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Abstract

Public-key infrastructures (PKIs) are an integral part of the security foundations of
digital communications. Their widespread deployment has allowed the growth of impor-
tant applications, such as, internet banking and e-commerce. Centralized PKIs (CPKIs)
rely on a hierarchy of trusted Certification Authorities (CAs) for issuing, distributing
and managing the status of digital certificates, i.e., unforgeable data structures that
attest to the authenticity of an entity’s public key. Unfortunately, CPKIs have many
downsides in terms of security and fault tolerance and there have been numerous secu-
rity incidents throughout the years. Decentralized PKIs (DPKIs) were proposed to deal
with these issues as they rely on multiple, independent nodes. Nevertheless, decentral-
ization raises other concerns such as what are the incentives for the participating nodes
to ensure the service’s availability.

In our work, we leverage the scalability, as well as, the built-in incentive mechanism
of blockchain systems and propose a smart contract-based DPKI. The main barrier in
realizing a smart contract-based DPKI is the size of the contract’s state which, being
its most expensive resource to access, should be minimized for a construction to be
viable. We resolve this problem by proposing and using in our DPKI a public-state
cryptographic accumulator with constant size, a cryptographic tool which may be of
independent interest in the context of blockchain protocols. We also are the first to
formalize the DPKI design problem in the Universal Composability (UC) framework
and formally prove the security of our construction under the strong RSA assumption
in the Random Oracle model and the existence of an ideal smart contract functionality.

1 Introduction

Public key, or asymmetric, cryptography is a critical building block for securing important
communications across the Internet, such as, e-commerce and internet banking. To enable
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such applications, public-key infrastructures (PKIs) are essential because they provide a
verifiable mapping from an entity’s name to its corresponding public key. In essence, a
PKI is a system that allows the creation, revocation, storage, and distribution of digital
certificates, i.e., unforgeable data structures that attest to the authenticity of an entity’s
public key.

In a centralized PKI (CPKI), a Certification Authority (CA), is responsible for issuing,
distributing and managing the status of digital certificates. Two assumptions must be
made when deploying a CPKI. These are: 1) everyone knows the CA’s (correct) public
key and, 2) statements signed by the CA’s private key are valid, i.e., everyone trusts the
CA. In a CPKI, registration is handled in two phases. In the first phase, the user proves
her claim on an identity to a Registration Authority (RA). Assuming the RA validates
the claim, it forwards the user’s request to the CA. In the second phase, the user receives
her digital certificate, which is signed by the CA’s private key, thus, attesting its validity.
CAs periodically publish signed data structures that contain revoked certificates, e.g., a
certificate revocation list (CRL). Distribution of certificate-related information is handled
either by the CA (online CA), or, it is delegated to online, publicly accessible directories
(offline CA).

While predominant in use, CPKIs have several shortcomings. A CA constitutes a single
point of failure, both in terms of security and availability. There have been several incidents
where CAs have been hacked that led to the issuance of false certificates for domains of high-
profile corporations, such as Google ([3]). Other prominent examples are the Symantec ([4])
and TrustWave ([8]) incidents, as well as the growing concern of governments and private
organizations being able to issue false certificates for surveillance, thus, violating the privacy
of end-users ([50]). In practice, there exist multiple CAs, which are linked with well-defined,
parent-child relationships, based on trust and other policies. The most notable example of
this architecture is the SSL/TLS certificate chain. This hierarchical, tree-like, certification
model is designed to increase the system’s scalability and fault-tolerance. However, root,
or even, subordinate CA compromises are still catastrophic ([26]).

In a decentralized PKI (DPKI), multiple, independent nodes cooperate and deliver the
same set of services, without relying on one, or more, trusted third parties (TTPs). DPKIs
have been proposed because, as distributed systems, they have the potential to offer a num-
ber of desirable properties that CPKIs cannot offer, such as scalability, fault-tolerance, load
balancing and availability. Researchers have proposed DPKIs based on various distributed
primitives, such as distributed hash tables (DHTs) (e.g., [9]). To account for malicious
nodes and provide increased security, they employ secret sharing, threshold and byzantine
agreement protocols (e.g., [11, 23]). These techniques, while more complex to design and
implement correctly, lead to systems that do not exhibit single points of failure. Unfortu-
nately, prior DPKIs do not provide incentives for the participating nodes to ensure that the
offered service remains available in the long term, e.g., they fail to address the free-riding
problem ([33]).

Blockchain protocols (e.g., Bitcoin [39]), feature a reward mechanism that incentivizes
parties to engage in the protocol. The rewards come in the form of a digital currency that
compensates its participants, thus, creating a counter-incentive to free-riding, while still
retaining a highly scalable, free-entry system.

In this work, we present the design of a DPKI on top of a smart contract platform, a
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new generation of blockchains that allow the development of smart contracts, i.e., stateful
agents that “live” in the blockchain and can execute arbitrary state transition functions.
The main barrier in realizing a smart contract-based DPKI is the size of the smart con-
tract’s state which, being its most expensive resource to access, should be minimized for a
construction to be considered viable. Previous blockchain-based solutions, such as Name-
coin ([6]) and Emercoin ([2]), fall short on this part as their state is linear to the number
of registered entities. Fromknecht et al. [27] improve on this by harnessing the power of
cryptographic accumulators, i.e., space-efficient data structures that allow for (non) mem-
bership queries. However, we believe that they do not exploit, sufficiently, their potential
for the following reasons: 1) their system’s state is still of logarithmic complexity, due to the
use of a Merkle tree-based accumulator and, 2) their construction recomputes accumulator
values to handle deletions of elements, i.e., each deletion (revocation) has a linear com-
putational complexity. We resolve these inefficiencies by presenting a construction whose
state is constant and avoids recomputing accumulator values. Our main building block is
a public-state, additive, universal accumulator, based on the strong RSA assumption in
the Random Oracle model, which, among others, has the following nice properties: 1) the
accumulator and the structures for proving (non) membership (referred to as witnesses)
have constant size and, 2) all of its operations can be performed efficiently by having access
only to the accumulator’s public key.

In short, the contributions of this paper are as follows:

• We propose the design of a DPKI on top of a smart contract platform. Due to the
interoperability of smart contracts, our system provides a generic mechanism for on-
blockchain authentication that, up to this point, was handled in an ad-hoc manner.
Furthermore, the programmable nature of these platforms allows us to evolve our
system with more efficient primitives, when such become available, without the need
for a fork in the blockchain, which is the case for specialized PKI blockchains.

• We resolve the main barrier of realizing a viable smart contract-based DPKI by pro-
viding a construction that has the “constant-ness” property, i.e., both the smart
contract’s state, as well as, the structures for proving (non) membership, have con-
stant size. We stress the importance of this property as it guarantees, in addition to
efficiency, uniform digital currency costs for any given operation across all users, i.e.,
fairness in terms of costs.

• Our construction is based on a public-state, additive, universal accumulator, a crypto-
graphic tool which may be of independent interest for protocols that employ blockchains
for verifying, efficiently, the validity of information.

• We are the first to formalize the DPKI design problem in the Universal Composability
(UC) framework ([19]) and we formally prove the security of our construction under
the strong RSA assumption in the Random Oracle model and the existence of an ideal
smart contract functionality.

• Even though our envisioned application is a PKI, we specifically model our service as
a generic “Naming Service”. Thus, our design can be ported to implement, efficiently,
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other services that reside in this paradigm, e.g., a distributed domain name system
(DDNS).

2 Related Work

Several previously proposed systems utilize the same underlying primitive, each in its own
unique way, to decentralize the services of a PKI. In the interest of space, we focus on full-
fledged DPKIs, i.e., systems that implement registration, revocation, certificate storage and
retrieval. Thus, we will not be concerned with certification systems (e.g., [35]), which do not
offer revocation, hybrid approaches, e.g., coupling CAs with structured overlays (e.g., [48]),
or, even PGP ([52]), whose operation relies on centralized servers. We also review related
work regarding cryptographic accumulators, which form the basis of our construction.

