modeled by two 3D 

boxes, as can be seen in Figure 1, which is similar to the 

original car structure presented in Figure 1. 

We define the Car Boundary Points (CBP) as the set of visible 

surfaces' boundary points of 3D boxes modeling the car 

presented in Figure 1. Each box is modeled as 3D cubic 

 as presented extensively in (Gal and Doytsher, 

2012) for a building model case. 

3.2.2 Car Boundary Points (CBP) - we define CBP of the 

object i as a set of boundary points   of the 

visible surfaces of the car object, from viewpoint , 

where the maximum surface's number is six and each surface 

defined by four points, , described in (1). 

In Figure 2, car is modelled by using two 3D boxes. Visible 

surfaces colored in red, CBP marked with yellow points. 
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Figure 1. Car Modeling Using 3D Boxes 

 

  

 

Figure 2. Modeling Car Using 3D Boxes (CBP Marked with 

Yellow Points) 

3.2.3 Probabilistic Visibility Analysis: Visibility has been 

treated as Boolean values. Due to incomplete information and 

the uncertainties of predicting the car's location at future times, 

visibility becomes much more complicated. As it is well known 

from basic kinematics, CBP can be estimated in future time 

 as shown in (2): 

 

              
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Where  is the car velocity vector , and the 

acceleration vector  . Estimation of a car's 

location in the future based on a web camera is not a simple 

task. Driver behaviour generates multi-decision modelling, such 

as car-following behaviour, gap acceptance behaviour, or lane-

change cases including traffic flow, speed etc. (Archer, 2010). 
Our probabilistic car model is based on microscopic simulation 

models that were properly calibrated and validated using 

VISSIM simulation. The average speed in urban environments 

is about 45 [km/hr], from a minimum of 40 [km/hr] up to a 

maximum of 50 [km/hr]. In the situation of a free driving case, 

which is the common mode in urban environments 

(Wiedemann, 1992), the acceleration of family car can change 

between , and on average 2. . 

As can be seen from several validations of car and driver 

estimation, velocity and acceleration are distributed as normal 

ones, and lead to normal location distribution in (3): 

 

 

 

 

 

 

In time step t, where the car's location is taken from a web-

camera, visibility analysis from is an exact one, based on 

our previous visibility analysis (Gal and Doytsher, 2012), as 

seen in Figure 2. Visibility analysis becomes probabilistic for 

future time , applying the same visibility analysis for 

 presented in Figure 3. 

In Figure 3, the car's location from a web-camera appears in the 

bottom left side. For , the car's location is marked 

by two 3D boxes, where CBP for each of them is the boundary 

of visible surfaces marked in red. The probability that the 

visible surfaces, which are bounded by CBP, will be visible in 

future time is based on the last update taken from the web 

application (depicted with arrows in Figure 3), computed by 

using two different random normal PDF values for V and A. 

 

Figure 3. Probabilistic Visibility Analysis for CBP 

3.3 Pedestrians 

3.3.1 3D Modeling: Pedestrian modeling can be done in 

high resolution, but due to ATD algorithms capabilities, 

pedestrians are usually bounded by a 3D cylinder and not as an 

exact detailed model (Song, 2010). For this reason, we model 

pedestrians as 3D cylinders, which is somewhat conservative 

but still applicable. 

Pedestrian can be easily modeled by 3D cylinder, as seen in 

Figure 4 (marked in red), which is similar to the output from 

ATD methods tested on a web-camera output recognizing 

walkers in urban environments. 

We extend our previous visibility analysis concept (Gal and 

Doytsher, 2012) and include new objects modeled as cylinders 

as continuous curves parameterization, in (4). 

Cylinder parameterization can be described as: 
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Figure 4. Modeling Pedestrians in Urban Scene Using Cylinders 

(Colored in Red) 

We define the visibility problem in a 3D environment for more 

complex objects in (5): 

 

co s co s 0 0 0'( , ) ( ( , ) ( , , )) 0
n t n tz zC x y C x y V x y z  

 
 

 
where 3D model parameterization is , and the 

viewpoint is given as . Extending the 3D cubic 

parameterization, we also consider the cylinder case. As can be 

noted, these equations are not related to Z axis, and the 

visibility boundary points are the same for each x-y cylinder 

profile.      

