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ABSTRACT: 

 
Many applications using spatially aggregated data tend to treat the spatial units as given. For example, in the United States, analyses 
using the social and economic data often rely on the existing and fixed spatial units of census blocks or tracts. However, these spatial 
units are often aggregated arbitrarily. It is therefore important to ask this question: what if the spatial units are aggregated differently? 
Will the results obtained using the existing units still hold? This paper addresses questions like these. We first develop a search 
algorithm that can be used to find alternative aggregations with relatively equal total populations among the aggregated units. Then a 
number of experiments are conducted to test the algorithm and to demonstrate how alternative aggregations will affect the analysis. 
These experiments clearly suggest the significant effects of spatial aggregation on the analysis results. 

 
1. INTRODUCTION 

 
In recent years, data science has quickly emerged as a field that 
brings together researchers from a wide range of disciplines 
such as computational science, statistics, social sciences, and 
geography (Hey et al. 2009). At the heart of this movement is 
the ever growing need of understanding the data. Noticeably 
much of such data has a strong spatial context. However, it is 
also reasonable to argue that the spatial units under these data 
are typically taken as given. For example, spatially aggregated 
data at different levels (e.g., states, counties, census blocks, or 
wards) are commonly used in many geographic and social 
science applications. But what if different kind of spatial units 
are used? In other words,  what if we aggregate the  census 
blocks in different ways but still at the same level of the tracts? 
Will the result from the existing units still hold? Is it possible to 
hack spatial data so that we can examine it from a different 
angle? Spatial data has become increasingly more accessible, 
which makes it more important to fully understand the impacts 
of using such data. 

 
It is difficult to find alternative aggregations of spatial units 
because such a process often takes exceedingly amount of 
computation and there are many equally good alternatives to be 
considered (Xiao 2008; Kim and Xiao 2017). Methods 
developed in the literature (e.g., Openshaw and Rao 1995; 
Martin 1998; Cockings and Martin 2005) are often designed to 
search a single alternative instead of multiple. 

 
The purpose of this paper is to demonstrate new ways of 
exploring spatial aggregation. Specifically, we develop a new 
computational method that can be used to find multiple 
aggregations as alternatives to the existing one. We then test 
this method using the census data for a county in the United 
States. We compare and contrast the difference between the 
official census data and the alternatives. We conclude that the 
use of alternatively aggregated data have significant impacts on 
spatial analysis. 

 
2. METHODOLOGY 

 
Given a set of n spatial units, we assume each unit is associated 
with a population (or other types of weights or attributes). The 
goal of an aggregation problem is to group these units into a 
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number of contiguous regions so that the overall difference in 
the population of the aggregated regions is minimized. 

 
To search for alternative aggregations, we first randomly 
generate a pool of valid aggregations and then an efficient 
algorithm called give-and-take (Kim 2011) is used to improve 
each aggregation by repeatedly swapping units from one region 
to its neighboring regions. At the end of these improvements is 
a pool of relatively high quality aggregations. Then we 
randomly select pairs of aggregations from the pool and 
recombine them, and the recombined aggregation will be 
inserted into pool to replace the worst aggregation if the former 
is a better one. This recombination process is repeated many 
times as specified by the user. 

 
3. DATA AND RESULTS 

 
We first test the search algorithm using is a small data set 
(Figure 1) where each spatial unit (cell) is randomly assigned a 
population value and these units are grouped into 3 regions. The 
algorithm uses a pool of 20 and all the 20 alternatives found at 
the end have 3 regions with exactly the same total population. 
Figure 2 shows 3 examples of these aggregations. 

 

 
Figure 1. A random test data set on a 10x10 grid. 

 
 
 
 
 
 
 
Figure 2. Three alternative aggregations found by the algorithm. 
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We then use the algorithm to aggregate the 887 census block 
groups in Franklin County, Ohio. In the official census data for 
Franklin County, there are 284 census tracts, and our goal is to 
find alternative aggregations with 284 regions. We again set the 
pool size to 20. 

 
Figure 3 shows the histograms of population for the official 
census tracts (left) and one of the alternatives found by the 
algorithms. It is clear that the official 284 census tracts have a 
wider range of population (from as small as 8 to as high as 
14,652), while the alternative 284 regions have a much 
narrower range of the population centered around 4,000. 

 

 
Figure 3. Histograms of population for the official census tracts 

(left) and aggregated tract level regions (right). 
 

Maps in figures 4 and 5 compare the total population of the 
official census tracts and one of the aggregations yielded by the 
algorithm (maps use the quantile classification method). It is 
clear that the official tracts have a wider range of data and the 
units with the same color tend to be close to each other as 
compared with the pattern from the aggregated units. 

 

  
Figure 4. Total population of the official census tracts. 

 

 
Figure 5. Total population of the 284 aggregated regions. 

 
We further examine the spatial autocorrelation of the total 
population and minority (non-white) rates. The total population 

of the official census tracts shows a significant spatial 
autocorrelation with a Moran's I value of 0.349, while the 20 
alternative aggregations do not show such spatial 
autocorrelation with their Moran's I values ranging from -0.063 
to 0.094. 

 
It is clear that by aggregating spatial units into regions with 
relatively equal population, we are able to reduce or even 
eliminate the effect of spatial autocorrelation in statistical 
analysis. For example, our preliminary results shows that R- 
square value of a regression model between minority rate and 
median household income at the block group level is 0.231. 
When the official tracts data is used, a higher R-square value at 
0.304 is yielded, but our aggregated data have their R-square 
values ranging from 0.242 to 0.259, which is closer to what is 
found at the original block groups level. 

 
4. CONCLUSIONS 

 
The experiments discussed in the previous section suggest that 
different ways of aggregating spatial units will lead to different 
results (as in the cases of spatial autocorrelation and correlation 
between different socioeconomic variables). It is therefore 
important to explore alternatives when aggregated data are used 
to address social science questions. 

 
The method and results presented here are still work in 
progress. However, our experiments show that the method 
developed is effective in handling certain sizes of spatial data. 
The future plan is to utilize new high performance computing 
technologies to handle larger data sets for larger areas. 
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