Researchers have proposed DPKIs based on the replicated state machine (RSM) paradigm
([51, 43]) to enforce a global, consistent view of the system’s state. This is achieved by hav-
ing nodes participate in an authenticated agreement protocol and typically assume: 1) a
threshold t of faulty nodes, 2) join() and leave() protocols for nodes wishing to enter, or
leave, a replica group, to adjust the system’s threshold parameter and, 3) nodes are able to
authenticate any (potential) participant. In RSM-based PKIs, registration requires one to
perform an “out-of-band” negotiation with multiple administrative domains, which is cum-
bersome for the user. In addition, non-determinism, e.g., time-stamping, is a key difficulty
of consistent replication since it can lead to replica state-divergence, thus, compromising
fault-tolerance. However, time-stamping is essential in a PKI for tracking certificate life-
time. Blockchain-based systems, on the other hand, do not suffer from this issue and they
have already been used for the implementation of time-stamping services (e.g., [31]). Fur-
thermore, they employ a different form of agreement which is based on computation. This,
alternative, agreement algorithm has the nice property of being adaptable as nodes freely
join and leave the system. Experience has illustrated, that the blockchain approach has
been highly favored by both the research community, as well as the industry, due to its
highly scalable, adaptive and non-restrictive nature ([1, 5, 7]).

Structured overlays have also been proposed to distribute the services of a PKI ([11, 23]).
These are, by design, scalable, load-balanced and provide for efficient storage and retrieval
of data. Unfortunately, these systems do not defend against Sybil attacks. Douceur ([25])
has proved that to defend against the Sybil attack, distributed systems must employ either
authentication, or, computational power. However, the aforementioned DHT-based systems
do not employ either, thus, they are insecure. Blockchains, on the contrary, are resilient to
the Sybil attack since their operation inherently depends on computational power.

In all of the above systems, nodes are expected to participate in resource-intensive
protocols. Unfortunately, these systems do not incentivize node participation, nor enforce
correct behavior of participating nodes.

The initial approach of constructing a blockchain-based PKI is based on the observation
that there is an inherent similarity between the services of a DNS and a PKI, respectively.
Both essentially map identity names to some value (be it an IP address, or, a public key).
One of the biggest altcoins, Namecoin ([6]), provides a distributed DNS as its main function.
In Namecoin, the blockchain is used both for storing, as well as, verifying/querying DNS
records. Several DPKIs follow this approach, the most notable example of which is Emercoin
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([2]). Unfortunately, this approach is inefficient as it forces each user to store an entire copy
of the blockchain and traverse its contents every time she needs to validate a mapping. This
limits the system’s applicability significantly; for example, storing the entire blockchain on
a smartphone is prohibitive. Moreover, validating mappings, which is the most frequent
operation, requires an increasing amount of computation as more blocks are appended to
the blockchain.

A modern, more involved approach, is to employ cryptographic accumulators, which
were first introduced in the work of Benaloh et al. [15] as a decentralized alternative to dig-
ital signatures. These are space-efficient data structures that allow for membership queries.
Their initial construction was refined in the work of Bari et al. [14] by strengthening the
original security notion to that of collision freeness. Camenisch et al. [18] extended pre-
vious works and presented the first accumulator scheme that allowed for elements to be
dynamically added/deleted, based on the strong-RSA assumption. In this scheme, mem-
bership witnesses can be updated by utilizing only the accumulator’s public key, i.e., no
trapdoor information is required. Following this work, various constructions have been
suggested in the literature with different features and based on different assumptions. Li
et al. [36] introduced the notion of universal accumulators, i.e., accumulators that support
both membership and non-membership queries and proposed an RSA-based construction
for a universal accumulator. Other proposed accumulator schemes are based on Merkle trees
(e.g., [41], [16], [44]), bilinear pairings (e.g., [40], [10], [17], [22]) and lattices (e.g., [32], [49]).
A detailed classification of existing accumulator schemes can be found in [24], where a
unified formal model for cryptographic accumulators is suggested.

Cryptographic accumulators provide a number of benefits. First, their compact (or
even constant) size makes them suitable candidates for storage-limited devices (e.g., smart-
phones). Second, most (non) membership verifications have constant computational cost,
regardless of the number of accumulated values (accumulation is the addition of an element
to the accumulator). Third, their security properties are based on standard hardness as-
sumptions, thus, making them suitable for critical security infrastructures. An additional
benefit of accumulator-based constructions is that they do not employ the blockchain for
enforcing consensus on the entire set of (identity,public-key) mappings, as is the case for
Namecoin and Emercoin. Instead, the consensus object is the accumulator value(s), which
has the following benefits. First, users are not required to perform a complete retrieval
and verification of the entire transaction history, i.e., downloading and validating the en-
tire blockchain. Instead, an outdated, or, new user, can download and validate only block
headers to update her state, which is far more efficient both in terms of communication
and computation. Second, it allows the introduction of an unreliable component that users
can query to efficiently obtain, among others, a more compact version of the entire history
of operations, compared to the full transaction history. Due to the verifiable nature of
cryptographic accumulators, this increased efficiency comes at no cost.

Certcoin ([27]) is a blockchain-based PKI which deals with the aforementioned ineffi-
ciencies of Namecoin and Emercoin by decoupling information storage from its verifica-
tion. It employs an authenticated DHT for storing digital certificates, based on Kademlia
([38]). These networks facilitate storage and retrieval queries in logarithmic complexity, i.e.,
they are very efficient. Furthermore, its authenticated nature makes it secure against the
Sybil attack ([25]). To facilitate the verification of (identity,public-key) mappings, Certcoin
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maintains two cryptographic accumulators in the blockchain. Certcoin’s first accumulator
is based on the strong RSA assumption and accumulates identity names. Thus, users can
infer if an identity has been registered in the system. The second accumulator is based on
Merkle trees (formally presented in [44]) and accumulates (identity,public-key) mappings.
This allows clients to validate the authenticity of any mapping retrieved from the DHT
network by downloading and validating the latest block and by performing the appropriate
membership queries.

In the following, we highlight the differences of our design compared to Certcoin. We
open the discussion with issues regarding accumulators. First, our design employs two
RSA-based accumulators, which have constant size and small public-keys. On the contrary,
Certcoin employs one RSA and one Merkle-based accumulator. The size of Merkle-based
accumulators increases as more elements are accumulated, i.e., it is not constant. This
is an issue in the blockchain world as miners prefer small blocks which can be hashed
faster and with reduced operational costs to increase their profits. Therefore, it would be
difficult to incentivize miners to support Certcoin’s blockchain whose blocks are of variable
size. Moreover, in blockchain-based systems, transaction execution costs are a function of
their size. Thus, Certcoin does not guarantee fairness in terms of transaction costs. Our
construction does not face these issues due to its constant state. Second, while Merkle-based
accumulators have the nice property that elements can be deleted without the knowledge of
trapdoor information, the same does not hold for RSA-based accumulators. Consequently,
when an (identity,public-key) mapping is revoked, thus making the identity available again,
Certcoin recomputes its RSA accumulator from scratch, which is, inefficient. To deal with
the fact that deletions in RSA accumulators require access to their secret key, which, if
publicly known, can break their security, we employ a trick that is presented in the work
of Baldimtsi et al. [13]. Essentially, we use tags to mark elements as “added” (during
registration) or “deleted” (during revocation). Thus, in contrast to Certcoin, we do not
recompute any accumulator. Third, Certcoin tightly couples the process of mining with
the blockchain’s actual application, which is to deliver the services of a DPKI. These two
issues are orthogonal to each other, in terms of the system’s architecture and, we believe,
should be addressed at different layers. Instead, we are the first to propose a DPKI that
is based on a smart contract platform, i.e., programmable blockchains that decouple the
blockchain’s consensus protocol from the applications’ functionalities that run on top of
it. This key difference allows us to evolve our system with more efficient primitives, when
such become available, without the need for a hard fork in the blockchain, which is not the
case for application-specific blockchains, such as Certcoin. Additionally, in these platforms,
contracts can interact with each other, thus, creating an ecosystem of applications that
can interoperate. By leveraging this feature, our system can provide a generic mechanism
for on-blockchain authentication that, up to this point, was handled in an ad-hoc manner.
Fourth, Certcoin has no security model for the PKI it implements nor a proof that it
provides the claimed service. In contrast, we formalize the DPKI design problem in the
UC framework ([19]) and we formally prove the security of our construction under the
strong-RSA assumption in the Random Oracle model. Canetti [20], provides a minimal
formulation of an ideal certification authority functionality which supports registration and
retrieval of public keys. Our formulation is more involved and allows for more operations,
such as, revocation of public keys.
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3 Preliminaries

Notation. We use λ to denote the security parameter and negl(·) to denote a function
negligible in some parameter.