The visibility statement leads to complex equation, which does 

not appear to be a simple computational task. This equation can 

be efficiently solved by finding where the equation changes its 

sign and crosses zero value; we used analytic solution to speed 

up computation time and to avoid numeric approximations. We 

generate two values of  generating two silhouette points in a 

very short time computation in (6). Based on an analytic 
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solution to the cylinder case, a fast and exact analytic solution 

can be found for the visibility problem from a viewpoint. 

 

           

 

We define the solution presented above as x-y-z coordinates 

values for the cylinder case as Pedestrian Boundary Points 

(PBP). PBP are the set of visible silhouette points for a 3D 

cylinder modeling the pedestrian in (7): 
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4. VISIBILITY VELOCITY OBSTACLES (VVO) 

The visibility velocity obstacle represents the set of all 

velocities from a viewpoint, occluded with other objects in the 

environment. It essentially maps static and moving objects into 

the robot’s velocity space considering visibility boundaries.  

The VVO of an object with circular visibility boundary points 

such as the pedestrians case, PBP, that is moving at a constant 

velocity , is a cone in the velocity space at point A. In Figure 

5, the position space and velocity space of A are overlaid to 

illustrate the relationship between the two spaces. The VVO is 

generated by first constructing the Relative Velocity Cone 

(RVC) from A to the boundaries of the object, i.e., PBP, then 

translating RVC by . 

Each point in VVO represents a velocity vector that originates 

at A. Any velocity of A that penetrates VVO is a occluded 

velocity that based on the current situation, would result in a 

occlusion between A and the pedestrian at some future time. 

Figure 5 shows two velocities of A: one that penetrates VVO, 

hence a occluded velocity, and one that does not. All velocities 

of A that are outside of VVO are visible from the current robot's 

position as the obstacle denotes as B, stays on its current course. 

The visibility velocity obstacle thus allows determining if a 

given velocity is occluded, and suggesting possible changes to 

this velocity for better visibility. If PBP is known to move along 

a curved trajectory or at varying speeds, it would be best 

represented by the nonlinear visibility velocity obstacle case 

discussed next. 

 

 

 

 

 

 

Figure 5. Visibility Velocity Obstacles 

The VVO consists of all velocities of A at  predicting 

visibility's boundaries related to obstacles at the environment at 

any time t> . Selecting a single velocity, , at time t =  

outside the VVO, guarantees visibility to this specific obstacle 

at time t. It is constructed as a union of its temporal elements, 

VVO(t), which is the set of all absolute velocities of A, , that 

would allow visibility at a specific time t. 

Referring to Figure 6,  that would result in occlusion with 

point p in B at time t > , expressed in a frame centered at 

A( ), is simply in (8): 

 

 

                                       

                                              

where r is the vector to point p in the blocker’s fixed frame, and 

visibility boundaries denoted as Visibility Boundary Points 

(VBP). The set, VVO(t) of all absolute velocities of A that 

would result in occlusion with any point in B at time t >  is 

thus in (9): 

 

                                

                                         

 

Clearly, VVO(t) is a scaled B for two dimensional case with 

circular object, located at a distance from A that is inversely 

proportional to time t. The entire VVO is the union of its 

temporal subsets from , the current time, to some set future 

time horizon  in (10): 

 

 

                      

                                           

 

The presented VVO generate a warped cone in a case of 2D 

circular object. If VBP(t) is bounded over t = ( , ∞), then the 

apex of this cone is at A( ).We extend our analysis to 3D 

general case, where the objects can be cubes, cylinders and 

circles. The mathematical analysis with visibility boundaries is 

based on VBP presented in the previous part for different kind 

of objects such as buildings, cars and pedestrians. 

We transform the visibility's boundaries into the velocity space, 

by moving the VBP to the velocity space, in the same analysis 

presented for 2D circle boundary's.  

Following that, we present 3D extension for VBP case, 

transformed to the velocity space. 

Given two objects, VBP1, VBP2 will create a VVO representing 

VBP2 (and vice-versa) such that VBP1 wishes to choose a 

guaranteed collision-free velocity for the time interval τ, and 

visibility boundary in velocity space.  

In case of cars, buildings and pedestrians where visibility 

boundaries can be expressed by geometric operations of 3D 

boxes, analyzed in the same concept and formulation presented 

so far, as can be seen in Figure 6.  
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Figure 6. Visibility Velocity Obstacle for visibility boundaries 

consist of 3D boxes 

 

5. REINFORCEMNET LEARNING USING VVO  

In most RL systems, the state is basically agent’s observation of 

the environment. At any given state the agent chooses its action 

according to a policy. Hence, a policy is a road map for the 

agent, which determines the action to take at each state. Once 

the agent takes an action, the environment returns the new state 

and the immediate reward. Then, the agent uses this 

information, together with the discount factor to update its 

internal understanding of the environment, which, in our case, 

is accomplished by updating a value function. We use well-

known  simple and efficient greedy exploration method 

maximizing Q-value. 

