
Candidate Differing-Inputs Obfuscation from Indistinguishability
Obfuscation and Auxiliary-Input Point Obfuscation

Pan Dongxue1,2, Li Hongda1,2, Ni Peifang1,2

1 The Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

2 State Key Lab of Information Security, Institute of Information Engineering,
School of Cyber Security, Chinese Academy of Sciences, Beijing 100093, China

pandongxue@iie.ac.cn, lihongda@iie.ac.cn, nipeifang@iie.ac.cn

Abstract. Differing-inputs obfuscation (diO), first proposed by Barak et. al. [4], provides stronger security than
that provided by indistinguishability obfuscation (iO). An iO scheme provides indistinguishability between the
obfuscations of two programs that are equivalent and have the same length of description. A diO scheme ensures
that the obfuscations of two efficiently generated programs with the same description length are indistinguishable if
it is hard to find an input on which their outputs differ. Ananth et. al. [1] showed the definition of diO with respect
to arbitrary auxiliary inputs. However, Garg et al. [19] showed that the existence of this kind of diO contradicts
a certain “special-purpose obfuscation” conjecture. Ishai, Pandey and Sahai [23] suggested a diO variant called
public-coin diO, which requires the auxiliary input to be a public random string and given as input to all relevant
algorithms. They gave a construction of public-coin diO by assuming the existence of public-coin differing-inputs
obfuscator for NC1 circuits.
In this paper, we use a slightly different definition, called public-coin-dependent diO. It allows the obfuscation
algorithm to additionally take as input the random coins used to sample the circuit pair (including the circuit to
be obfuscated) and thus the obfuscation algorithm can use the property of the circuit pair. We first construct a
public-coin differing-inputs obfuscator for a class of new defined function with iO and point obfuscation with
auxiliary input (AIPO). And then we use it to complete the public-coin-dependent diO for any pair of circuits that
are hard to be found an input on which their outputs differ. The constructions are based on secure iO schemes for
NC1, fully homomorphic encryption scheme, and the existence of AIPO. Besides, we show the applications of our
constructions.

Keywords: Differing-inputs obfuscation, indistinguishability obfuscation, point function, auxiliary input.

1 Introduction

Program obfuscation can make a program “unintelligible” while preserving its functionality. Barak et al. [4] first pro-
posed the notion of virtual black-box (VBB) obfuscation. VBB obfuscation requires that the obfuscation of one arbi-
trary function leaks nothing except what can be learnt from a black-box oracle access to the function. However, Barak
et al. [4] also showed a family of circuits called inherently unobfuscatable function that cannot be VBB obfuscated.
In light of this impossibility result, Barak et al. presented weaker notions of obfuscation such as indistinguishability
obfuscation and differing-inputs obfuscation and left open the problem of realizing such weaker notions.

Indistinguishability obfuscation. Indistinguishability obfuscation (iO) [4] requires that for any two equivalent
circuits C0 and C1 of similar poly-size, any probabilistic polynomial-time (PPT) adversarial algorithm can distinguish
between the obfuscations of C0 and C1 with negligible probability. Garg et al. [18] showed a candidate construction
of indistinguishability obfuscator for all poly-size circuits and applied it to the construction of functional encryption
for all circuits. They first transformed an NC1 circuit into matrix branching programs and used a simplified variant
of multilinear maps, called Multilinear Jigsaw Puzzles, to describe a candidate construction for indistinguishability
obfuscation for NC1 circuits. And then they used it and fully homomorphic encryption (FHE) scheme with with
decryption in NC1 to construct the construction of indistinguishability obfuscator for all poly-size circuits. After
this work, [2, 11] presented new constructions of indistinguishability obfuscation for NC1 circuits. However, [29, 25]
analyzed the multilinear map used in [18] and found attacks on it from zero-encoding. Fortunately, [30] proposed
a new way to obfuscate NC1 circuits, via composite-order multilinear maps. The construction operates directly on
straight-line NC1 circuits, rather than converting them to matrix branching programs as in other known approaches.

2

Also based on composite-order graded encoding schemes, [10] presented a candidate obfuscator that operates directly
on poly-size circuits. And based on a new “weak multilinear map model” [17] that captures all known polynomial-
time attacks on [18], [22] gave a new iO candidate which can be seen as a small modification or generalization of the
original candidate of [18]. These positive results on iO support our construction of public-coin-dependent diO.

Differing-inputs obfuscation. The stronger notion of differing-inputs obfuscation [4] states that if there exists a
PPT adversary that can distinguish between obfuscations of circuits C0 and C1 with non-negligible probability, then
there exists a PPT adversary that can actually extract an input on which the two circuits differ. Bellare, Stepanovs, and
Tessaro [5] showed a definitional framework for diO. Instead of applying for all circuits, the security of obfuscation in
the framework is parameterized by a class of samplers. Based on different types of samplers, one can define and study
corresponding restricted forms of diO. Ananth et. al. [1] showed the definition of diO with respect to arbitrary auxiliary
inputs. However, Garg et al. [19] showed that the existence of this kind of diO contradicts a certain “special-purpose
obfuscation” conjecture.

Ishai, Pandey and Sahai [23] suggested a diO variant called public-coin diO. A public-coin diO requires the auxil-
iary input to be a public random string which is given as input to all relevant algorithms. They gave a construction of
public-coin diO for polynomial-time Turing Machines (TMs) by assuming the existence of public-coin differing-inputs
obfuscator for NC1 circuits, public-coin succinct non-interactive arguments of knowledge, and fully homomorphic
encryption scheme with decryption in NC1. Based on the existence of public-coin collision-resistant hash functions,
Boyle and Pass [9] showed that public-coin diO and extractable one-way functions (EOWF) with some carefully de-
fined distributional auxiliary input cannot exist simultaneously. However, to the best of our knowledge, there is no work
presenting constructions of EOWFs with arbitrary auxiliary input or presenting constructions that deny the existence
of public-coin diO.

The recent work in [6] provides negative results on sub-exponential security and polynomial security for diO which
are both based on sub-exponentially secure assumptions. One is that sub-exponentially secure diO for TMs does not
exist if sub-exponentially secure one-way functions exist, and the other is that polynomially secure diO for TMs does
not exist if in addition sub-exponentially secure iO exists. Unless otherwise stated, the obfuscation schemes (diO, iO
etc.) in this paper is polynomially secure.

To the best of our knowledge, the previous works on constructing diO algorithm ignore the availability of the
property of the circuit pair in the construction. In this paper, we use a slightly different definition of public-coin diO,
called public-coin-dependent diO. It has the same security as public-coin diO, but it allows the obfuscation algorithm
to additionally take as input the random coins used to sample the circuit pair (including the circuit to be obfuscated)
and thus the obfuscation algorithm can use the property of the circuit pair. In this paper, we present a construction of
polynomially secure public-coin-dependent diO for polynomial-time circuits based on fully homomorphic encryption
scheme (FHE), polynomially secure iO schemes for NC1 circuits, and point obfuscation with auxiliary input (AIPO).
The first two tools implies the polynomially secure iO [18], which is a main tool used in our construction.

Point obfuscation with auxiliary input. Point obfuscation [13, 24, 28] is an obfuscation scheme of the class of
point function Ix that outputs 1 on input x and outputs 0 otherwise. Point obfuscation requires that an PPT adversary
with the given obfuscation can learn nothing more than what can be learnt with a black-box oracle access to the point
function. [21] proves the impossibility of obfuscation with auxiliary input, however, there is no negative result on the
existence of AIPO. Worst-case AIPO [8] requires that even the adversary is given some “leakage” about x, so-called
auxiliary information, the obfuscation with auxiliary input does not leak anything more than what can be learnt with
the auxiliary information and a black-box oracle access to the point function. A weaker distributional definition for
AIPO is auxiliary input point obfuscation for unpredictable distributions (see Definition 2.3). The Proposition A.2 in
[7] states that any VBB obfuscator with auxiliary input is also c-self-composable for any constant c. We can obtain
that AIPO is c-self-composable for any constant c by the same proof method.

There are works [14, 16] on obfuscating multi-bit point function Ix,y that outputs y on input x and outputs 0
otherwise. Multi-bit point obfuscation with auxiliary input (MB-AIPO) is proved to contradict the existence of iO
[12]. This is the reason why we choose to assume the existence of AIPO as opposed to MB-AIPO for the construction
of diO.

