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ABSTRACT
Background: Children born preterm are at risk of visual-processing
impairments. Several lines of evidence have contributed to the ra-
tionale that docosahexaenoic acid (DHA) supplementation of pre-
term infants may improve outcomes in visual processing.
Objective: The aim was to determine whether at 7 y of age children
who were born very preterm and who received a high-DHA diet have
better visual-processing outcomes than do infants fed a standard-DHA
diet.
Design: This was a follow-up study in a subgroup of children from a
randomized controlled trial. Infants were randomly assigned to milk
containing a higher concentration of DHA (1% of total fatty acids;
high-DHA group) or a standard amount of DHA (0.2–0.3% of total fatty
acids as DHA; control group). The randomization schedule was stratified
by sex and birth weights of,1250 or$1250 g. A total of 104 (49 in the
high-DHA group and 55 in the standard-DHA group) children aged 7 y
were assessed on a range of visual-processing measures, including visual
acuity, contrast sensitivity, vernier acuity, binocular stereopsis, and visual
perception.
Results: There was no evidence of differences between the high-
DHA and standard-DHA groups in any of the visual-processing
measures. In the majority (12 of 13) of variables assessed, the di-
rection of effect favored the control group. The study was large
enough to detect a moderate treatment effect, if one truly existed.
Conclusion: Supplementing human milk with DHA at a dose of
w1% of total fatty acids given in the first months of life to very preterm
infants does not appear to confer any long-term benefit for visual pro-
cessing at school age. This trial was registered at anzctr.org/au as
ACTRN12606000327583. Am J Clin Nutr 2016;103:268–75.

Keywords: docosahexaenoic acid, DHA, preterm infant, very pre-
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INTRODUCTION

Preterm children are at risk of a number of visual impairments,
including difficulties with visual acuity (VA)9 (1–3), contrast
sensitivity (CS) (4, 5), stereopsis (3, 4), and visual perception (1,
6, 7), all skills that are important for a range of more complex

and adaptive visual tasks such as classroom learning and overall
school performance (8, 9). Brain injury (10–12), retinopathy of
prematurity (13–16), and oxygen therapy during the neonatal
period (17) have been reported to be associated with visual
impairments, but other factors such as specific nutrients and
agents that might optimize ocular and cortical development re-
quire further exploration.

DHA (22:6n–3), an n–3 long-chain PUFA, is found in high
concentrations in both the cerebral cortex and the retina and is
important for visual processing, such as photo-transduction
(18, 19), regeneration of rhodopsin (20, 21), and maturation of
the cortical visual pathway (22–24). During the last trimester of
pregnancy a substantial amount of DHA is transferred from
mother to fetus; thus, infants born early (e.g., very preterm in-
fants; ,33 wk gestational age) are denied an adequate in-
trauterine supply of DHA at a stage when brain growth is at its
greatest (25, 26). Several trials have aimed to supplement pre-
term infant formulas with DHA in an attempt to achieve a di-
etary exposure to DHA that is comparable to the breast milk of
women consuming a Western-style diet (w20 mg/kg per day or
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0.2–0.3% of total fatty acids). These first clinical trials reported
positive short-term effects for visual and retinal outcomes in
formula-fed preterm infants after supplementation with DHA
compared with unsupplemented feeding (27–29) and provided
the basis for supplementation of preterm infant formula. How-
ever, the proportion of total fatty acids in these studies was
substantially lower than the fetus would accrue in the uterus
during the last trimester, which is equivalent to a dietary DHA
content of w60 mg/kg per day, .1% of total fatty acids
(26, 30). Another issue with these studies was the use of sup-
plemented formula feedings, because breast milk is crucial to
the clinical management of preterm infants (e.g., 31–34). The
randomized controlled trials that meet the physiologic re-
quirements of DHA and provided human milk showed some
short-term benefits of DHA supplementation (35–37).