Definition 3.1 (Strong-RSA Assumption [14]). For any p.p.t adversary A,

Pr[n← KeyGen(1λ);x← Z∗
n; (y, e)← A(n, x) : ye = x mod n] = negl(λ),

where, n = pq, p and q are safe primes.

Definition 3.2 (2-Universal Hash Function Family [21]). Let U = {f |f : X → Y } be
a family of functions. We say that U is a 2-Universal Hash Function Family if, for all
x1, x2 ∈ X with x1 ̸= x2 and for all y1, y2 ∈ Y , Prf∈U [f(x1) = y1 ∧ f(x2) = y2] = ( 1

|Y |)
2.

Definition 3.3 (Pseudorandom Generator). Let G : {0, 1}k → {0, 1}p(k) be a deterministic
polynomial time algorithm and p(·) a polynomial in some parameter k. We say that G is a
pseudorandom generator if, for any p.p.t. algorithm D,∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]

∣∣ ≤ negl(k),

where, r is a string chosen uniformly at random from {0, 1}p(k) and s, the seed, is chosen
uniformly at random from {0, 1}k.

4 Public-State Accumulator

In this section, we present the main building block of our naming service. Specifically, in
Section 4.1, we provide the definition of a public-state, additive, universal accumulator and,
in Section 4.2, we present a construction for such an accumulator under the strong-RSA
assumption in the Random Oracle model.

4.1 Definition of a Public-State, Additive, Universal Accumulator

At a high level, we consider an accumulator as public-state, if one can perform all of its op-
erations by only having access to its public-key, i.e., no trapdoor knowledge is required. Ac-
cording to the terminology presented in [13], an accumulator is additive, if it only allows for
addition of elements, and universal, if it allows for both membership and non-membership
witnesses. In the following, we present the definition of a public-state, additive, universal
accumulator. Our definition employs two trusted parties. The first one, T , runs the key-
generation algorithm (KeyGen(1λ)) and publishes the accumulator’s public-key. The second
one, the “accumulator manager” Tacc, is responsible for maintaining the accumulator. 1

Definition 4.1 (public-state, additive, universal accumulator). Let D be the domain of
the accumulator’s elements, and X, the current accumulated set. A public-state, additive,
universal accumulator consists of the following algorithms:

1Note that the notion of a public-state accumulator is different from that of a strong accumulator, as
defined in [16]. In a strong accumulator, the KeyGen algorithm, which produces the initial value of the
accumulator, is publicly executable and any party can verify the validity of its output. In contrast, in a
public-state accumulator, the KeyGen algorithm is run by a trusted party T .
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• KeyGen: On input a security parameter λ, it generates a key pair (pk, sk) and outputs
pk. This algorithm is run by T .

• InitAcc: On input pk and the empty accumulated setX = ∅, it outputs an accumulator
value c0. This algorithm is run by Tacc.

• Add: On input pk, an element x ∈ D to be added and an accumulator value c, it
outputs (c′,W ), where c′, is the new value of the accumulator, andW , is a membership
witness for x.

• MemWitGen: On input pk,X, c and x ∈ X, it outputs a membership witness W for x.

• NonMemWitGen : On input pk,X, c, x, where, x ∈ D and x /∈ X, it outputs a non-
membership witness W for x.

• UpdMemWit: On input pk, x, y,W , where, W is a membership witness for x, it out-
puts an updated membership witness W ′ for x. This algorithm is run after (c′,Wy)←
Add(pk, y, c), where, Wy is a membership witness for y.

• UpdNonMemWit : On input pk, x, y,W , where, x, y ∈ D, x ̸= y and W is a non-
membership witness for x, it outputs an updated non-membership witness W ′ for x.
This algorithm is run after (c′,Wy)← Add(pk, y, c).

• VerifyMem : On input pk, x ∈ D,W and c, it outputs 1 or 0.

• VerifyNonMem : On input pk, x ∈ D,W and c, it outputs 1 or 0.

Informally, an accumulator is correct if, for any honestly produced membership witness,
the membership verification algorithm outputs 1, and if, for any honestly produced non-
membership witness, the non-membership verification algorithm outputs 1. Furthermore,
we consider a universal accumulator as secure if, no p.p.t. adversary can produce a valid
non-membership witness for a member of the accumulated set, nor, a valid membership
witness for an element which is not a member of the accumulated set. The security property
of an accumulator can be met as collision-freeness, or, soundness in the literature. A formal
definition for security is given below (Definition 4.2), utilizing a game between a Challenger
C and an adversary A, as illustrated in Figure 1. For a formal definition of correctness, we
refer the interested reader to [37].

Definition 4.2. We say that an accumulator is secure if, for any p.p.t. adversary A
interacting with a challenger C, as illustrated in the security game of Figure 1, it holds that
Pr[Gacc−sec

A (1λ) = 1] = negl(λ).

4.2 Construction

In Figure 2, we present a construction of a public-state, additive, universal accumulator. We
aim to accumulate identities or (identity,public-key) pairs, i.e., arbitrary strings. Thus, the
accumulator’s domain is D = {0, 1}∗. This construction is a combination of the RSA-based
universal accumulator of Li et al. [36], accompanied with a procedure Map, which maps
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Gacc−sec
A : On input 1λ,

• C runs KeyGen(1λ), generates (pk, sk) and gives pk to the adversary A.

• A first makes an InitAcc query to C. C initializes a set X ← ∅, runs InitAcc and returns
the value c0 to A.

• When A performs an Add query for an element x, C sets X ← X ∪ {x} and computes
(c′,W )← Add(pk, x, c). Then, C returns the pair (c′,W ) to A.

• A outputs (x∗,W ∗).

The game returns 1 if at least one of the following conditions holds:

1. x∗ /∈ X and VerifyMem(pk, x∗,W ∗, c) = 1,

2. x∗ ∈ X and VerifyNonMem(pk, x∗,W ∗, c) = 1.

Figure 1: The security game between the adversary A and a challenger C, where C plays
the roles of both T and Tacc.

arbitrary strings to prime numbers. Namely, for any algorithm run on input an element
z ∈ {0, 1}∗, the party who runs the algorithm, first, executes the procedure Map, which
maps z to a prime number, e.g., zp, and then, proceeds by running the same algorithm as
in the accumulator of Li et al. [36] for the prime number zp. The procedure Map that we
utilize is a modified version of a procedure suggested in [30]. Thus, we first present the
procedure suggested in [30], then, based on that, we present the modified algorithm Map,
which is utilized in the construction of Figure 2. Lastly, we prove that the accumulator of
Figure 2 is secure according to Definition 4.2.

Mapping arbitrary strings to primes [30]. Gennaro et al. [30] describe a procedure
that utilizes a universal hash function family U of functions (Definition 3.2), which maps
strings of 3k bits to strings of k bits with the additional property that, for any y ∈ {0, 1}k and
given f ∈ U , one can efficiently sample uniformly from the set {x ∈ {0, 1}3k : f(x) = y}. On
input z ∈ {0, 1}∗, it first computes h(z), where h : {0, 1}∗ → {0, 1}k is a collision-resistant
hash function. It then samples repeatedly from the set {x ∈ {0, 1}3k : f(x) = h(z)} to find
a prime number O(k2) times. This procedure is collision-resistant if h is collision resistant
and will output a prime number with high probability due to the following Lemma.