1.1 Our Results

To the best of our knowledge, all the previous constructions of diO based on the existence of some diO algorithm,
for instance, [23] constructs public-coin diO with assuming the existence of public-coin differing-inputs obfuscator
for NC1 circuits. And the previous works on constructing diO algorithm ignore the availability of the property of the

3

circuit pair. In this paper, we define public-coin-dependent diO with the same security as public-coin diO. It allows
the obfuscation algorithm to additionally take as input the random coins used to sample the circuit pair (including the
circuit to be obfuscated) and thus the obfuscation algorithm can use the property of the circuit pair. We first construct a
public-coin diO algorithm for a specially defined circuit class, and then we use it to achieve our public-coin-dependent
diO algorithm. Besides, we show the applications of our constructions.

In order to construct public-coin-dependent diO for any pair of efficiently generated programs with the same size
that are hard to be found an input on which their outputs differ, we first construct public-coin diO for the class of
hiding-input point function with multi-bit output {Iϕ,y}ϕ,y∈{0,1}n(λ) , where ϕ ∈ L (L ∈ NP) is a hard problem and
Iϕ,y outputs y on input x such thatRL(ϕ, x) = 1 and outputs 0 otherwise (See the meaning of the symbols in section
2 and section 3).

Let AIPO be an auxiliary input point obfuscation for unpredictable distributions. To begin the construction of
public-coin diO for a sampled Iϕ,y , where the length of y is n and y = y1, y2, · · · , yn, we claim that AIPO is c-self-
composable for any constant c. Then we also useAIPO to denote an obfuscation of constant-bit point function (similar
to multi-bit point function). We first choose a constant c and divide y into q = q(λ) parts such that (q − 1)c < n ≤ qc
and we have {

vi = y(i−1)c+1, · · · , yic, i ∈ [q − 1]

vq = y(q−1)c+1, · · · , yn, i = q
.

Then we randomly choose x1, · · · , xq ∈ {0, 1}λ. And Ixi,vi outputs vi on input xi and outputs 0 otherwise, Iϕ,x1||···||xq
outputs x′ = x1|| · · · ||xq on input x such thatRL(ϕ, x) = 1 and outputs 0 otherwise. We compute oi = AIPO(Ixi,vi)
and aux = iO(Iϕ,x1||···||xq). Here AIPO is an obfuscation scheme for Ixi,vi with auxiliary input. On input (ML, x),
the evaluation algorithm EvaluateL first computes aux(x) and outputs 0 if aux(x) = 0, otherwise it divides
aux(x) = x1, · · · , xq and outputs y = o1(x1), · · · , oq(xq). Hence then, we obtain a diO scheme for Iϕ,y that

diOL(Iϕ,y) = (ML = (aux, o1, · · · , oq), EvaluateL).

(see details in section 3)
With this result, we complete the construction of public-coin-dependent diO for any efficiently generated circuit

pair (C0, C1) ← Samp(r), where Samp is a public-coin differing-inputs sampler (see definition 2.5) and r is a
random value. We define L = (LY , LN) as follows:{

LY = {(C0, C1) : ∃ x such that C0(x) 6= C1(x)}
LN = {(C0, C1) : C0(x) = C1(x) for all x}

,

where (C0, C1) ← Samp(r), r ∈R {0, 1}poly(λ). Hence then, L is an NP language. Then, for any circuit pair
(C0, C1) ∈ L, it is hard to find an input x such that C0(x) 6= C1(x), then ϕ = (C0, C1) ∈ L is a hard problem. And
then, we can use the public-coin diO for Iϕ,y and FHE schemes to construct our public-coin-dependent diO.

1.2 Outline

In section 2, we define the notations and definitions that are used through the paper. In section 3, we define a new
function called hiding-input point function with multi-bit output, prove the constant-self-composability of AIPO, and
construct a public-coin diO scheme for the class of hiding-input point functions. In section 4, we complete the con-
struction of public-coin-dependent diO using the result obtained in section 3. In section 5, we show the applications of
our constructions. In section 6, we make a conclusion of our work.

2 Preliminaries

2.1 Notations

Let A(·) be a probabilistic algorithm and let A(x) be the result of running algorithm A on input x, then we use
y = A(x) (or y ← A(x)) to denote that y is set as A(x). Let Ar(x) be the result of running algorithm A on input
x with random value r. For a finite set (distribution) S, we use y ∈R S (or y ←R S) to denote that y is uniformly
selected from S. For any promise problem (language) L = (LY , LN), where LY is the collection of the yes instances

4

and LN is the collection of the no instances, and for any instance x ∈ L, we denote byRL the efficiently computable
binary NP relation for L. And for any witnessesw of x ∈ LY ,RL(x,w) = 1. We use [l] to denote the set {1, 2, · · · , l}.
We write negl(·) to denote an unspecified negligible function, poly(·) an unspecified polynomial. We denote by a||b
the concatenation of two bit strings a and b. We use “X c

= Y ” to denote that probabilistic distributions X and Y are
computationally indistinguishable. Unless otherwise stated, we use λ to denote the security parameter.

2.2 Obfuscation

Definition 2.1 Virtual black-box (VBB) obfuscation [3]. A probabilistic algorithm O is a circuit obfuscator if the
following three conditions hold:

– (functionality) For every circuit C, the string O(C) describes a circuit that computes the same function as C.
– (polynomial slowdown) There is a polynomial p such that for every circuit C, |O(C)| ≤ p(|C|).
– (virtual black-box property) For any probabilistic polynomial-time (PPT) A, there is a PPT S and a negligible

function negl(·) such that for all circuits C∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]
∣∣ ≤ negl(|C|).

We say that O is efficient if it runs in polynomial time.

Definition 2.2 Unpredictable distribution [12]. A distribution ensemble D = {Dλ = (Zλ,Xλ)}λ∈N on pairs of
strings is unpredictable if no poly-size circuit family can predict Xλ from Zλ. That is, for every poly-size circuit
sequence {Cλ}λ∈N and for all large enough λ:

Pr(z,x)←RDλ [Cλ(z) = x] ≤ negl(λ).

Definition 2.3 Auxiliary input point obfuscation for unpredictable distributions (AIPO) [12]. A PPT algorithm
AIPO is a point obfuscator for unpredictable distributions if it satisfies the functionality and polynomial slowdown
requirements as in VBB-obfuscation, and the following secrecy property: for any (efficiently samplable) unpredictable
distribution B1 over {0, 1}poly(λ) × {0, 1}λ, it holds for any PPT algorithm B2 that the probability of outputting true
by the following experiment for (B1,B2) is negligibly close to 1/2:

b←R {0, 1},
(z, x0)←R B1(1λ),
x1 ←R {0, 1}λ,
p←R AIPO(Ixb),
b′ ←R B2(1λ, p, z),
return b = b′.

The probability is over the coins of adversary (B1,B2), the coins of AIPO and the choices of x1 and b.

Definition 2.4 Indistinguishability obfuscation (iO) [18]. A PPT algorithm iO is called an indistinguishability ob-
fuscator for a circuit ensemble {Cλ}λ∈N if the following conditions are satisfied:

– (functionality) For all security parameters λ ∈ N , for all C ∈ Cλ, and for all input x we have that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

– (security) For any PPT distinguisher D, there exists a negligible function negl(·) such that the following holds:
For all security parameters λ ∈ N , for all pairs of same size circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then∣∣Pr[D(1λ, iO(1λ, C0)) = 1]− Pr[D(1λ, iO(1λ, C1)) = 1]

∣∣ ≤ negl(λ).
Definition 2.5 Public-coin differing-inputs sampler for circuits [23]. An efficient non-uniform sampling algorithm
Sam = {Samλ} is called a public-coin differing-inputs sampler for the parameterized collection of circuits C = {Cλ}
if the output of Samλ is distributed over Cλ×Cλ and for every efficient non-uniform algorithm A = {Aλ} there exists
a negligible function negl(·) such that for all λ ∈ N :

Prr[C0(x) 6= C1(x) : (C0, C1)← Samλ(r), x← Aλ(r)] ≤ negl(λ).

5

Definition 2.6 Public-coin differing-inputs obfuscator for circuits [23]. An uniform PPT algorithm diO is a public-
coin differing-inputs obfuscator for the parameterized collection of circuits C = {Cλ} if the following requirements
hold:

– (functionality) For all security parameters λ ∈ N , for all C ∈ Cλ, and for all input x we have that

Pr[C ′(x) = C(x) : C ′ ← diO(1λ, C)] = 1.