In acknowledgment of these limitations, we evaluated a range
of visual-processing functions in children at 7 y of age who were
born very preterm and entered into a randomized controlled trial
in which they were either fed breast milk (or formula when
required) supplemented with 1% DHA (an amount of DHA
designed to match the fetal accretion rate) or they were fed
according to current practice (w0.3% of total dietary fatty
acids). It was hypothesized that very preterm children who
received high-dose DHAwould show better performance across
a range of visual-processing measures compared with very
preterm children who received standard-dose DHA. It was
expected that CS, binocular stereopsis, and spatial relation
tasks would have the largest benefits given the preferential
effects of DHA.

METHODS

Participants

The participants for this study were recruited as part of
a follow-up for a multicenter randomized controlled trial that
assessed the long-term outcomes of very preterm infants sup-
plemented with high-dose DHA. The DINO (DHA for the
Improvement of Neurodevelopmental Outcome in Preterm
Infants) cohort was initially recruited between 2001 and 2005 from
5 collaborating centers [Women’s and Children’s Hospital,
Adelaide; Flinders Medical Centre, Adelaide; Royal Women’s Hos-
pital, Melbourne (RWH); King Edward Memorial Hospital, Perth;
and Royal Brisbane and Women’s Hospital, Brisbane]. Infants
born at ,33 wk gestational age were eligible. Infants with major
congenital or chromosomal abnormalities were excluded as were
infants from a multiple birth when not all live-born infants were
eligible or who were in other trials of fatty acid supplementation.
This trial was registered at the Australian New Zealand Clinical
Trials Registry as ACTRN12606000327583.

The procedure for allocating participants to treatment or placebo
was previously described in detail (36). In summary, infants were
randomly assigned to milk containing a higher concentration of
DHA (1% of total fatty acids; high-DHA group) or a standard
amount of DHA (0.2–0.3% of total fatty acids as DHA; control
group). The randomization schedule was stratified by sex and
birth weights of,1250 or$1250 g. All families, researchers, and
clinicians were unaware of group allocation. Infants were fed
their assigned diets from enrollment (within 5 d of commencing
enteral feeds) until term. During the intervention period, lactating

women were asked to consume 6 3 0.5-g capsules/d. Women in
the high-DHA group were given capsules supplying a total DHA
content of 900 mg/d as triglyceride from DHA-rich tuna oil, which
increased breast-milk DHA concentrations to w1% of total fatty
acids (36) without altering the naturally occurring concentration of
arachidonic acid (AA; 20:4n26) in breast milk (38, 39). Women
in the placebo group were given soy-oil capsules, which contains
no DHA and does not alter the DHA content of breast milk (36, 38).
A formula matching the higher-DHA or standard-DHA content was
provided if formula was required. The concentration of AAwas the
same for both groups.

To date, neurodevelopment at 18 mo (36), 3–5 y (40), and
7 y (41) and early respiratory and allergy outcomes (42) have
been reported from the trial. For the current report, the sample
consisted of only children recruited from the RWH site. The
RWH cohort originally comprised 124 participants; 8 died and 2
had withdrawn from the original DINO trial leaving 114 eligible
to participate in this study. All procedures were conducted in
accordance with the trial protocol, which was approved by the
Human Research Ethics Committee of the RWH. Participants
were assessed at 7 y of age, corrected for prematurity to avoid
bias in cognitive test scores (43); for consistency, we adopted the
same approach for the visual-processing measures.

Visual assessments

The Freiburg Visual Acuity Test

The Freiburg Visual Acuity Test (FrACT) is a computerized
test used to assess VA, CS, and vernier acuity (44). It is available
for download (http://www.michaelbach.de/fract.html) and was
developed primarily for clinical research studies (45). The
FrACT has high correspondence with other commonly used
measures and high test-retest reliability (46–48). The partici-
pant uses a directional keypad to indicate the orientation of the
“gap” (among 4 possible directions: up, down, left, right) of
the Landolt target. The participant, while sitting at a fixed
distance from the computer screen, is instructed to identify the
position of the gap by selecting 1 of 4 positions on a keypad.
Each of the tests uses Best PEST (parameter estimation by
sequential testing) adaptive threshold estimation to adjust the
difficulty of the task across trials according to the participant’s
performance.