Lemma 4.1 ([30]). Let U be a Universal Hash Function Family from {0, 1}3k to {0, 1}k.Then,
for all but a (1/2k)-fraction of functions f ∈ U and for any y ∈ {0, 1}k, a fraction of at
least 1/ck elements in the set {x ∈ {0, 1}3k : f(x) = y} are primes, for a small constant c.

Therefore, an algorithm which samples ck2 times from the set {x ∈ {0, 1}3k : f(x) =
h(z)} will fail to find a prime number only with negligible probability. For completeness,
we provide a proof of Lemma 4.1 in Appendix B. The proof presented in Appendix B is
similar to that provided in [47].
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The domain of the accumulator is D = {0, 1}∗.

• KeyGen : On input 1λ, it generates a pair of safe primes p, q of equal length, such that,
p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are also primes. It computes n = pq and chooses g
randomly from QRn. It sets ℓ = ⌊λ/2⌋ − 2 and chooses a deterministic procedure Map
(as described in the previous paragraph), which receives as input an arbitrary string and
outputs a prime number less than 2⌊λ/2⌋−2. It sets pk = (n, g,Map), sk = (p, q), and
outputs pk.

• InitAcc : On input pk, it outputs c0 = g.

• Add : On input pk, x ∈ {0, 1}∗ and c, it invokes Map on input x and receives a prime
number xp. Then, it computes c′ = cxp mod n, sets W = c and outputs (c′,W ).

• MemWitGen : On input pk,X and x ∈ {0, 1}∗, it computes and outputs W =

g

∏
xi∈X\{x}

Map(xi)

.

• NonMemWitGen : On input pk,X, c, x /∈ X, it invokes Map on input x and receives a
prime number xp. Then, it computes u = Π

xi∈X
Map(xi). Since gcd(xp, u) = 1, it runs the

extended Euclidean algorithm and computes a, b ∈ Z, such that, au + bxp = 1. By the
Euclidean division, a can be written as a = a′ + qxp , where 0 ≤ a′ < xp. Therefore,

a′u + (b + qu)xp = 1. It sets b′ = b + qu and computes d = g−b′ . Finally, it outputs a
non-membership witness W = (a′, d) = (a mod x, g−b−qu).

• UpdMemWit: On input pk, x, y,W , it invokesMap on input x and receives a prime number
xp. Then, it computes and outputs W ′ = W xp mod n.

• UpdNonMemWit : On input pk, x /∈ X, y ∈ X, c and W = (a, d), it invokes Map on
inputs x,y and receives the prime numbers xp,yp respectively. Since yp ̸= xp, it runs the
extended Euclidean algorithm and computes a0, r0 ∈ Z, such that, a0yp+r0xp = 1. Then,
it multiplies both sides by a, i.e., aa0yp + ar0xp = a and computes a′ = a0a mod xp.
Then, it finds r ∈ Z, such that, a′yp = a + rxp, computes d′ = dcr mod n and outputs
W ′ = (a′, d′).

• VerifyMem : On input pk, x,W, c, it invokes Map on input x and receives a prime number
xp. Then, it outputs 1, if W

xp = c mod n, otherwise, it outputs 0.

• VerifyNonMem : On input pk, x,W, c, where, W = (a, d), it invokes Map on input x and
receives a prime number xp. Then, it outputs 1, if c

a = dxpg mod n, otherwise, it outputs
0.

Figure 2: Construction of a public-state, additive, universal accumulator.

A modified version of the algorithm in [30]. In our construction (Figure 2), we
employ a deterministic version of the aforementioned Map procedure, which we suggest
below. Specifically, we utilize a pseudorandom generator G : {0, 1}k → {0, 1}p(k), where
p(k) is a polynomial in k, and a labeled hash function h : {0, 1}∗×{0, 1}∗ → {0, 1}k, which
is collision-resistant and which is modeled as a Random Oracle.

We start by picking two labels, i.e., label0, label1 ∈ {0, 1}∗. Then, Map, on input
z ∈ {0, 1}∗, first computes h(label0, z). Next, it computes G(h(label1, z)). Then, it sam-
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ples elements from the set {x ∈ {0, 1}3k : f(x) = h(label0, z)} using as randomness
G(h(label1, z)) and stops when a prime number is found. It is easy to see that since
label0, label1 are the same in any run of the algorithm, the algorithm on input z ∈ {0, 1}∗ al-
ways outputs the same value. Below, in Lemma 4.2, we show that Map finds a prime, except
with negligible probability, and, in Lemma 4.3, we prove that Map is collision-resistant.

Lemma 4.2. Let z ∈ {0, 1}∗. The algorithm Map, on input z, outputs a prime number,
except with negligible probability, assuming that, G is a pseudorandom generator and, the
hash function h, is a random oracle.

Proof. Assume that Map, on input z ∈ {0, 1}∗, fails to find a prime number with non-
negligible probability α. We will construct a p.p.t distinguisher D, which breaks the prop-
erty of the pseudorandom generator G, as this is defined in Definition 3.3. Recall that the
only difference of the procedure in [30] and the algorithm Map described in the previous
paragraph is the samping of elements from the set X = {x ∈ {0, 1}3k : f(x) = h(label0, z)},
i.e., in the former case, elements are sampled uniformly at random while, in the latter case,
elements are sampled by using as randomness the output of the PRG G. Based on that, we
consider the following p.p.t. distinguisher D:

• On input a string x ∈ {0, 1}p(k), sample from the set X = {x ∈ {0, 1}3k : f(x) =
h(label0, z)} using as randomness the string x.

• If a prime number p is output, then, return 1, else, return 0.

First, since h is a random oracle, the seed h(label1, z) is considered random. Then, if
x = r, where r is chosen uniformly at random, by Lemma 4.1, we have that Pr[D(r) =
1] = 1 − negl(k). By the assumption that Map fails to find a prime with non-negligible
probability α, we have that∣∣Pr[D(r′) = 1]− Pr[G(h(label1, z)) = 1]

∣∣ = 1− negl(k)− (1− α) = α− negl(k), (1)

which is a contradiction, according to Definition 3.3.

Lemma 4.3. The algorithm Map is collision-resistant if the hash function h is collision-
resistant. Namely, no p.p.t. adversary can find z1, z2 ∈ {0, 1}∗ with z1 ̸= z2, such that, the
algorithm Map returns the same prime p.

Proof. We assume that Map is not collision resistant, i.e., there is a p.p.t. adversary A,
which finds two different z1, z2, such that, Map(z1) = Map(z2) = p. This requires that the
algorithm Map samples elements from the same set of solutions X = {x ∈ {0, 1}3k : f(x) =
h(label0, z1)}. Thus, A should find a collision in the hash function h, i.e., A finds z1, z2 such
that h(label0, z1) = h(label0, z2). However, this holds only with negligible probability.

Security of the accumulator of Figure 2. Before formally proving the security of
the accumulator of Figure 2, we first give a simple example as to why the procedure Map
has to be deterministic in our construction, justifying in this way why we cannot use the
procedure of [30] as it is. First, assume that we used the procedure of [30] without the
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suggested modification and that an element x ∈ {0, 1}∗ was added in our accumulator.
This means that Tacc first produces a prime xp and then adds xp in the underlying RSA
accumulator. Then, an adversary can produce a non-membership witness W for x simply by
producing a different prime x′p ̸= xp for the element x and then running the non-membership
witness generation algorithm for x′p. Therefore, the security property of the accumulator,
as defined in the security game of Figure 1, would not hold, since the adversary can output
(x,W ), such that, x ∈ X and VerifyNonMem(pk, x,W, c) = 1.

The security of our accumulator is derived by the security of the accumulator of Li et
al. [36], which is proven secure under the strong-RSA assumption, and the properties of the
algorithm Map, as proven in Lemma 4.2 and Lemma 4.3.

Theorem 4.1. The accumulator of Figure 2 is secure according to Definition 1 under the
strong-RSA assumption and the collision-resistance of Map in the Random Oracle model.