– (security) For every public-coin differing-inputs samplers Sam = {Samλ}, for the collection C, every PPT
distinguishing algorithm T = {Tλ}, there exists a negligible function negl(·) such that for all security parameters
λ ∈ N : ∣∣∣∣Pr [Tλ(r, C ′) = 1 : (C0, C1)← Samλ(r)

C ′ ← diO(1λ, C0)

]
−Pr

[
Tλ(r, C ′) = 1 : (C0, C1)← Samλ(r)

C ′ ← diO(1λ, C1)

]∣∣∣∣ ≤ negl(λ),
where the probability is taken over r and the coins of diO and Tλ.

In section 4, we use a slightly different definition of public-coin diO by letting the obfuscation algorithm take as
input the random value used to sample the circuit pair, which includes the circuit to be obfuscated. Then, it allows
the obfuscation algorithm to use the property of the circuit pair and achieve the same security as the public-coin diO
algorithm.

Definition 2.7 Public-coin-dependent differing-inputs obfuscator for circuits. An uniform PPT algorithm diO is a
public-coin-dependent differing-inputs obfuscator for the parameterized collection of circuits C = {Cλ} if the follow-
ing requirements hold:

– (functionality) For all security parameters λ ∈ N , for every public-coin differing-inputs samplers Sam =
{Samλ}, for the collection C, and for all input x we have that

Pr

C ′(x) = C(x) : (C0, C1)← Samλ(r)
C ∈ {C0, C1}
C ′ ← diO(1λ, C, r)

 = 1.

– (security) As in Definition 2.6.

2.3 Fully Homomorphic Encryption

Definition 2.8 Fully homomorphic encryption with decryption inNC1 [23]. A fully homomorphic encryption (FHE)
scheme is a public-key encryption scheme (Gen,Enc,Dec) with an additional evaluation algorithm Eval. HFE =
(Gen,Enc,Dec,Eval) is defined as following.
Key generation: The algorithm Gen takes the security parameter 1λ and outputs a key pair (pk, sk), where sk is the
secret decryption key and pk is the corresponding public encryption key.
Encryption: The algorithm Enc takes the public key pk, a message m and outputs a ciphertext ct = Encpk(m).
Decryption: The algorithm Dec takes the secret key sk and a ciphertext ct and outputs a message m′ = Decsk(ct). It
is guaranteed by the correctness of public-key encryption scheme that Decsk(Encpk(m)) = m.
Evaluation: The algorithm Eval takes the public key pk, ciphertexts c1, · · · , cl corresponding to the bits b1, · · · , bl
(under public key pk), a circuit f : {0, 1}l → {0, 1}l′ , and outputs a ciphertext as ct′ = Evalpk(f, (c1, · · · , cl)) such
that except with negligible probability over the randomness of all algorithms, the decryption of ct′ is f(b1, · · · , bl),
where l = l(λ) and l′ = l′(λ) are arbitrary polynomials.

A FHE scheme has decryption in NC1 if there exists a constant c ∈ N such that for all λ ∈ N the depth of the
circuit corresponding to the decryption function Dec(1λ, sk, ·) is at most c log λ.

6

3 Public-coin Differing-inputs Obfuscator for Multi-bit Hiding-input Point Function

The goal in this section is to construct public-coin differing-inputs obfuscator for the class of hiding-input point
function with multi-bit output, now we give the formal definition of this function class.

Definition 3.1 Hiding-input point function with multi-bit output. LetL be a language in NP.RL is the corresponding
relation. Let ϕ ∈ L be a hard problem such that for any PPT algorithmA, Pr[RL(ϕ,w) = 1 : w ← A(ϕ)] < negl(λ).
Then, we define hiding-input point function with multi-bit output as follows:

Iϕ,y(x) =

{
y, if RL(ϕ, x) = 1

0, otherwise
,

where y ∈ {0, 1}n and n is a polynomial in λ.

For example, let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator, and then define L as{
LY = {m : m ∈ {0, 1}2λ,∃ r ∈ {0, 1}λ such that m = G(r)}
LN = {m : m ∈ {0, 1}2λ,@ r ∈ {0, 1}λ such that m = G(r)}

,

then a hard problem ϕ ∈ L is a real random m ∈ {0, 1}2λ.

3.1 Constant-self-composability of AIPO

To begin the construction of public-coin diO for a sampled Iϕ,y , we claim that AIPO is c-self-composable for any
constant c.

Claim 3.1 Any auxiliary input point obfuscation for unpredictable distributions is c-self-composable for any constant
c.

Proof. For simplicity, we start with the case c = 2. LetO be an point obfuscator with auxiliary input for unpredictable
distributions, and let A be a binary poly-size adversary and p a polynomial. For any (efficiently samplable) unpre-
dictable distribution D1 = (Z1,Xλ) over {0, 1}poly(λ) × {0, 1}λ, and for any (z, x) ∈R D1 and every x′ ∈R {0, 1}λ,
we set

D2 = (Z2,Xλ) = {((Os(Ix), z), x) : (z, x) ∈ D1, s ∈R {0, 1}poly(λ)}.
Here Os(Ix) is the result of running algorithm O on input Ix with randomness s. Then, by the property of point
obfuscation with auxiliary input, no poly-size circuit family can predict Xλ from Z2. Then D2 is a new unpredictable
distribution and we have that:∣∣∣ Pr

A,r,s
[A(Or(Ix), Os(Ix), z) = 1]− Pr

A,r′,s
[A(Or′(Ix′), Os(Ix), z) = 1]

∣∣∣ ≤ 1/2p(λ)

where we treated the second obfuscation as auxiliary input.
Now we can consider another unpredictable distribution

D3 = (Z3,Xλ) =


((Or′(Ix′), z), x) : (z, x) ∈ D1,

x′ ∈R {0, 1}λ,
r′ ∈R {0, 1}poly(λ)

 .

Hence then, and for any (z, x) ∈R D1 and x′, x′′ ∈R {0, 1}λ, we have that:∣∣∣ Pr
A,r′,s

[A(Or′(Ix′), Os(Ix), z) = 1]− Pr
A,r′,s′

[A(Or′(Ix′), Os′(Ix′′), z) = 1]
∣∣∣ ≤ 1/2p(λ)

where we treated the first obfuscation as auxiliary input and ((Or′(Ix′), z), x) ∈R D3. Therefore,∣∣∣ Pr
A,r,s

[A(Or(Ix), Os(Ix), z) = 1]− Pr
A,r′,s′

[A(Or′(Ix′), Os′(Ix′′), z) = 1]
∣∣∣ ≤ 1/p(λ)

and thus AIPO is 2-self-composable.
The result follows for c = 2 ut

7

3.2 Construction of Unpredictable Distribution

Given a multi-bit hiding-input point function Iϕ,y , we choose a constant c and divide y = y1, y2, · · · , yn into q = q(λ)
parts such that (q − 1)c ≤ n ≤ qc. Now we present a sequence of unpredictable distributions Di over {0, 1}poly(λ) ×
{0, 1}λ. Let iO be an indistinguishability obfuscator for all poly-size circuits initiated by the construction in [18]. We
claim that

Di = (Zλ,Xλ) =


((iOr(Iϕ,x1||···||xq), i), xi)
satisfying : x1, · · · , xq ∈R {0, 1}λ,

r ∈R {0, 1}poly(λ)


is unpredictable.

Claim 3.2 Assuming the existence of polynomially secure indistinguishability obfuscator for NC1 circuits and the
existence of FHE with decryption in NC1, and let iO be an indistinguishability obfuscator for all poly-size circuits
initiated by the construction in [18]. In addition we assume that when ϕ ∈ LY , any PPT adversary without an witness
for ϕ ∈ LY cannot obtain xi from (iOr(Iϕ,x1||···||xq), i), then Di = (Zλ,Xλ) defined above is an unpredictable
distribution.

Proof. In order to prove that Di is unpredictable, we only need to prove that when ϕ ∈ LN , the probability of
computing xi from the auxiliary input (iOr(Iϕ,x1||···||xq), i) is negligible. The result follows from the security of
the indistinguishability obfuscator constructed in [18] and the hardness of the problem ϕ. Since when ϕ ∈ LN ,
(Iϕ,x1||···||xq is functional equivalent to any (Iϕ,x′1||···||x′q . If there exists any PPT adversary A that can compute xi
from the auxiliary input (iOr(Iϕ,x1||···||xq), i), there exists a PPT distinguisher D that can break the security of iO by
invoking A. ut

Remark.