Participants were given several practice items for each task to
ensure comprehension of task demands. We also used child-
friendly stickers on the monitor and keypad that corresponded to
the orientation of the gap to limit cognitive demand. Children with
motor difficulties were able to make verbal responses. VA was
assessed monocularly, and the untested eye was patched with
a translucent eye patch through which form perception was not
possible. The eyelid was open underneath the eye patch, which
allowed a small amount of light to reach the covered eye in an
attempt to minimize the effects of binocular inhibitory interactions
such as pupil size differences and binocular rivalry. VA was
measured with habitual correction (e.g., glasses) where applicable.
The eye with the best VA was used for subsequent tests.

VA

The FrACT VA test adjusts the size of the Landolt-C, which is
presented as a black symbol on a lighter background. The test
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adjusts the size of the target (and hence the width of the gap)
across trials over the full range of VA from w0.01 to w3.0 by
using a logarithmic scale. If the participant responds correctly,
the test item decreases in size for the next trial, whereas an
incorrect response causes the test item to increase in size; there
are a total of 30 trials, which yields a test-retest comparable to
the Early Treatment Diabetic Retinopathy Study procedure (46).
Decimal acuity scores were converted to log of the minimum
angle of resolution (logMAR) scores for data analysis in which
a value of 0.0 represents “average” 6/6 vision and smaller and
negative scores are indicative of better acuity. As is commonly
used, logMAR equivalent scores ,0.20 were considered normal
(4, 5, 49, 50) and participants with logMAR scores $0.20 were
determined to be clinically impaired.

CS

The FrACT CS test estimates the contrast threshold similarly;
however, in this task the diameter of the target is kept constant
and its contrast is adjusted across trials by modulating the
symbol luminance level. When the participant responds cor-
rectly, contrast is reduced in the next trial by increasing the
symbol luminance. When the participant responds incorrectly,
contrast is increased in the next trial by decreasing the symbol
luminance. At the end of each 30-trial test run, the program
records the subject’s Weber contrast, which was then converted
into its logarithm of CS score. In this experiment, the CS target
diameter was 30 min of arc contrast. Lower scores indicate
poorer performance. Previous studies of the Pelli-Robson test
reported mean scores in normally sighted participants between
1.70 and 1.88 and logarithm of CS scores #1.50 were con-
sidered impaired (51, 52).

Vernier acuity

Vernier acuity, also referred to as hyperacuity, is defined as the
ability to perceive a difference in relative spatial localization of
$2 visual stimuli. In the Vernier Acuity Test, the observer is
asked to indicate the direction of the line offset from a target
line; the displacement between the lines varies across trials. If
the participant responds correctly, the line offset decreases for
the next trial, whereas an incorrect response causes the line
offset to increase; there are a total of 36 trials. Stimulus line total
height is 0.58, 0.5 min of arc bar sigma, and 0.2 min of arc gap
height.

Testing conditions

In each of the FrACT tests, children were allowed to respond to
each trial at their own pace. Stimuli were displayed on a 22-inch
ViewSonic LED color monitor driven by a Hewlett-Packard
ProBook 6550b. The luminance and contrast from this screen were
measured and verified before each participant was tested, and
assessments were carried out in the same assessment room. The
monitorwas placed 170 cm from participants, and head positioning
was closely monitored by the assessor.

Randot Preschool Stereoacuity Test

The Randot Preschool Stereoacuity Test evaluates the per-
ception of binocular stereopsis at disparities ranging from 40 to
800 s of arc. The test consists of a set of 3 test booklets. Each test

booklet contains 2 sets of 4 random dot patterns for identifying
or, for the low-functioning children, matching with 4 two-
dimensional black-and-white illustrations presented in a different
order displayed on the opposite page of the book. Book 1 contains
intermediate disparities (200 and 100 s of arc), book 2 contains fine
disparities (60 and 40 s of arc), and book 3 contains coarse dis-
parities (800 and 400 s of arc). Testing begins with book 1 or book
3. To determine the testability of the child, the child is first asked to
identify the two-dimensional pictures that he or she will be re-
quired to identify or to match during the test. After the successful
identification of the 2-dimensional pictures, testing proceeds by
asking the child to identify or to match the corresponding
3-dimensional random dot pictures on the opposite page, which are
visible only through the polarized glasses. At each level of dis-
parity, the child must match or identify at least 2 of the 3 random
dot figures correctly to be considered as passing and to proceed to
the next level of the test with a smaller binocular disparity.
Resolutions #70 s of arc were considered to be normal (53).