Proof. Assume there is a p.p.t. adversary A, which breaks the security of the accumulator
of Figure 2. Then, according to Definition 1, A outputs (x∗,W ∗), such that: (1) x∗ /∈ X
and VerifyMem(pk, x∗,W ∗, c) = 1, or, (2) x∗ ∈ X and VerifyNonMem(pk, x∗,W ∗, c) = 1.
Suppose that (1) holds. Then, there are two possible cases: (a) A comes up with x, x∗,
such that, Map(x) = Map(x∗) and x ∈ X, thus, breaking the collision-resistance of the
Map procedure, or, (b) A computes a valid membership witness W ∗ for a prime x∗p, where,
Map(x∗) = x∗p and x∗ /∈ X. In the latter case, we can construct a p.p.t adversary B, which
breaks the strong-RSA assumption. We refer for further details to the proof of Li et al. [36].
Next, assume that case (2) holds. This implies two possible scenarios: First, A comes up
with a valid non-membership witness W ∗ for a prime x∗p, where, Map(x∗) = x∗p and x ∈ X.
This means that we can construct a p.p.t. adversary B, which breaks the strong-RSA
assumption (see the proof of Li et al. [36]) and, therefore, we have a contradiction. In the
second scenario, the procedure Map, on input x∗, outputs two different primes (with non-
negligible probability) if we run it twice, e.g., x∗p1 and x∗p2 . This means that if x∗p1 is added
in the accumulator first, then it would be possible for A to compute a valid non-membership
witness W ∗ for x∗p2 . However, this is impossible, since the procedure Map is deterministic
.

Constructing a universal accumulator from an additive, universal accumula-
tor [13]. Assume that ACCadd

U is an additive, universal accumulator, which accumulates
elements of the form (x, i, op), where, x is the element to be added, i, is an index, and
op, is either a or d. We construct a universal accumulator ACCU , from ACCadd

U , as fol-
lows. When an element x is added to ACCU for the first time, Tacc adds the value (x, 1, a)
to ACCadd

U . Otherwise, it adds (x, i, a), where, the index i indicates that this is the i-th
time that x is added to ACCadd

U . When an element x is deleted from ACCU , Tacc adds
(x, i, d) to ACCadd

U . In order to prove membership of x in ACCU , one should find an in-
dex i, such that,

(
(x, i, a) ∈ ACCadd

U

)
∧
(
(x, i, d) /∈ ACCadd

U )
)
. Accordingly, to prove that

x /∈ X, one should either prove that (x, 1, a) /∈ ACCadd
U , or, find an index i, such that,(

(x, i− 1, d) ∈ ACCadd
U

)
∧
(
(x, i, a) /∈ ACCadd

U )
)
.
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The naming service functionality Fns:

• On input (sid, Init) by a server Si, Fns sends (sid, Init, Si) to S. If S returns allow, Fns

sets Y ← Y ∪ {Si} (where Y is initialized as Y = ∅) and returns success to Si. When all
servers have sent a message (sid, Init), Fns sets flag = start. Also, S corrupts a number of
clients. We denote as Ccor the set of corrupted clients.

• On input (sid, Setup, R) by T , Fns checks if flag = start and forwards (sid, Setup, R) to S.
If S returns allow, Fns stores R, initializes a set X ← ∅, sets flag = manage and returns
success to T .

• On input (sid,Register, id, pk) by a client C, Fns checks if flag = manage and forwards
(sid,Register, id, pk) to S.

– If S returns allow, Fns checks if there is (id, ·) ∈ X. If there is no (id, ·) ∈ X, it sets
X ← X ∪ (id, pk) and returns success to C via public delayed output, otherwise, it
returns fail to C via public delayed output.

– If S returns fail, then Fns returns fail to C via public delayed output.

– If S returns (sid,Register, id′, pk′, C), Fns checks if C ∈ Ccor and if there is (id′, ·) ∈
X. If there is no (id′, ·) ∈ X, it sets X ← X ∪ (id′, pk′) and returns success to C via
public delayed output, otherwise, it returns fail to C via public delayed output.

• On input (sid,Revoke, id, pk, aux) by C, Fns checks if flag = manage and forwards
(sid,Revoke, id, pk, aux) to S.

– If S returns allow, Fns checks whether R(pk, aux) = 1 and (id, pk) ∈ X. If both
conditions hold, Fns computes X ← X \ (id, pk) and returns success to C via public
delayed output, otherwise, it returns fail to C via public delayed output.

– If S returns fail, then Fns returns fail to C via public delayed output.

– If S returns (sid,Revoke, id′, pk′, aux′, C), Fns checks if C ∈ Ccor, R(pk′, aux′) = 1
and (id′, pk′) ∈ X. If so, Fns computes X ← X \ (id′, pk′), and returns success to C
via public delayed output, otherwise, it returns fail to C via public delayed output.

• On input (sid,Retrieve, id) by C, if flag = manage, Fns forwards this message to S. If S
returns allow, then, if there is a pair (id, pk) ∈ X, for some pk, Fns returns pk to C via
public delayed output, otherwise, it returns ⊥. If S returns fail to Fns, then Fns returns
fail to C via public delayed output.

• On input (sid,VerifyID, id) by a client C, if flag = manage, Fns forwards this message to
S. If S returns allow, then, if there is a pair (id, pk) ∈ X, for some pk, Fns returns 1 to
C via public delayed output, otherwise, it returns 0. If S returns fail to Fns, then Fns

returns fail to C via public delayed output.

• On input (sid,VerifyMapping, id, pk) by a client C, if flag = manage, Fns forwards this
message to S. If S returns allow, then, if there is a pair (id, pk) ∈ X, Fns returns 1 to
C via public delayed output, otherwise, it returns 0. If S returns fail to Fns, then Fns

returns fail to C via public delayed output.

Figure 3: The naming service functionality Fns interacts with a set of n clients, a set of m
servers, a trusted party T and the simulator S. It allows clients to register, revoke, retrieve
and verify (id, pk) mappings.
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5 Defining a Naming Service Functionality

In this section, we describe the security of a naming service in the UC framework ([19])
by defining it as an ideal functionality Fns (Figure 3). Fns interacts with n clients, m
servers, a party T , which is responsible for the setup, and an adversary S, which is called
the simulator. It stores (identity,public-key) pairs and supports a number of operations.
The servers are responsible for running the naming service and, therefore, before the setup,
we require that all servers send a (sid, Init) message. During setup, the party T specifies a
relationR, which defines under which condition a public key can be revoked. In practice, this
relation might be a verification algorithm for a NIZK proof, or, a signature on a randomly
selected message. After the setup phase, a client can register an (identity,public-key) pair,
assuming the identity is available, and, can revoke an (identity,public-key) pair, assuming
her public key satisfies relation R. Furthermore, she is able to retrieve the public key of
a registered identity and check, whether an identity, or, an (identity,public-key) pair, is
registered or not. Our model considers only static corruptions, thus, we assume that the
simulator specifies the set of corrupted clients, Ccor, before setup. The party T is considered
trusted, thus, the simulator, S, is not allowed to corrupt T . Also, note that, in practice,
this functionality cannot be realized for any corruption model for the m servers. However,
the corruption model for the servers depends on the protocol with which we aim to realize
the functionality Fns.

6 Naming Service Implementation

At a high-level, the service must allow the storage, retrieval and deletion of (identity,public-
key) pairs. The main barrier in realizing a smart contract-based DPKI is the size of its
state, which, being its most expensive resource to access, must be minimized. We resolve
this issue in a twofold manner. First, we separate storage from the process of verifying the
validity of mappings by maintaining two public-state, universal accumulators (as presented
in Section 4) as our smart contract’s state. Second, our accumulators are RSA-based and
have constant size. The public-state property is required as the contract’s state is publicly
accessible. To circumvent the issue that deletions require access to an accumulator’s private
key, we employ the methodology that we presented at the end of Section 4.