1. Although the last assumption in Claim 3.2 looks quite strong, we were unable to contradict it.
2. If ϕ ∈ L satisfies that for any PPT adversary B, it cannot determine whether ϕ ∈ LY or ϕ ∈ LN , then the

claim does not need the third assumption. Since when ϕ ∈ LY , if there exists any PPT adversary A that can
compute xi from the auxiliary input (iOr(Iϕ,x1||···||xq), i), then there exists a PPT algorithm B that can determine
whether ϕ ∈ LY or ϕ ∈ LN . B(ϕ) invokes A with (iOr(Iϕ,x1||···||xq), i) and determines ϕ ∈ LY if A outputs xi,
otherwise B determines ϕ ∈ LN .

3.3 Construction of Public-coin diO for Multi-bit Hiding-input Point Function

Let O be an point obfuscator with auxiliary input for unpredictable distributions, and iO be an indistinguishability
obfuscator for all poly-size circuits initiated by the construction in [18].

Given any Iϕ,y in the class of hiding-input point function with multi-bit output, where the length of y is n and
y = y1, y2, · · · , yn, we first divide y into q = q(λ) parts. And then we randomly choose x1, · · · , xq ∈ {0, 1}λ and
compute an auxiliary input aux = iO(Iϕ,x1||···||xq). Thus that for all i ∈ [q] we have ((aux, i), xi) ∈ Di, where Di is
as defined in section 3.2.

Next, based on the constant-self-composability of the AIPO scheme O for unpredictable distribution Di, we also
use O to denote an obfuscation of constant-bit point function. Let c be any constant and m = m1, · · · ,mc, O(Ixi,m)
is defined as follows:

O(Ixi,m) = O(Ixi), O(Iu1
), · · · , O(Iuc),

where Ixi and Iuj (j ∈ [c]) are point functions, and for j ∈ [c], uj = xi if mj = 1, and uj ∈R {0, 1}λ otherwise. The
evaluation algorithm takes input u ∈ {0, 1}λ and computes O(Ixi)(u), and outputs m = O(Iu1

)(u), · · · , O(Iuc)(u)
if O(Ixi)(u) = 1. Otherwise, it outputs 0. Then for any ((aux, i), xi) ∈ Di and for any m,m′ ∈ {0, 1}c we have

((aux, i), O(Ixi,m))
c
= ((aux, i), O(Ixi,m′)).

The indistinguishability follows from the (c+ 1)-self-composability of O.
Combined above results, we obtain a public-coin diO scheme for Iϕ,y . We first choose a constant c and let{

vi = y(i−1)c+1, · · · , yic, i ∈ [q − 1]

vq = y(q−1)c+1, · · · , yn, i = q
.

8

Then, we define
ML = aux,O(Ix1,v1), · · · , O(Ixq,vq).

On input (ML, x), the evaluation algorithm EvaluateL first evaluates aux(x) = iO(Iϕ,x1||···||xq)(x) and outputs 0 if
aux(x) = 0. Otherwise, it divides aux(x) as aux(x) = x1, · · · , xq and outputs

y = O(Ix1,v1)(x1), · · · , O(Ixq,vq)(xq).

Then, we obtain the public-coin diO algorithm for Iϕ,y as diOL(Iϕ,y) = (ML, EvaluateL). The above construction
is depicted in Figure 1.

1. Given a multi-bit hiding-input point function Iϕ,y , choose a constant c and divide y =
y1, y2, · · · , yn into q = q(λ) parts such that (q − 1)c < n ≤ qc,and for i ∈ [q − 1],
vi = y(i−1)c+1, · · · , yic and vq = y(q−1)c+1, · · · , yn.

2. Uniformly select x1, · · · , xq ∈ {0, 1}λ.
3. Uniformly select r0 ∈ {0, 1}poly(λ), compute
aux = iO(Iϕ,x1||···||xq) with r0.

4. For i ∈ [q], uniformly select ri ∈ {0, 1}poly(λ), compute O(Ixi,vi) with ri.
5. Set

ML = aux,O(Ix1,v1), · · · , O(Ixq,vq).

6. EvaluateL(ML, x): First evaluate

aux(x) = iO(Iϕ,x1||···||xq)(x)

and output 0 if aux(x) = 0.
Otherwise, divide aux(x) = x1, · · · , xq and output

y = O(Ix1,v1)(x1), · · · , O(Ixq,vq)(xq).

7. Output diOL(Iϕ,y) = (ML, EvaluateL).

Figure 1. Construction of public-coin diO for multi-bit hiding-input point function.

Theorem 3.1 Assuming the construction Di in section 3.2 is an unpredictable distribution and the existence of aux-
iliary input point obfuscation for unpredictable distributions, the construction in Figure 1 is a public-coin differing-
inputs obfuscator for the class of hiding-input point function with multi-bit output.

Proof. It is obvious that the construction in Figure 1 is a PPT algorithm and it keeps the functionality from Iϕ,y , which
can be seen from the evaluation algorithm.

Fix any public-coin differing-inputs sampler Sam = {Samλ} for the class of hiding-input point function with
multi-bit output {Iϕ,y}ϕ,y∈{0,1}n(λ) , where ϕ ∈ L (L is some language in NP) is a hard problem (see Definition 3.1).
We need to prove that for any PPT distinguishing algorithmA = {Aλ}, there exists a negligible function negl(·) such
that for all security parameters λ ∈ N :∣∣∣∣Pr

[
Aλ(r, Ĩ) = 1 : (Iϕ,y, Iϕ,y′)← Samλ(r)

Ĩ ← diO(1λ, Iϕ,y)

]

−Pr

[
Aλ(r, Ĩ) = 1 : (Iϕ,y, Iϕ,y′)← Samλ(r)

Ĩ ← diO(1λ, Iϕ,y′)

]∣∣∣∣ ≤ negl(λ),
where the probability is taken over r and the coins of diO and Aλ.

That is to prove that for any sampled hard problem ϕ, and for any y, y′ ∈ {0, 1}n:{
diOL(Iϕ,y)

} c
=
{
diOL(Iϕ,y′)

}
.

Let {
vi = y(i−1)c+1, · · · , yic, i ∈ [q − 1]

vq = y(q−1)c+1, · · · , yn, i = q
,

{
v′i = y′(i−1)c+1, · · · , y

′
ic, i ∈ [q − 1]

v′q = y′(q−1)c+1, · · · , y
′
n, i = q

.

9

Since the description of the evaluation algorithm is deterministic, for convenience, we do not write it in the ob-
fuscation results in the following proof. For every x1, · · · , xq ∈R {0, 1}λ, consider the following sequence of hybrid
distributions. For k ∈ {0, 1, · · · , q}, we define Hk

q :

Hk
q :=

{(
iO(Iϕ,x1||···||xq), O(Ix1,v′1

), · · · , O(Ixk,v′k), O(Ixk+1,vk+1
), · · · , O(Ixq,vq)

)}
.

Then H0
q is the distribution

{
diOL(Iϕ,y)

}
x1,··· ,xq

and Hq
q is the distribution

{
diOL(Iϕ,y′)

}
x1,··· ,xq

.

To prove
{
diOL(Iϕ,y)

} c
=
{
diOL(Iϕ,y′)

}
, we first prove that for every x1, · · · , xq ∈R {0, 1}λ,{

diOL(Iϕ,y)
}
x1,··· ,xq

c
=
{
diOL(Iϕ,y′)

}
x1,··· ,xq

,

which is to prove H0
q

c
= Hq

q . And thus we need to prove that Hk
q

c
= Hk+1

q for every k ∈ {0, 1, · · · , q − 1}.
Since x1, · · · , xq are independent, the q obfuscations are independent. Therefore, the indistinguishability between

Hk
q and Hk+1

q follows from the indistinguishability between the distributions:
{(
iO(Iϕ,x1||···||xq), O(Ixk+1,vk+1

)
)}

and
{(
iO(Iϕ,x1||···||xq), O(Ixk+1,v′k+1

)
)}
.

Since
{
diOL(Iϕ,y)

}
= ∪x1,··· ,xq∈{0,1}λ

{
diOL(Iϕ,y)

}
x1,··· ,xq

, then for any Ĩ ∈
{
diOL(Iϕ,y)

}
, there would be

some x1, · · · , xq ∈ {0, 1}λ such that Ĩ ∈
{
diOL(Iϕ,y)

}
x1,··· ,xq

. Then no PPT algorithm can distinguish Ĩ is an
obfuscation of Iϕ,y or Iϕ,y′ .