Judgment of line orientation

The judgment of line orientation is a motor-free task designed
to measure deficits in the perception of line orientation in children
and adults (54). For each of the 30 black-and-white test items,
participants were asked to visually match 2 target lines, on the
basis of their orientation, to 2 lines within a multiple-choice array
of 11 differently oriented lines drawn at 188 intervals and arranged
in a semicircle. The participant was shown each item on a stim-
ulus card and asked to point or give a verbal response indicating
their answer; this task was untimed. Participants were shown all
items regardless of errors made. Correct responses were assigned
1 point each and summed. With the use of mean (6SD) age for
the summed raw scores calculated separately for boys and girls,
raw scores were transformed into z scores. Impairment scores
were also calculated for each participant, in which z scores that
fell below 21.5 (indicating that they were $1.5 SD below the
mean) were considered to be “impaired.”

Test of Visual Perceptual Skills, Third Edition

Visual perception was assessed with 5 subtests from the Test
of Visual Perceptual Skills, Third Edition (TVPS-3) (55),
including visual discrimination, spatial relations, form con-
stancy, figure ground, and visual closure. Each subtest consists
of 16 items; stimuli are black-and-white designs, and items are
arranged in a sequence of increasing difficulty. Each subtest
required the child to select 1 item from 4 or 5 choices; a pre-
determined ceiling was 3 consecutive incorrect items when the
subtest was discontinued. Each scale is age-standardized with
a normative mean of 10 (SD = 3), with higher scores indicative of
better performance. The scaled scores of these 5 subtests were
summed to form an overall visual perceptual score.

Statistical analyses

Data were analyzed by using SPSS version 20. Demographic
and perinatal characteristics were compared between partici-
pating and nonparticipating children by using t tests for con-
tinuous data or chi-square for categorical data. Between-group
differences (between high-dose DHA group compared with
standard-dose DHA group) were first analyzed by t tests, and
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mean differences and 95% CIs were calculated. The analyses
were repeated by using linear regression to determine whether
there were any interaction effects for sex, birth weight (,1250
compared with $1250 g), and parity (multiple birth compared
with singleton birth); the follow-up assessment at 18 mo corrected
age reported an interaction between sex and dietary treatment in
assessments of global development (36).

The prevalences of impairment (dichotomous outcome data) in
each of the visual-processing domains in the high-dose DHA and
standard-dose DHA groups were contrasted by using the chi-square
test, and ORs and 95% CIs were calculated. Clinical impairment
(impaired comparedwith normal) was determined bywell-accepted
cutoffs for VA, CS, and stereopsis, or the 10th percentile in the case
of the visual perceptual variables. With 49 and 55 participants, the
study had 81% power (a = 0.05) to detect a difference of 0.56 SDs
between groups for continuous variables, which is a moderate-
sized clinical effect.

RESULTS

A total of 104 children (91% of the 114 eligible children)
participated in the 7-y visual function follow-up assessment (49
in the high-DHA group and 55 in the standard-DHA group),
although some children had missing data for some items. There
were no significant differences between those who were fol-
lowed up and those who were not followed up (n = 12) for
perinatal variables (Table 1). The perinatal and demographic
characteristics of the high-DHA and standard-DHA groups
were mostly similar. Although the high-DHA group had more
participants who required surgery in the neonatal period (P =
0.03) and the standard-DHA group had more participants
diagnosed with retinopathy of prematurity stage 3 or greater in

either eye (P = 0.05), these complications were uncommon in
both groups.

Visual-processing outcomes

There was no evidence of differences between the high-DHA
and standard-DHA groups, although the high-DHA group tended
to perform poorer across most (12 of 13) measures of visual
processing (P . 0.05) (Table 2). There were no interaction
effects for sex, birth weight, or parity (data not shown).

Consistent with the continuous data, the rates of impairment in
visual-processing outcomes were not different between groups,
and the high-DHA group showed higher rates of clinical im-
pairment across most domains than did the standard-DHA group
(Table 3), except for both spatial relation tasks (judgment of line
orientation and spatial relations from the TVPS-3).