In Figure 4, we define the functionality FTP , which captures the role of the smart
contract in our protocol. This functionality interacts with a party T , a set of n clients
and a set of m servers, some of which may be corrupted by the adversary prior to the
initialization phase. FTP is initialized by a trusted party T by receiving as input a program
P . The state of FTP is updated after a call to the program P and the output is received
by the calling party. Note that the implementation of FTP requires an honest majority of
servers, along the lines of [28, 29, 12]. The adversary has always full knowledge of all the
computations performed and may interfere by either aborting, or, allowing, an execution of
P at will. However, he is restricted from modifying the output. Implementing FTP using
a blockchain protocol has the servers acting as “miners” and T and the clients interacting
with the blockchain by posting transactions. Installing a program P is a special transaction
that includes P in the blockchain and, subsequently, executing P requires it to be run by
all miners and recording its state update in the blockchain. The security properties of the
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FTP :

• On input (sid, InitTP) by a server Si, FTP sets Sinit ← Sinit∪{Si}(initialized as Sinit ← ∅)
and informs the adversary A that Si is initialized by sending (sid, InitTP, Si). Then, FTP

returns success to Si. If all the servers S1, . . . , Sm have sent a message (sid, InitTP), FTP

sets flag = ready.

• On input (sid, Install, P ) by T , if flag = ready, send (sid, Install, P ) to A. If A returns
allow, set flag = start, store P , set state ← ε, where ε is the empty string, and return
success to T .

• On input (sid, x) by a client C, if flag = ready, send (sid, x) to A. If A returns allow, run
P on input (x, state) and output (y, state′). Set state ← state′ and return (y, state′) to
C via public delayed output. If x is an invalid input for program P , return ⊥ to C via
public delayed output.

Figure 4: The functionality FTP captures the role of the smart contract. It interacts with
a trusted party T , a set of n clients, a set of m servers and the adversary A.

1. On input (Setup, params), where params is of the form (pk1, pk2, R), run InitAcc on input
pk1 and on input pk2 and compute c0,1, c0,2 respectively. This procedure initializes two
public-state, additive, universal accumulators c1 and c2 by setting c1 ← c0,1, c2 ← c0,2. It
sets state← (params, c1, c2) and returns state.

2. On input (Register, id, pk, i,W1,W2),

(a) If i = 1, check if VerifyNonMem(pk2, (id, 1, a),W1, c2) = 1.

(b) If i ≥ 2, check if VerifyNonMem(pk2, (id, i, a),W1, c2) = 1 and VerifyMem(pk2, (id, i−
1, d),W2, c2) = 1.

If all the above checks succeed, run (c′1,W
′
1) ← Add(pk1, (id, pk, i, a), c1) and (c′2,W

′
2) ←

Add(pk2, (id, i, a), c2). Update state by setting c1 ← c′1 and c2 ← c′2, and return
((c′1,W

′
1), (c

′
2,W

′
2)). Otherwise, return fail.

3. On input (Revoke, id, pk, i,W1,W2,W3, aux),

(a) Check if R(pk, aux) = 1.

(b) Check if VerifyMem(pk2, (id, i, a),W1, c2) = 1, VerifyNonMem(pk2,
(id, i, d),W2, c2) = 1 and VerifyMem(pk1, (id, pk, i, a),W3, c1) = 1.

If none of the above verifications fail, run (c′2,W
′
2)← Add(pk2, (id, i, d), c2) and (c′1,W

′
1)←

Add(pk1, (id, pk, i, d), c1). Update state by setting c1 ← c′1 and c2 ← c′2 and return
((c′1,W

′
1), (c

′
2,W

′
2)). Otherwise, return fail.

4. On input RetrieveState, return state← (params, c1, c2).

Figure 5: The program P which is input to FTP , during initialization, in our construction.
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FUDB :

• On input (sid, InitUDB) by a server Si, FUDB sets S′
init ← S′

init ∪ {Si} (initialized
as S′

init ← ∅) and sends (sid, InitUDB, Si) to A. Then, FUDB returns success to Si.
If all servers S1, . . . , Sm have sent a message (sid, InitUDB), FUDB sets flag = ready,
DBstate← ∅ and p← 0.

• On input (sid,Post, x) by a client C, if flag = ready, forward (sid,Post, x, C) to A. If A
sends allow, set p← p+ 1, DBstate[p]← x and return success to C.

• On input (sid,RetrieveDB) by a client C, if flag = ready, forward (sid,RetrieveDB, C) to
A. If A returns allow, return DBstate to C.

• On input (sid,ChangeDBstate, DBstate′) by A, set DBstate← DBstate′.

Figure 6: The functionality FUDB models an unreliable database and interacts with a set
of n clients, a set of m servers and the adversary A.

underlying blockchain, specifically related to peristence of transactions, cf. [28, 29, 12],
imply the security of FTP ’s realization.

Furthermore, we assume that all operations are completed in a synchronous, atomic
fashion. In practice, some time is required for an operation (transaction) to be validated,
i.e., to be recorded in the blockchain. Nevertheless, blockchains enforce a total ordering
of transactions and execute them serially, which has the same net result. In our protocol,
FTP is input the program P of Fig. 5, thus, FTP essentially maintains the aforementioned
accumulators as its state, i.e., it acts as the accumulator manager Tacc. To simplify the
description and security analysis of our design, we assume a trusted setup phase that es-
tablishes the relation R and generates the accumulators’ keys. This assumption does not
introduce a single point of failure in our design as it can be replaced, in a practical imple-
mentation, with distributed protocols for generating parameters (e.g., [46]).

In Figure 6, we introduce the functionality FUDB, which handles the storage of infor-
mation that are relevant to our protocol, e.g., (identity,public-key) pairs. FUDB interacts
with n clients, a set of ℓ servers and the adversary. This functionality models an “unreliable
database”, i.e., the adversary may tamper with its contents. Its involvement in our protocol
is twofold. First, a client queries this functionality to retrieve all the necessary information
that will allow her to, subsequently, interact with FTP . Second, following the completion
of an interaction with FTP , the client stores in FUDB, among others, information that were
output by the smart contract and reflect the new state of the system. We elaborate more
on the information that clients query/store from/to FUDB later on in this section where we
provide a high-level description of each operation. A practical realization of FUDB is out of
the scope of this paper. However, an authenticated DHT network comprised of nodes that
have registered in our PKI would be a suitable candidate, both in terms of security (i.e., it
is Sybil resilient), as well as efficiency, due to its logarithmic message complexity.

In our scheme, we accumulate (id, pk, i, op) tuples in c1, where, op = a or op = d
mark an element as “added” or “deleted”, respectively. This allows clients to infer if an
(identity,public-key) mapping is valid. In c2, we accumulate (id, i, op) tuples, which allows
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clients to infer if an identity is registered in the system. In the following, and due to space
limitations, we present a high-level description of the Register, Revoke, Retrieve, VerifyID,
and VerifyMapping operations.

Informally, a client that is interested in registering an (identity,public-key) mapping
must prove to the smart contract that the identity is, currently, available. To achieve
this, she generates two witnesses. First, a membership witness of the tuple (id, i, d) for c2,
which proves that the i-th instance of this identity has been marked as deleted. Second,
a non-membership witness of the tuple (id, i + 1, a) for c2, which proves that the (i +
1)-th instance of this identity, i.e., the one she is interested in registering, has not been
marked as added. If both of the aforementioned conditions hold, she can convince the
smart contract to accumulate her mapping in c1. These witnesses are constructed by, first,
querying FUDB for the history of operations and, second, locating records regarding id, in
an attempt to find the proper value for index i. Following a successful registration, the
client posts a (Register, id, pk, i,W1,W2,W3) record to FUDB. The witnesses W1,W2,W3

facilitate queries from future clients regarding, e.g., the validity of the (i+1)-th instance of
her (identity,public-key) mapping.

To revoke an (identity,public-key) mapping, a client generates the following proofs. First,
a proof of ownership of the corresponding secret key, which is captured by the relation R.
Second, a membership witness of the tuple (id, i, a) for c2, which proves that this identity has
been marked as added for index i. Third, a non-membership witness of the tuple (id, i, d)
for c2, which proves that this identity has not been marked as deleted for index i. Fourth, a
membership witness of the tuple (id, pk, i, a) for c1, which proves that the identity is indeed
mapped to the same public-key that satisfies the relation R. Assuming that witnesses are
generated honestly, the client convinces the contract to revoke her mapping and, then, she
proceeds on posting (Revoke, id, pk, i) to FUDB.