This completes the proof. ut

4 Public-coin-dependent Differing-inputs Obfuscation

Based on the results obtained in section 3, the goal in this section is to construct a public-coin-dependent differing-
inputs obfuscator for any efficiently generated circuit pair (C0, C1) ← Samp(r), where Samp is any public-coin
differing-inputs sampler for some parameterized collection of circuits C (see definition 2.5) and r is a random value.
We first define an language L = (LY , LN) as follows:{

LY = {(C0, C1) : ∃ x such that C0(x) 6= C1(x)}
LN = {(C0, C1) : C0(x) = C1(x) for all x}

,

where (C0, C1) ← Samp(r), r ∈R {0, 1}poly(λ). Hence then, L is an NP language and we let RL be the efficiently
computable binary NP relation for L. Then, for any circuit pair (C0, C1) ∈ L, it is hard to find an input x such that
C0(x) 6= C1(x)), then ϕ = (C0, C1) ∈ L is a hard problem. And then we have that for any PPT algorithm A,

Pr[RL(ϕ,w) = 1 : w ← A(ϕ)] < negl(λ).

In this condition, we can use the result in section 3 and hence then make use of the property of the circuit pair in the
construction of public-coin-dependent diO.

Let C = {Cλ} be a parameterized collection of polynomial-time circuits and Samp is any public-coin differing-
inputs sampler for C. Let FHE = (Gen,Enc,Dec,Eval) be a fully homomorphic encryption scheme. Let diOL
be a public-coin differing-inputs obfuscator for the class of function {Iϕ,y}ϕ∈L,y∈{0,1}n(λ) , where L is defined as
above. Let iO be a polynomially secure indistinguishability obfuscator for all poly-size circuits which is initiated by
any polynomially secure indistinguishability obfuscator for NC1 circuits and the construction in [18]. Let Uλ be an
oblivious universal circuit which on input the description of a circuit B and a string x, executes B on x.

Different from the previous works on the construction of diO, our public-coin-dependent differing-inputs obfus-
cator takes as input the random coins r (used by the sampler) such that {C0, C1} ← Samp(r) and obfuscates circuit
C ∈ {C0, C1}, the one needed to be obfuscated. It means that besides the circuit to be obfuscated, the obfuscator
needs to know another circuit such that it is hard to find an input on which the two circuits differ. Our construction is
described by an obfuscation algorithm Obfuscate and an evaluation algorithm Evaluate.

Obfuscator Obfuscate(1λ, C, r): Sample C0, C1 ∈ Cλ by Samp(r) and check whether C ∈ {C0, C1}. If C ∈
{C0, C1}, proceed the following steps.

10

1. Generate two FHE key pairs (pk0, sk0)← Gen(1λ), (pk1, sk1)← Gen(1λ).
2. Generate ciphertexts f0 = Encpk0(C), f1 = Encpk1(C).
3. Let ϕ = (C0, C1) ∈ L. Compute P1 = diOL(Iϕ,sk0||pk0).
4. Generate an obfuscation of the decryption algorithm Decrypt0 (see details in Figure 2) as P2 = iO(Decrypt0).
5. The obfuscation components are output as: C ′ = (P1, P2, pk0, pk1, f0, f1).

Evaluation Evaluate(C ′ = (P1, P2, pk0, pk1, f0, f1), x): The Evaluate algorithm takes in the obfuscation out-
put C ′ and a circuit input x and computes the following.

1. Compute a = P1(x)
2. If a 6= 0, divide it into a = sk, pk. Compute C = Decsk(f0) and output C(x).
3. If a = 0, compute ct0 = Evalpk0(Uλ(·, x), f0) and ct1 = Evalpk1(Uλ(·, x), f1). Run P2(ct0, ct1, x) and output

the result.

Then our public-coin-dependent diO algorithm is diO(1λ, C, r) = (Obfuscate(1λ, C, r), Evaluate).
The decryption algorithm Decrypt0 defined in Figure 2 only decrypts the ciphertexts meeting the conditions set

in the algorithm. It is easy to see that the algorithms Decrypt0 and Decrypt1 (defined in Figure 3) are two equivalent
circuits.

Decryption algorithm Decrypt0:
Input: a tuple (ct0, ct1, x), Constants: ϕ, pk0, pk1, f0, f1, sk0.
Proceeds as follows:

1. Check whetherRL(ϕ, x) = 1, if the check succeeds, output ⊥.
2. Else, check whether

ct0 = Evalpk0(Uλ(·, x), f0) ∧ ct1 = Evalpk1(Uλ(·, x), f1),

if the check fails, output ⊥.
3. Else, output Decsk0(ct0).

Figure 2. The decryption algorithm Decrypt0.

Decryption algorithm Decrypt1:
Input: a tuple (ct0, ct1, x), Constants: ϕ, pk0, pk1, f0, f1, sk1.
Proceeds as follows:

1. Check whetherRL(ϕ, x) = 1, if the check succeeds, output ⊥.
2. Else, check whether

ct0 = Evalpk0(Uλ(·, x), f0) ∧ ct1 = Evalpk1(Uλ(·, x), f1),

if the check fails, output ⊥.
3. Else, output Decsk1(ct1).

Figure 3. The decryption algorithm Decrypt1.

Remark. In the decryption algorithms Decrypt0 and Decrypt1, we use the FHE scheme with deterministic eval-
uation algorithm. In the case the decryption algorithms use the FHE scheme with probabilistic evaluation algorithm,
the inputs of the decryption algorithms need to include the randomness used to compute ct0, ct1 with the probabilistic
evaluation algorithm.

Theorem 4.1 Assuming the construction in Figure 1 is a public-coin differing-inputs obfuscator for the class of
hiding-input point function with multi-bit output and the existence of fully homomorphic encryption schemes. Then
the construction above is a public-coin-dependent differing-inputs obfuscation.

Proof. Since the algorithms used in the construction are all PPT algorithms, the obfuscation algorithm diO is also a
PPT algorithm. The functionality follows from the correctness of the evaluation algorithm, which is guaranteed by the
security of diOL algorithm and the correctness of the FHE algorithm.

11

To begin the proof of security, we first recall the security of the diOL algorithm for {Iϕ,y}ϕ∈L,y∈R{0,1}n , where
L is defined in the beginning of section 4. Fix any public-coin differing-inputs sampler Sam = {Samλ}, for any PPT
distinguishing algorithm A = {Aλ}, there exists a negligible function negl(·) such that for all security parameters
λ ∈ N : ∣∣∣∣Pr

[
Aλ(r, Ĩ) = 1 : (Iϕ,y, Iϕ,y′)← Samλ(r)

Ĩ ← diO(1λ, Iϕ,y)

]

−Pr

[
Aλ(r, Ĩ) = 1 : (Iϕ,y, Iϕ,y′)← Samλ(r)

Ĩ ← diO(1λ, Iϕ,y′)

]∣∣∣∣ ≤ negl(λ),
where the probability is taken over r and the coins of diO and Aλ.

Since the description of the evaluation algorithm is deterministic, for convenience, we do not write it in the obfusca-
tion results in the following proof. Now we assume for the contradiction that there exists a public-coin differing-inputs
sampler Samp, a PPT adversary T , a polynomial p = p(λ) and a security parameters λ ∈ N such that∣∣∣∣Pr [Tλ(r, C ′) = 1 : (C0, C1)← Sampλ(r),

C ′ ← diO(1λ, C0)

]
−Pr

[
Tλ(r, C ′) = 1 : (C0, C1)← Sampλ(r),

C ′ ← diO(1λ, C1)

] ∣∣∣∣ > 1/p,

where the probability is taken over r and the coins of diO and Tλ. Then, we construct a PPT adversaryAλ(·, ·) to break
the security of diOL algorithm for {Iϕ,y}ϕ∈L,y∈R{0,1}n , where n is the length of the key pair of the FHE scheme,
(C0, C1)← Sampλ(r), and ϕ = (C0, C1) ∈ L.