DISCUSSION

This study compared visual-processing functions in very
preterm 7 y olds who were randomly allocated to receive either
breast milk and/or formula supplemented with 1% DHA or who
or were fed according to current practice (w0.3% of total dietary
fatty acids). We did not find any visual-processing benefit as-
sociated with high DHA, which is notable given the purported
early benefits of DHA for retinal and visual outcomes. Predetermined
subgroup analyses that examined the interaction effect of sex, birth
weight (,1250 compared with $1250 g), and parity on visual-
processing outcomes did not yield any significant relations.

Although the outcomes between the groups were not significantly
different, the high-DHAgroup showed higher rates than the standard
group of clinical impairment in most of the visual-processing

TABLE 1

Demographic characteristics of very preterm participants who were followed up and those who were not followed up: high-DHA group compared with

control group1

Followed up Not followed up

High-dose

DHA (n = 49)

Controls

(n = 55)

High-dose

DHA (n = 12)

Controls

(n = 8)

Neonatal characteristics

Male sex,2 n (%) 25 (51.0) 29 (52.7) 6 (50) 2 (25)

Gestational age at birth,3 wk 29.6 6 2.04 29.4 6 2.1 29 6 2.7 29.3 6 3.0

Birth weight,3 g 1417 6 412 1345 6 359 1356 6 534 1391 6 429

SGA,2 n (%) 2 (4.1) 4 (7.3) 1 (8.3) 0 (0)

Multiple birth,2 n (%) 15 (30.6) 25 (45.5) 4 (33.3) 2 (25)

Diagnosed with brain injury,2,5 n (%) 10 (20.4) 11 (20.0) 2 (16.7) 2 (25)

Antenatal corticosteroids,2 n (%) 43 (87.8) 44 (80.0) 12 (100) 6 (75)

Oxygen therapy at 36 wk PMA,2 n (%) 6 (12.2) 8 (14.5) 2 (16.7) 0

Surgery,2 n (%) 4 (8.2) 0 (0)* 2 (16.7) 1 (12.5)

ROP stage $3 in either eye,2 n (%) 0 4 (7.3) 1 (8.3) 0

Sepsis,2 n (%) 8 (16.3) 10 (18.2) 2 (16.7) 0

Neurosensory disability2

Cerebral palsy, n (%) 3 (6.1) 3 (5.5) 0 0

IQ ,85, n (%) 7 (14.3) 4 (7.5) — —

1*P , 0.05 (high-dose DHA compared with controls in the followed-up group). IQ, intelligence quotient; PMA, postmenstrual age; ROP, retinopathy of

prematurity; SGA, small for gestational age.
2Categorical data were compared by using chi-square tests.
3Continuous data were compared by using independent t tests.
4Mean 6 SD (all such values).
5Diagnosed with brain injury = periventricular leukomalacia or grade III or IV intraventricular hemorrhage.
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measures assessed, except for both spatial relations tasks. This may
be clinically meaningful or may reflect chance. Interestingly, re-
search has shown that DHA differentially affects parts of the visual
system, such as rod photoreceptors and M retinal ganglion cells. M
ganglion cells that project to the lateral geniculate nucleus are fast-
responding and specialized in processing low spatial frequency
information, such as the general size and shape of an object.
Because they respond transiently to the presentation of visual
stimuli, M cells are important for motion perception, spatial re-
lations, and directing actions (56–58). Although it is appealing to
suspect that DHA had a specific beneficial effect on these specific
tasks it is important to reiterate that the differences were not
significant and the effect sizes small. Furthermore, other parts of
the visual system that also appear to be affected by concentrations
of DHA, and thus also have specific functional roles, did not show
any benefit. For example, rods are more adversely affected by
inadequate DHA than cone cells and are located mostly in the
peripheral part of the retina; they are w500 times more sensitive
to light than cone cells, enable night vision, and are more sensitive
to motion than cone cells. Consequently, visual functions such as
CS, perception of motion, and visual fields may be influenced by
DHA supplementation, in addition to visual acuity. This premise is
supported by animal research; in rats, deficiency in n–3 fatty acids
resulted in decreased amplitude of the electroretinogram (59) and
impairment in the ability to learn a visual discrimination task (60),
whereas in primates, the deficient animals had reduced visual
acuity (61) and an abnormal electroretinograph (62). This premise
was not supported by the current study findings.