To retrieve an identity’s public-key, the client queries FUDB to check whether the last
record related to this identity is a registration record. If so, the client updates the witnesses
W1,W2,W3 stored in the retrieved registration record and, subsequently, invokes the smart
contract to validate the (identity,public-key) mapping. VerifyID and VerifyMapping follow
the same procedure as Retrieve to verify if an identity, or, an (identity,public-key) mapping,
is registered.

In Figure 7, we present the formal description of protocol π, which realizes the function-
ality Fns. Recall that the entities that participate in the protocol are: 1) a trusted party
T , which is used for setup purposes, 2) a functionality FTP , 3) n clients C1, . . . , Cn and, 4)
a functionality FUDB. We denote with X1 and X2 the sets of accumulated elements of c1
and c2, respectively. These sets are constructed by the client as follows. For any record of
the form (Register, id, pk, i, ·), a client adds (id, pk, i, a) to X1 and (id, i, a) to X2. For any
record of the form (Revoke, id, pk, i), a client adds (id, pk, i, d) to X1 and (id, i, d) to X2.

For ease of presentation, we have described our protocol using two accumulators. We
can achieve the same net result using only one accumulator since both c1 and c2 accumulate
arbitrary strings. Thus, we are able to accumulate both types of tuples, i.e., (id, i, op) and
(id, pk, i, op), in one accumulator, while still being able to generate the (non) membership
witnesses required in our protocol. To achieve this, we modify the Register and Revoke
operations of program P as follows. First, the second call to Add, in either operation,
receives as parameter the accumulator value that is returned from the first call to Add.
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1. On input (sid, Init), a server Si sends (sid, InitTP) and (sid, InitUDB) to FTP and FUDB .
If Si receives success by both FTP and FUDB , then Si returns success.

2. On input (sid, Setup, R), the party T sends (sid, Install, P ) to FTP , where P is the program
of Figure 5. If FTP returns as success, then T runs KeyGen(1λ) twice, sets params =
(pk1, pk2, R) and sends (sid, (Setup, params)) to FTP , which executes the program P on
input (Setup, params) (if A returns allow to FTP ). Therefore, if FTP returns state ←
(params, c1, c2) to T , T returns success.

3. On input (sid,Register, id, pk), C sends (sid,RetrieveDB) to FUDB . Upon receiving
DBstate, C checks for records regarding id.

(a) it finds the last record regarding id and checks if it is of the form (Revoke, id, pk, i).
If it is not, C returns fail. Otherwise, she computes a non-membership wit-
ness W1 for (id, i + 1, a) and a membership witness W2 for (id, i, d) by running
NonMemWitGen(pk2, (id, i + 1, a), X2, c2) and MemWitGen(pk2, (id, i, d), X2, c2) re-
spectively.

(b) If no record is found, C computes a non-membership witness W1 for (id, 1, a) by
running NonMemWitGen(pk2, (id, 1, a), X2, c2), sets W2 = ⊥ and i = 0.

Then, C sends (sid,Register, id, pk, i + 1,W1,W2) to FTP , which runs P on this in-
put. If FTP returns ((c′1,W

′
1), (c

′
2,W

′
2), state), where W ′

1 is a membership witness for
(id, pk, i + 1, a) in c′1 and W ′

2 is a membership witness for (id, i + 1, a) in c′2, C com-
putes a non-membership witness W ′

3 for (id, i+ 1, d) by running NonMemWitGen((id, i+
1, d), X2, c

′
2) and sends

(
sid,Post, (Register, id, pk, i+1,W ′

1,W
′
2,W

′
3)
)
to FUDB . If FUDB

returns success, C outputs success. Otherwise, C outputs fail.

4. On input (sid,Revoke, id, pk, aux), C sends (sid,RetrieveDB) to FUDB . Upon receiving
DBstate, C searches for records that precede her registration record. Assuming ℓ such
records, and depending if an encountered record is of the form Register, or, Revoke, C, on
each iteration, updates her witnesses as follows:

(a) C encounters a (Register, id′, pk′, j,W id′

1 ,W id′

2 ,W id′

3 ). She updates W ′
1 by running

W ′
1 ← UpdMemWit(pk1, (id, pk, i, a), (id

′, pk′, j, a),W ′
1). W ′

2,W
′
3 are updated ac-

cordingly.

(b) C encounters a (Revoke, id′, pk′, j). She updates W ′
1 by running W ′

1 ←
UpdMemWit(pk1, (id, pk, i, a), (id

′, pk′, j, d),W ′
1). W

′
2,W

′
3 are updated accordingly.

Then, C sends (sid,Revoke, id, pk, i,W ′
1,W

′
2,W

′
3, aux) to FTP . If FTP returns

((c′1,W
′
1), (c

′
2,W

′
2), state), C sends

(
sid,Post, (Revoke, id, pk, i)

)
to FUDB . If FUDB re-

turns success, C outputs success. Otherwise, C outputs fail.

5. On input (sid,Retrieve, id), C sends (sid,RetrieveDB) to FUDB . If there is no record
related to id, C outputs fail, otherwise, C:

(a) Checks if the last record related to id is of the form Register. If so, she retrieves
W ′

1,W
′
2,W

′
3 from the record and runs Steps 4a and 4b to compute the updated

witnesses W ′
1,W

′
2,W

′
3. Otherwise, C outputs fail.

(b) Sends (sid,RetrieveState) to FTP . If FTP returns state then C runs
VerifyMem(pk1, (id, pk, i, a),W

′
1, c1),VerifyMem(pk2, (id, i, a),W

′
2, c2) and

VerifyNonMem(pk2, (id, i, d),W
′
3, c2). If all algorithms output 1, C outputs pk

as the retrieved public key, otherwise, C outputs ⊥.

6. On input (sid,VerifyID, id), C runs Step 5. If Step 5 outputs some pk, C outputs 1,
otherwise, C outputs 0.

7. On input (sid,VerifyMapping, id, pk), C runs Step 5. If Step 5 outputs pk, C outputs 1,
otherwise, C outputs 0.

Figure 7: Description of the protocol π built upon the program P of Figure 5.
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Second, we invoke UpdMemWit after the second call to Add, to update the membership
witness that was returned by the first call to Add. This approach, cuts down in half
the contract’s state, but, increases the computation of both Register and Revoke by one
exponentiation and one invocation of the Map procedure.

Lastly, we show that our construction is secure by proving Theorem 6.1. The proof of
Theorem 6.1 is provided in Appendix A.

Theorem 6.1. The protocol π of Figure 7 securely realizes the functionality Fns of Figure 3
in the (FTP ,FUDB)-hybrid world under the strong-RSA assumption in the Random Oracle
model.
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A Proof of Theorem 6.1

Theorem 6.1. The protocol π of Figure 7 securely realizes the functionality Fns in the
(FTP ,FUDB)-hybrid world under the Strong-RSA assumption in the Random Oracle Model.
Namely, for any p.p.t. adversary A interacting with the protocol π in the (FTP ,FUDB)-
hybrid world, there is a p.p.t. simulator S interacting with the functionality Fns, such that,
for any p.p.t. environment Z, it holds that

EXECFns
Z,S

c≈ EXECπFTP ,FUDB

Z,A .

Proof. We construct a simulator S (Figure 8) which emulates an execution of the protocol
π in the (FTP ,FUDB)-hybrid world, in the presence of an adversary A. S plays the role of
T , FTP , FUDB, the role of the servers and acts on behalf of a number of honest clients in
the simulation of the hybrid-world protocol π. Based on the construction of our simulator
S, we essentially show that an environment can distinguish between the executions in the
hybrid and the ideal world only by influencing the way the membership or non-membership
tests take place in the hybrid world protocol. In other words, the only inconistency between
the two executions can be derived if an adversary manages to convince the functionality
FTP about false statements (of whether an element belongs to an accumulated set or not)
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by thus breaking the security of at least one of the accumulators of the protocol π. Note
that the relation R(pk, aux) does not provide an opportunity for distinguishing since it is
the same in both worlds.