We define a public-coin differing-inputs sampler Sam = {Samλ} for {Iϕ,y}ϕ∈L,y∈R{0,1}n as follows: On input
(r, r0, r1) ∈ {0, 1}poly(λ)

1. Sample C0, C1 ∈ Cλ by Sampλ(r) and let ϕ = (C0, C1) ∈ L.
2. Generate FHE key pairs (pk0, sk0)← Genr0(1

λ), (pk1, sk1)← Genr1(1
λ),

3. Output (Iϕ,sk0||pk0 , Iϕ,sk1||pk1).

Then we construct a PPT adversary Aλ(·, ·) as follows:
AdversaryA((r, r0, r1), diOL(Iϕ,y)): Sample (Iϕ,sk0||pk0 , Iϕ,sk1||pk1) by Samλ(r, r0, r1) and obtain ϕ = (C0, C1),
FHE key pairs (pk0, sk0), (pk1, sk1), and set P1 = diOL(Iϕ,y).

1. Select r2 ∈ {0, 1}poly(λ), generate FHE key pair (pk1, sk1)← Genr2(1
λ).

2. Select b ∈R {0, 1}.
3. Compute f0 = Encpkb(Cb), f1 = Encpk1(Cb).

4. Select r4 ∈ {0, 1}poly(λ) and compute P2 = iO(Decrypt0; r4) with constants ϕ, pk0 = pkb, pk1, f0, f1,
sk0 = skb.

5. Invoke T (r, ·) with C ′ = (P1, P2, pk
b, pk1, f0, f1) and output b′ = T (r, C ′).

Now we compute the probability thatA succeeds in distinguishing y = sk0||pk0 or y = sk1||pk1. For convenience
in proving, we assume that y = sk0||pk0.

Pr[b′ = 0] = Pr[b′ = b ∧ b = 0] + Pr[b′ = 1− b ∧ b = 1]

=
1

2
Pr[b′ = 0|b = 0] +

1

2
Pr[b′ = 0|b = 1]

=
1

2
Pr[T succeeds|b = 0] +

1

2
Pr[T fails|b = 1],

Pr[b′ = 1] = Pr[b′ = 1− b ∧ b = 0] + Pr[b′ = b ∧ b = 1]

=
1

2
Pr[b′ = 1|b = 0] +

1

2
Pr[b′ = 1|b = 1]

=
1

2
Pr[T fails|b = 0] +

1

2
Pr[T succeeds|b = 1].

12

We claim that (P2, pk
b, pk1, f0, f1) with the ciphertexts corresponding to C0 and (P2, pk

b, pk1, f0, f1) with the
ciphertexts corresponding to C1 are indistinguishable. The proof with a sequence of hybrids follows from the proof of
security of the poly-sized circuit iO algorithm in [18]. The indistinguishability is proved from the IND-CPA property of
the PKE scheme (included in the FHE scheme) and the indistinguishability security of the obfuscator for all poly-size
circuits. Thus we can see that for a random y∗ ∈ {0, 1}n\{skb||pkb, sk1||pk1}, (diOL(Iϕ,y∗), P2, pk

b, pk1, f0, f1)
with the ciphertexts corresponding to C0 and (diOL(Iϕ,y∗), P2, pk

b, pk1, f0, f1) with the ciphertexts corresponding
to C1 are indistinguishable. Otherwise, we can obtain an adversary for (P2, pk

b, pk1, f0, f1). It just chooses a random
y∗ ∈ {0, 1}n, computes diOL(Iϕ,y∗), and invokes the adversary for (diOL(Iϕ,y∗), P2, pk

b, pk1, f0, f1) to break the
indistinguishability. Hence then, in the condition that y = sk0||pk0, we have Pr[T succeeds|b = 1]− Pr[T fails|b =
1] < negl(λ). And then we have

Pr[b′ = 0]− Pr[b′ = 1]

=
1

2
(Pr[T succeeds|b = 0]− Pr[T fails|b = 0]) +

1

2
(Pr[T fails|b = 1]− Pr[T succeeds|b = 1])

>
1

2p
− negl(λ).

This contradicts the security of diOL algorithm for the function class {Iϕ,y}ϕ∈L,y∈R{0,1}n . Hence then, this com-
pletes the proof. ut

5 Applications

Essentially, our public-coin-dependent diO algorithm works once it obtains the hard problem ϕ = (C0, C1) ∈ L
instead of the random coins r used to sample (C0, C1). To the best of our knowledge, in most application scenarios
of diO and iO, there would be two special defined circuits satisfying the working conditions of diO and iO (respec-
tively), such as the functional encryption scheme for circuits constructed from iO [18], the functional encryption
scheme for Turing Machines constructed from public-coin diO [23], the public-key encryption scheme from iO [27],
the four message concurrent zero knowledge protocol from public-coin diO [26], and the constant-round concurrent
zero knowledge protocol from iO [15]. Hence then, besides the circuit to be obfuscated, it is reasonable to require the
obfuscator to know another circuit such that it is hard to find an input on which the two circuits differ. In the follow-
ings, we show the applications of our constructions. We first use our public-coin diO for multi-bit hiding-input point
functions to construct witness encryption schemes. And then we show that our public-coin-dependent diO algorithm
can be applied to public-key encryption schemes.

5.1 Witness Encryption.

Definition 5.1 Witness Encryption [20]. A witness encryption scheme for an NP language L = (LY , LN) (with
corresponding witness relationR) consists of the following two polynomial-time algorithms:

Encryption. The algorithm Encrypt(1λ, ϕ,m) takes as input a security parameter 1λ, an unbounded-length
string ϕ, and a message m ∈M for some message space M , and outputs a ciphertext CT .
Decryption. The algorithm Decrypt(CT,w) takes as input a ciphertext CT and an unbounded-length string w,
and outputs a message m or the symbol ⊥.

These algorithms satisfy the following two conditions:

Correctness. For any security parameter λ, for any m ∈ M , and for any ϕ ∈ LY such that R(ϕ,w) holds, there
exists a negligible function negl(·), such that:

Pr[Decrypt(Encrypt(1λ, ϕ,m), w) = m] = 1− negl(λ).

Soundness Security. For any ϕ ∈ LN , for any PPT adversary A and messages m0,m1 ∈ M , there exists a
negligible function negl(·), such that:∣∣Pr[A(Encrypt(1λ, ϕ,m0)) = 1]− Pr[A(Encrypt(1λ, ϕ,m1)) = 1]

∣∣ < negl(λ).

13

Witness encryption does not require any setup algorithm.

We additionally define message indistinguishability for a witness encryption scheme, which implies the soundness
security:
Message Indistinguishability. For any ϕ ∈ L, for any PPT adversary A and messages m0,m1 ∈ M , there exists a
negligible function negl(·), such that:∣∣Pr[A(Encrypt(1λ, ϕ,m0)) = 1]− Pr[A(Encrypt(1λ, ϕ,m1)) = 1]

∣∣ < negl(λ).

We show a witness encryption scheme with correctness and message indistinguishability for the NP language
L = (LY , LN) as follows: {

LY = {(C0, C1) : ∃ x such that C0(x) 6= C1(x)}
LN = {(C0, C1) : C0(x) = C1(x) for all x}

,

where (C0, C1) ← Samp(r), r ∈R {0, 1}poly(λ) and Samp is any public-coin differing-inputs sampler for some
parameterized collection of circuits C. Let diOL be our public-coin diO for multi-bit hiding-input point functions.

Construction 5.1. Witness encryption scheme Encrypt(1λ, ϕ, ·, ·), Decrypt(1λ, ·, w).
Encrypt(1λ, ϕ, ·, ·): On input a message m ∈ {0, 1}λ, it chooses r ∈ {0, 1}poly(λ) and computes

CT = Encrypt(1λ, ϕ,m, r) = diOL(Iϕ,m; r).

Decrypt(1λ, ·, w): On input a ciphertext CT , it runs CT on w and returns m = CT (w).

The correctness of decryption is immediate. Note that for any x ∈ L, for any messages m0,m1 ∈ M , the indis-
tinguishability between Encrypt(1λ, ϕ,m0) and Encrypt(1λ, ϕ,m1) follows from the indistinguishability between
diOL(Iϕ,m0) and diOL(Iϕ,m1).

5.2 Public-key Encryption.

To obtain public-key encryption scheme from our public-coin-dependent diO algorithm, we first recall the IND-CPA
secure public-key encryption (PKE) scheme in [27]. The PKE scheme is transferred from a secret key encryption (SKE)
scheme by producing public key as an obfuscation of the SKE’s encryption algorithm. The encryption algorithm makes
uses of iO, pseudorandom generator (PRG), and puncturable pseudorandom functions. It is obvious that a public-coin
diO scheme can be applied to the PKE scheme. Now we show that our public-coin-dependent diO algorithm can also
be applied to the PKE scheme.