Our findings are also contrary to earlier trials that reported
short-term visual-processing benefits associated with DHA
supplementation. There are a number of methodologic expla-
nations for this difference: 1) measurement, 2) age at assessment,
3) DHA concentration, 4) mode of feeding (breast milk compared
with formula), and 5) cohort size and characteristics. Limitations
with regard to the measurement of visual processing represent one
of the major differences between our study and previous trials.
Specifically, previous trials that reported short-term benefits of

DHA supplementation for retinal and cortical visual function
in both term (63–66) and preterm (29, 35, 62, 67, 68) infants
typically used a single measure of visual function, either visual
evoked potentials (VEPs) or grating acuity, both of which assess
very low level visual function (69). The visual system is com-
plex and a single measure, such as VEPs or grating acuity, is
unable to provide an accurate representation of functional vi-
sion as a whole and provides little information as to functional
vision, such as CS and visual perception. In contrast to these
previous trials, the current study evaluated a range of visual
functions including those that have been shown to differentially
benefit from DHA, such as functions subsumed primarily by rod
photoreceptors and M retinal ganglion cells, including CS,
spatial relations, and stereopsis (70–77). In addition, although
there appear to be several studies that suggested benefit for

TABLE 2

Visual-processing outcomes for the high-dose DHA and control groups1

Variable

High-dose DHA

(n = 49)

Control

(n = 55)

Mean difference

(95% CI) P

logMAR VA

Left Y 0.11 6 0.352 0.06 6 0.24 0.05 (20.08, 0.17) 0.44

Right Y 0.11 6 0.33 0.09 6 0.37 0.02 (20.12, 0.17) 0.77

Better eye Y 0.05 6 0.33 20.01 6 0.17 0.06 (20.05, 0.17) 0.26

logCS [ 1.63 6 0.34 1.69 6 0.22 20.06 (20.18, 0.06) 0.32

Vernier acuity [ 132 6 104 133 6 108 21 (245, 43) 0.97

Binocular stereopsis Y 221 6 300 149 6 220 72 (250, 195) 0.24

Judgment of line orientation [ 20.62 6 1.19 20.78 6 1.04 0.16 (20.31, 0.63) 0.51

Visual discrimination (SS) [ 8.49 6 3.05 8.75 6 3.23 20.26 (21.50, 0.97) 0.67

Spatial relations (SS) [ 11.57 6 3.81 12.25 6 4.83 20.68 (22.40, 1.05) 0.43

Form constancy (SS) [ 7.10 6 3.53 7.90 6 3.50 20.80 (22.19, 0.59) 0.26

Figure ground (SS) [ 9.02 6 3.45 9.55 6 4.06 20.53 (22.01, 0.96) 0.48

Visual closure (SS) [ 7.47 6 3.74 8.80 6 3.70 21.32 (22.79, 0.14) 0.08

Total score [ 43.6 6 13.3 47.49 6 13.8 23.8 (29.2, 1.5) 0.16

1Comparisons of the high-DHA and control groups were conducted by using independent t tests. logCS, logarithm of

contrast sensitivity score; logMAR, log of the minimum angle of resolution; SS, scaled score; VA, visual acuity; Y, lower
scores are better; [, higher scores are better.

2Mean 6 SD (all such values).

TABLE 3

Rates of impairment in visual-processing outcomes contrasted between

high-dose DHA and control groups1

Visual

impairment

High-dose

DHA

(n = 49)

Control

(n = 55)