In our case, each possible action is a possible velocity in the 

next time step, that also represent a viewpoint. The Q-value 

function is based on greedy search velocity, where the best next 

step is not colliding with any VVO in the environment. Based 

on that, TD and SARSA methods for RL can be used, 

generating visible trajectory in 3D urban environment. 

 

5.1 Markov Decision Processes (MDP)  

The standard Reinforcement Learning set-up can be described 

as a MDP, consisting of: 

 A finite set of states S, comprising all possible 

representations of the environment. 

 A finite set of actions A, containing all possible 

actions available to the agent at any given time. 

 A reward function R = ψ(st ,at ,st+1), determining the 

immediate reward of performing an action at from a 

state st, resulting in st+1. 

 A transition model T(st , at , st+1) = p(st+1| st ,at), 

describing the probability of transition between states 

st and st+1when performing an action at. 

5.2 Temporal Difference Learning  

Temporal-difference learning (or TD) interpolates ideas from 

Dynamic Programming (DP) and Monte Carlo methods. TD 

algorithms are able to learn directly from raw experiences 

without any particular model of the environment.  

Whether in Monte Carlo methods, an episode needs to reach 

completion to update a value function, Temporal-difference 

learning is able to learn (update) the value function within each 

experience (or step). The price paid for being able to regularly 

change the value function is the need to update estimations 

based on other learnt estimations (recalling DP ideas). Whereas 

in DP a model of the environment’s dynamic is needed, both 

Monte Carlo and TD approaches are more suitable for uncertain 

and unpredictable tasks.  

Since TD learns from every transition (state, reward, action, 

next state, next reward) there is no need to ignore/discount 

some episodes as in Monte Carlo algorithms. 

 
5.2.1 Q-Learning  

A quintessential TD off-policy control algorithm is the one-step 

Q-learning. Q-learning is considered an off-policy algorithm 

since we approximate the optimal Q-value function, Q∗, 

independently of the current policy. The update step is as 

follows: 

 

Q : S × A → R                                        (11) 

 

   Q(st,at) = Q(st,at) + α(rt+1 + γ maxa Q(st+1,at+1) - Q(st,at))    (12) 

 

The α is the learning rate (0 < α < 1) and determines the rate at 

which new information will override the old Q-value. γ is the 

discount factor 0 < α < 1) which decreases the estimated Q-

values for future states. The TD-learning algorithm is presented 

in Figure 7. 

 

 

 
Figure 7. Q-learning Algorithm 

 

5.2.2 SARSA  

SARSA is a On-Policy temporal-difference reinforcement 

learning method to estimate a quality function. It heritages the 

name from: (State, Action, Reward, Next State, Next Action). 

The update step is as follows:  

 

           Q(st,at) = Q(st,at) + α(rt+1 + γQ(st+1,at+1) - Q(st,at))    (13) 

 

The Q value is updated through interactions with the 

environment, thus updating the policy depends on the action 

taken. The Q-value for a state-action pair is not directly 

updated, but gradually adjusted with a learning rate α. As with 

the Q-learning algorithm, SARSA will keep on improving its 

policy towards a better solution as long as all state-action pairs 

continue to be updated. The SARSA-learning algorithm is 

presented at algorithm 8. 
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Figure 8. SARSA-learning Algorithm 

 

CONCLUSIONS 

In this paper, we presented a unique method combining 

visibility analysis in 3D environments with dynamic motion 

planning algorithm, named Visibility Velocity Obstacles (VVO) 

with Markov process defined as spatial visibility analysis for 

routes in 3D dense city environment. Our method is based on 

two steps. The first step is based on analytic visibility 

boundaries calculation in 3D environments, taking into account 

sensors' capabilities including probabilistic consideration. In the 

second step, we generate VVO transferring visibility boundaries 

from the position space to the velocity space, for each object. 

Each VVO represents velocity's set of possible future collision 

and visibility boundaries. 

Based on our VVO analysis, we presented Reinforcement 

Learning (RL) formulation in order to find an optimal action 

policy in dense 3D city environment described as Markov 

decision process, navigating in the most visible routes.   
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