Definition 5.2 Puncturable Pseudorandom Functions [27]. A puncturable family of PRFs F mapping is given by
a triple of Turing Machines KeyF , PunctureF , and EvalF , and a pair of computable functions n(·) and m(·),
satisfying the following conditions:

• [Functionality preserved under puncturing] For every PPT adversary A such that A(1λ) outputs a set S ⊆
{0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we have that:

Pr[EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1
λ),KS = PunctureF (K,S)] = 1.

• [Pseudorandom at punctured points] For every PPT adversary (A1, A2) such that A1(1
λ) outputs a set S ⊆

{0, 1}n(λ) and state σ, consider an experiment where K ← KeyF (1
λ) and KS = PunctureF (K,S). Then we

have ∣∣Pr[A2(σ,KS , S, EvalF (K,S)) = 1]− Pr[A2(σ,KS , S, Um(λ)·|S|) = 1]
∣∣ = negl(λ),

whereEvalF (K,S) denotes the concatenation ofEvalF (K,x1)), · · · , EvalF (K,xk)) where S = {x1, · · · , xk}
is the enumeration of the elements of S in lexicographic order, negl(·) is a negligible function, and Ul denotes the
uniform distribution over l bits.

For ease of notation, we writeF (K,x) to representEvalF (K,x). We also represent the punctured keyPunctureF (K,S)
by K(S).

14

Let G : {0, 1}λ → {0, 1}2λ be a PRG. Let F : {0, 1}2λ → {0, 1}l be a puncturable PRF. Let diO be a public-
coin-dependent diO algorithm as described in subsection 4.1. And we define a public-coin differing-inputs sampler
Sampλ(·) such that on input a random value rd = (K, t∗), Sampλ(rd) outputs two algorithms as described in Figure
5 and Figure 6. The scheme is defined as PKE = (Gen,Enc,Dec).

– Key generation Gen(1λ): It first chooses a puncturable PRF key K for F . And then it chooses t∗ ∈ {0, 1}2λ at
random, and then invokes Sampλ(K, t∗) to produce the algorithms of Figure 5 and Figure 6. Next, it creates an
obfuscation of the Encrypt algorithm of Figure 5 with diO. The size of Encrypt is padded to be the maximum
of itself and Encrypt∗ of Figure 6. The public key pk is the obfuscated algorithm diO(Encrypt, (K, t∗)) and the
secret key sk = K.

– Encryption Enc(pk,m ∈ {0, 1}l): It chooses a random value r ∈ {0, 1}λ and runs pk on inputs m, r.
– Decryption Dec(sk, c = (c1, c2)): It outputs m′ = F (K, c1)⊕ c2.

Constants: Punctured PRF key K.
Inputs: message m ∈ {0, 1}l,
randomness r ∈ {0, 1}λ.
Encrypt proceeds as follows:

1. Compute t = G(r).
2. Output c = (c1 = t, c2 = F (K, t)⊕m).

Constants: Punctured PRF key K({t∗}).
Inputs: message m ∈ {0, 1}l,
randomness r ∈ {0, 1}λ.
Encrypt∗ proceeds as follows:

1. Compute t = G(r).
2. Output c = (c1 = t, c2 = F (K, t)⊕m).

Figure 5. Encryption algorithm Encrypt. Figure 6. Encryption algorithm Encrypt∗.

Theorem 5.1 If our obfuscation scheme diO is secure as defined, G is a secure PRG, and F is a secure puncturable
PRF, then our encryption scheme is IND-CPA secure.

The proof of security follows from the proof of the PKE scheme in the early version of [27] with the modifications
that the obfuscation algorithm is replaced with our public-coin-dependent diO algorithm. We give the following proof
sketch.

Proof. To prove the security, we first describe a sequence of hybrid experiments.

• H0: In the first hybrid the original IND-CPA security game is played.
1. K is chosen as a key for F . t∗ ∈ {0, 1}2λ is chosen at random. The challenger then invokes Sampλ(K, t∗).
2. The public key pk = diO(Encrypt, rd = (K, t∗)).
3. The attacker receives pk and then gives m0,m1 ∈ {0, 1}l to the challenger.
4. The challenger randomly chosen b ∈ {0, 1}, r ∈ {0, 1}λ, and compute the challenge ciphertext cb = (c1, c2),

where c1 = t = G(r), c2 = F (K, t)⊕mb.
5. The attacker receives the challenge ciphertext and guesses the bit b.

• H1: It is the same as H0 except that in step 4 t is chosen randomly in {0, 1}2λ. Since r is not in the attacker’s
view, it does not need to be generated.

• H2: It is the same as H1 except that in step 4 the challenger sets t = t∗.
• H3: It is the same as H2 except that in step 2 the public key pk = diO(Encrypt∗, rd = (K, t∗)).
• H4: It is the same as H3 except that the challenge ciphertext is cb = (c1 = t∗, c2 = z∗), where z∗ ∈ {0, 1}l is a

random value.

Now we show that for i ∈ {0, 1, 2, 3}, Hi and Hi+1 are indistinguishable. Hence then, any poly-time attacker’s
advantages in Hi and Hi+1 are the same except for a negligible probability.

Step1: H0
c
= H1. This follows from the security of the pseudorandom generator G. If there exists any poly-

time attacker A that can distinguish H1 and H2, we can obtain a PPT distinguisher D breaks the security of the
pseudorandom generator G. Once receives a PRG challenge t, D runs the IND-CPA security game and sets cb =
(t, F (K, t) ⊕mb), if t is an output of the PRG G, it is H0, and if t is chosen at random, it is H1. D invokes A and
outputs 0 (t is an output of the PRG) if A outputs H0, and D outputs 1 (t is chosen at random) if A outputs H1.

Step2: H1
c
= H2. This follows from the security of the indistinguishability obfuscator for all poly-size circuits.

We first show that diO(Encrypt, (K, t∗))
c
= diO(Encrypt, (K, t)). Since the description of the evaluation algorithm

is deterministic, for convenience, we do not write it in the obfuscation results in the following proof.
diO(Encrypt, (K, t∗)) is computed as follows: Sample C0 = Encrypt, C1 = Encrypt∗ by Samp(rd =

(K, t∗)) and check whether Encrypt ∈ {C0, C1}. If Encrypt ∈ {C0, C1}, proceed the following steps.

15

1. Generate two FHE key pairs (pk0, sk0)← Gen(1λ), (pk1, sk1)← Gen(1λ).
2. Generate ciphertexts f0 = Encpk0(Encrypt), f1 = Encpk1(Encrypt).
3. Let ϕ1 = (C0, C1) ∈ L. Compute P1 = diOL(Iϕ1,sk0||pk0).
4. Generate an obfuscation as P2 = iO(Decrypt10), where Decrypt10 is the decryption algorithm (with constants
ϕ1, pk0, pk1, f0, f1, sk0) defined in Figure 2.

5. Output C ′1 = (P1, P2, pk0, pk1, f0, f1).

diO(Encrypt, (K, t)) is computed as follows: Sample C2 = Encrypt, C3 = Encrypt∗ by Samp(rd = (K, t))
and check whether Encrypt ∈ {C2, C3}. If Encrypt ∈ {C2, C3}, proceed the following steps only when the check
succeeds.

1. Generate two FHE key pairs (pk0, sk0)← Gen(1λ), (pk1, sk1)← Gen(1λ).
2. Generate ciphertexts f0 = Encpk0(Encrypt), f1 = Encpk1(Encrypt).
3. Let ϕ2 = (C2, C3) ∈ L. Compute P3 = diOL(Iϕ2,sk0||pk0).
4. Generate an obfuscation as P4 = iO(Decrypt20), where Decrypt20 is the decryption algorithm (with constants
ϕ2, pk0, pk1, f0, f1, sk0) defined in Figure 2.

5. Output C ′2 = (P3, P4, pk0, pk1, f0, f1).

We first observe that since t∗ and t are chosen at random, with probability (1− 1
2λ
)2, t∗ and t are not in the image

on the PRG algorithm G. Then, with all but negligible probability that the input/output behaviors of Iϕ1,sk0||pk0 and
Iϕ2,sk0||pk0 are identical and the input/output behaviors of Decrypt10 and Decrypt20 are identical. Then, the indistin-
guishability between (diOL(Iϕ1,sk0||pk0), iO(Decrypt10)) and (diOL(Iϕ2,sk0||pk0), iO(Decrypt20)) is guaranteed by
the security of the indistinguishability obfuscator used in diOL and the security of iO. That is

(diOL(Iϕ1,sk0||pk0), iO(Decrypt10))
c
= (diOL(Iϕ2,sk0||pk0), iO(Decrypt10)),

and
(diOL(Iϕ2,sk0||pk0), iO(Decrypt10))

c
= (diOL(Iϕ2,sk0||pk0), iO(Decrypt20)).