OR

(95% CI) P

logMAR VA

better eye .0.2

8 (17.8) 6 (12.2) 1.55 (0.49, 4.88) 0.45

logCS 11 (25.6) 7 (14.6) 2.01 (0.70, 5.78) 0.19

Binocular stereopsis 15 (44.1) 14 (31.1) 1.75 (0.69, 4.41) 0.23

Judgment of line

orientation

9 (21.4) 12 (25.5) 0.80 (0.30, 2.13) 0.65

Visual discrimination 9 (18.4) 6 (11.3) 1.76 (0.58, 5.40) 0.32

Spatial relations 2 (4.1) 5 (9.6) 0.40 (0.07, 2.17) 0.27

Form constancy 17 (34.7) 11 (21.2) 1.98 (0.82, 4.81) 0.13

Figure ground 7 (14.3) 5 (9.4) 1.60 (0.47, 5.42) 0.45

Visual closure 20 (40.8) 13 (24.5) 2.12 (0.91, 4.95) 0.08

1Values are n (%) unless otherwise indicated. Comparisons of the higher-

DHA and control groups were conducted by using chi-square test. logCS,

logarithm of contrast sensitivity score; logMAR, log of the minimum angle

of resolution; VA, visual acuity.
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DHA supplementation of preterm infants, most of these com-
pared preterm infants fed DHA-supplemented formulas with
those fed unsupplemented formulas (29, 62, 67, 68). This is an
important methodologic issue because breast milk is the milk
feeding of choice for the clinical management of preterm in-
fants in the neonatal intensive care unit (i.e., decreases the risk
of necrotizing enterocolitis and sepsis). There are only 2 trials
that reflect enteral feedings that match the in utero accretion
rate (w1% of total fatty acids) and are inclusive of breast-milk
feeding practices (36, 37, 78). The current trial (DINO) is one
of these and previously showed that DHA supplementation
enhanced visual acuity at 4 mo corrected age in a subset of
children from the DINO trial different from those who partic-
ipated in the current study (35); the other did not evaluate visual
processing (37, 78).

The current findings suggest that there is no long-term benefit
for visual processing in either visual sensory or perceptual tasks.
There is some precedence for this finding: for example, Birch
et al. (79) assessed rod electroretinograms in very-low-birth-
weight neonates who received either mother’s milk or 1 of 3
infant formulas; and although they reported significant differ-
ences in rod ERP function between high- and low-DHA for-
mulas at 36 wk postconception, these differences were no longer
present at 57 wk postconception. Similarly, Carlson et al. (80)
found only a temporary benefit for DHA supplementation in
preterm infants without bronchopulmonary dysplasia who were
fed formula (i.e., at 2 mo, but not at 4, 6, 9, or 12 mo). Although
some animal research has shown that excess supplementation
with DHA or a high DHA:AA ratio can have negative conse-
quences for development and retinal structure/function, the concen-
tration of DHA in the current study was comparable to what the fetus
would accrue in the uterus during the last trimester and, as stated
above, did not alter the naturally occurring concentration of AA in
breast milk (39, 63). Furthermore, previous research investigating the
effect of 4 amounts of DHA supplementation on VA clearly showed
that infants fed a control formula (0% DHA) had significantly poorer
VEP VA at 12 mo of age than did infants fed any of the DHA-
supplemented formulas (0.32%, 0.64%, or 0.96% DHA; P, 0.001).
All DHA-supplemented formulas provided 0.64% of fatty acids as
AA (34 mg/100 kcal), which shows that differences in VAwere not
related to AA:DHA imbalance (63). There appears to be very little
evidence to suggest that AA is especially relevant to visual-
processing outcomes.

The major strength of this 7-y follow-up study in very-preterm-
born children is that it is the only study, to our knowledge, to evaluate
the effect of enteral feedings matching the in utero accretion rate of
DHA in infancy on an extensive battery of visual functions. Fur-
thermore, the study was large enough to detect a moderate-sized
clinical effect if one existed, and the attrition rate was low. Lack of
power is unlikely to be an explanation for not finding a benefit of
high-dose DHA on visual functioning, because the direction of the
effect favored the control group for all but one variable in Table 2.We
acknowledge that the intervention did not quite reach the target
amount of DHA (1%) (41, 81), and the “full dose” of DHAwas not
achieved until infants were receiving all enteral feedings; however, it
seems unlikely that the results would differ had it done so.

In conclusion, supplementing human milk with DHA at a dose
of w1% of total fatty acids given in the first months of life to
very preterm infants does not appear to confer any long-term
benefit for visual processing at school age.
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