Now, since C0 and C2 are the same as Encrypt in Figure 5, diO(Encrypt, (K, t∗))
c
= diO(Encrypt, (K, t)). Then,

if there exists any poly-time attacker A that can distinguish H1 and H2, we can obtain a PPT distinguisher D(K, t∗, t)
that can distinguish diO(Encrypt, (K, t∗)) and diO(Encrypt, (K, t)). Once receives an obfuscation,D(K, t∗, t) sets
pk to be the obfuscation. When D(K, t∗, t) receives the challenge message (m0,m1), it chooses b ∈ {0, 1} at random
and compute challenge ciphertext cb = (t∗, F (K, t∗) ⊕mb). If the obfuscation is diO(Encrypt, (K, t∗)), it is H2.
If the obfuscation is diO(Encrypt, (K, t)), it is H1. Then, D(K, t∗, t) can distinguish diO(Encrypt, (K, t∗)) and
diO(Encrypt, (K, t)) by invokingAwith (pk, (m0,m1), c

b) and outputs 0 (the obfuscation is diO(Encrypt, (K, t)))
if A outputs H1, and D(K, t∗, t) outputs 1 (the obfuscation is diO(Encrypt, (K, t∗))) if A outputs H2.

Step3: H2
c
= H3. This follows from the security of the public-coin-dependent diO algorithm diO. If there exists

any poly-time attacker A that can distinguish H2 and H3, we can obtain a PPT distinguisher D(K, t∗) that can
distinguish diO(Encrypt, (K, t∗)) and diO(Encrypt∗, (K, t∗)). Once receives an obfuscation, D(K, t∗) sets pk to
be the obfuscation. When D(K, t∗) receives the challenge message (m0,m1), it chooses b ∈ {0, 1} at random and
compute challenge ciphertext cb = (t∗, F (K, t∗) ⊕ mb). If the obfuscation is diO(Encrypt, (K, t∗)), it is H2. If
the obfuscation is diO(Encrypt∗, (K, t∗)), it is H3. Then, D(K, t∗) can distinguish diO(Encrypt, (K, t∗)) and
diO(Encrypt∗, (K, t∗)) by invoking A with (pk, (m0,m1), c

b), and then D(K, t∗) outputs 0 (the obfuscation is
diO(Encrypt, (K, t∗))) if A outputs H2, and D(K, t∗) outputs 1 (the obfuscation is diO(Encrypt∗, (K, t∗))) if A
outputs H3.

Step4:H3
c
= H4. This follows from the security of the puncturable PRF F . If there exists any poly-time attackerA

that can distinguish H3 and H4, we can obtain a PPT distinguisher D breaks the selective security of the constrained
pseudorandom function at the punctured points. D runs the security game of H3, except that it gets the punctured
PRF key K({t∗}) and challenge a. It continues to run as in H3 except that it creates the challenge ciphertext as
cb = (t∗, a⊕mb). If a is the output of the PRF at point t∗, then we are in H3. If it was chosen uniformly at random,
we are in H4. D invokes A and outputs 0 (a is an output of the PRF at point t∗) if A outputs H3, and D outputs 1 (a
is chosen at random) if A outputs H4.

Then the advantage of any poly-time attacker in H4 is 0, since it conveys no information about the bit b. This
completes the proof of the PKE scheme’s IND-CPA security. ut

16

6 Conclusion

In this paper, we present a new construction of public-coin-dependent diO based on the existence of iO, point obfusca-
tion with auxiliary input (AIPO) and fully homomorphic encryption scheme (FHE). Instead of assuming the existence
of public-coin differing-inputs obfuscator for circuits in the class NC1, we first construct a public-coin differing-
inputs obfuscator for the class of multi-bit hiding-input point function with iO and AIPO, and then use it to complete
the public-coin-dependent diO for any pair of circuits that are hard to be found an input on which their outputs differ.
We claim that public-coin-dependent diO for circuits can be applied to the constructions of important cryptographic
primitives and protocols.

AIPO can be implied by Canetti’s strong DDH assumption [13] if it does not contradicts the existence if iO. The
assumption essentially states that there exists an ensemble of prime order groups G = {Gλ : |Gλ| = pλ, |pλ| = λ+1}
such that for any unpredictable distribution D = {Dλ = (Zλ, Xλ)}λ∈N with support {0, 1}poly(λ) × Zpλ , it holds
that (z, g, gx) c

= (z, g, gu), where (z, x)← (Zλ, Xλ), u ∈R Zpλ and g is a random generator of Gλ.
We leave it an open question that whether a public-coin differing-inputs obfuscator for the class of multi-bit hiding-

input point function can be achieved based on some weaker assumptions.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. IACR Cryptology ePrint
Archive, 2013

2. Barak, B., Garg, S., Kalai, Y.T.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.): EURO-
CRYPT 2014, LNCS 8441, pp. 221-238, 2014

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating
programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating
programs. J. ACM 59(2), 6 (2012)

5. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way function and a framework for differing-inputs
obfuscation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. pp. 102-121

6. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs obfuscation. In: Fischlin, M. and Coron, J.-S.
(eds.) EUROCRYPT 2016, Part II, LNCS 9666, pp. 792-821, 2016

7. Bitansky, N., Canetti, R.: On Strong simulation and composable point obfuscation. J. Cryptology 27(2): 317-357 (2014)
8. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.

190-208. Springer, Heidelberg (2012)
9. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxiliary input. In ASIACRYPT 2015, Part II,

LNCS 9453, pp. 236-261, 2015
10. Brakerski, Z., Dagmi, O.: Shorter circuit obfuscation in challenge security models. In: Zikas, V., Prisco, R.D. (eds.): SCN 2016,

LNCS 9841, pp. 551-570, 2016
11. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.):

TCC 2014, LNCS 8349, pp. 1-25, 2014
12. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus point obfuscation with auxiliary input. In ASIACRYPT

2014, LNCS, vol. 8874, pp. 142-161, 2014
13. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.)

CRYPTO 1997. LNCS, vol. 1294, pp. 455-469. Springer, Heidelberg (1997)
14. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,

vol. 4965, pp. 489-508. Springer, Heidelberg (2008)
15. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from indistinguishability obfuscation. In:

CRYPTO 2015, Part I, pp. 287-307
16. Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: Micciancio, D. (ed.)

TCC 2010. LNCS, vol. 5978, pp. 52-71. Springer, Heidelberg (2010)
17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-

CRYPT 2013. LNCS, vol. 7881, pp. 1-17. Springer, Heidelberg (2013)
18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional

encryption for all circuits. In: FOCS, pp. 40-49 (2013)
19. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness en-

cryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. pp. 518-535
20. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In STOC, 2013.
21. Goldwasser, S., Kalai, Y.-T.: On the impossibility of obfuscation with auxiliary input. FOCS 2005: 553-562

17

22. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model.
In: Hirt, M., Smith, A. (eds.): TCC 2016-B, Part II, LNCS 9986, pp. 241-268, 2016.

23. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In Dodis, Y. and Nielsen, J.B.
(eds.) TCC 2015, Part II, LNCS 9015, pp. 668-697, 2015

24. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 20-39. Springer, Heidelberg (2004)

25. Miles, E., Sahai, A., Zhandry, M.: Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation
over GGH13. In: Robshaw, M., Katz, J. (eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 629-658, 2016

26. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simulation and four message concurrent zero knowl-
edge for NP. In: TCC (2015), Earlier version: IACR Cryptology ePrint Archive 2013:754

27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, 2014. Earlier
version: Cryptology ePrint Archive, Report 2013/454, 2013. http://eprint.iacr.org/.

28. Wee, H.: On obfuscating point functions. STOC 2005: 523-532
29. Yupu Hu, Huiwen Jia.: Cryptanalysis of GGH map. In: EUROCRYPT 2016, Part I, LNCS 9665, pp. 537-565.
30. Zimmerman, J.: How to obfuscate programs directly. In: EUROCRYPT 2015, Part II, LNCS 9057, pp. 439-467.