We assume that Z is a p.p.t. environment. For any message sent by Z to a party (e.g.
a client C or the party T ), we examine the output both in the hybrid and ideal world. Note
that in the UC model, the parties in the ideal world are dummy, in the sense that they
simply forward any message they receive by the environment to the functionality and vice
versa. Below, we show that for any message sent by the environment, the outputs of the
parties in the hybrid and ideal world are indistinguishable and thus the environment cannot
distinguish between the executions in the hybrid and ideal world.

Z sends (sid, Init) to a server Si: In the hybrid world, Si sends (sid, InitTP) to FTP and
(sid, InitUDB) to FUDB. The functionalities FTP and FUDB add the server Si to the set
Sinit and S′

init respectively and inform the adversary A that Si is initialized. They both
return success to Si, which, in turn returns success. In the ideal world, the simulator S,
upon receiving (sid, Init, Si) from Fns, according to Step 1 of Figure 8, it sends allow to Fns,
which returns success to Si.

Z sends (sid, Setup, R) to the party T : In the hybrid world, the party T sends (sid, Install, P )
to FTP . If flag = ready and A returns allow, then FTP stores P , sets state← ε and returns
success to T . Then, T runs KeyGen(1λ) twice (Step 2, Figure 7), sets params = (pk1, pk2, R)
and next, sends (sid, (Setup, params)) to FTP . If A returns allow, FTP runs P on input
(Setup, params) and returns state ← (c0,1, c0,2, params) to T and T returns success to Z.
In the ideal world, assuming that flag = start, the functionality Fns sends (sid, Setup, R) to
S. The simulator S follows Step 2 of Figure 8 and simulates T and FTP in the execution
of the protocol π in the presence of A. Given that A returns allow to S when the latter
plays the role of FTP , S returns allow to Fns. Then, Fns returns success to T . Therefore,
T returns success both in the hybrid and ideal world.

Z sends a message (sid,Register, id, pk) to a client C: We will distinguish different cases
related to whether the adversary A has sent a message to FUDB which changes the contents
of the database before Z sends (sid,Register, id, pk) to C. In all cases, we will examine both
the output of an honest client C and a corrupted client C (i.e. a client which is controlled
by the adversary A) both in the hybrid and the ideal world. We consider the following
three cases:

Reg1: A has not sent (sid,ChangeDBstate, DBstate′) to FUDB before (sid,Register, id, pk)
is sent to the client C. Below, we examine two subcases related to whether the identity
id is already registered or not :

Reg1(a): The identity id is not registered: In the hybrid world, an honest client C sends
(sid,RetrieveDB) to FUDB and, if A returns allow, then C receives DBstate and
computes the witnesses W1,W2 according to Steps 3a, 3b of Figure 7. Then,
C sends (sid, (Register, id, pk, i+ 1,W1,W2)) to FTP . Supposing that A returns
allow to FTP , FTP returns ((c′1,W

′
1), (c

′
2,W

′
2), state) and C computes the witness

W ′
3. Then, C sends (sid,Post, (Register, id, pk, i+ 1,W ′

1,W
′
2,W

′
3)) to FUDB and
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Simulator S:

1. Upon receiving (sid, Init, Si) by Fns, S, on behalf of FTP and FUDB sends (sid, InitTP, Si)
and (sid, InitUDB, Si) to A and sends allow to Fns.

2. Upon receiving (sid, Setup, R) by Fns, S, on behalf of the party T in the real-world
protocol, runs KeyGen(1λ) twice (according to Step 2 of Figure 7) and then, playing the
role of the functionality FTP in the real-world protocol, sends (sid, Install, P ) to A. If A
returns allow then S sends (sid, Setup, params) to A. If A returns allow then S runs P
on input (Setup, params) and sends allow to Fns.

3. Upon receiving (sid,Register, id, pk) by Fns, S, playing the role of an honest client C and
the role of FUDB in the hybrid-world protocol π, sends (sid,RetrieveDB, C) to A. If A
returns allow, S runs Step 3a of Figure 7. If the last record related to id is a register record,
S sends fail to Fns, otherwise, it proceeds by running Step 3b if necessary. Then S, playing
the role of the FTP in the real-world protocol, sends (sid, (Register, id, pk, i+1,W ′

1,W
′
2))

to A. If A returns allow, then S runs P on input (Register, id, pk, i + 1,W ′
1,W

′
2). If P

outputs fail, S sends fail to Fns, otherwise, P returns ((c′1,W
′
1), (c

′
2,W

′
2), state) and S

computes a non-membership witness W ′
3 for (id, i + 1, d). Then, on behalf of FUDB , S

sends (sid,Post, (Register, id, pk, i,W ′
1,W

′
2,W

′
3)) to A. If A returns allow then S sends

allow to Fns and updates DBstate by storing (Register, id, pk, i,W ′
1,W

′
2,W

′
3), as FUDB

does in Figure 6.

4. Upon receiving (sid,Revoke, id, pk, aux) by Fns, S, playing the role of an honest client
C and the role of FUDB , sends (sid,RetrieveDB, C) to A. If A returns allow, S runs
Steps 4a, 4b of Figure 7 and computes the updated witnesses W ′

1,W
′
2,W

′
3. Then, S, on

behalf of FTP , sends (sid,Revoke, id, pk, i,W ′
1,W

′
2,W

′
3, aux) to A. If A returns allow, S

runs P on input (Revoke, id, pk, i,W ′
1,W

′
2,W

′
3, aux) and if it outputs (fail, state) then S

sends fail to Fns. Otherwise, S returns allow to Fns and updates DBstate by storing
(Revoke, id, pk, i).

5. Upon receiving (sid,Retrieve, id) by Fns, S, on behalf of an honest client C and playing
the role of FUDB , sends (sid,RetrieveDB) to A. If A returns allow, S runs Step 5a of
Figure 7. If Step 5a returns fail, then, S returns fail to Fns, otherwise S runs Step 5b and
simulating FTP , sends (sid,RetrieveState) to A. If A returns allow and all the algorithms
at Step 5b return 1, then, S sends allow to Fns, otherwise it sends fail.

6. Upon receiving (sid,VerifyID, id) or (sid,VerifyMapping, id, pk) by Fns, S runs the simu-
lation similarly to Step 5.

7. Upon receiving (sid,ChangeDBstate, DBstate′) by A, S sets DBstate← DBstate′.

8. Upon receiving (sid,Register, id, pk) or (sid,Revoke, id, pk) by Fns for a corrupted client
C, S waits for the actions of A, and simulates FTP and FUDB as in previous cases. If
S receives (Register, id′, pk′, i,W ′

1,W
′
2) by A, checks if id ̸= id′ or/and pk ̸= pk′. If the

program P does not return (fail, state) on this input then S sends (Register, id′, pk′, C) to
Fns. S runs similarly when it receives (Revoke, id′, pk′, i,W ′

1,W
′
2,W

′
3).

Figure 8: Simulator S.
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if A returns allow, C returns success in the hybrid world. In the ideal world,
the client C returns success as well, because the simulator S, as it can be seen
in Step 3 of Figure 8, returns allow to Fns, playing the role of C, FTP , FUDB.
Finally, Fns, verifying that id is not registered, sends success to C.

Reg1(b): The identity id is currently registered: In the hybrid world, an honest C sends
(sid,RetrieveDB) to FUDB and when C receives DBstate checks that id is regis-
tered and returns fail. In the ideal world, S, simulating C and FUDB according
to Step 3 of Figure 8, checks that there is a register record for the identity id
which has not been revoked yet and therefore returns fail to Fns. Next, Fns

returns fail to C.

A corrupted client C in the hybrid world may try to convince FTP that id is
not registered. Then, C should either provide a non-membership witness W1 for
(id, j, a), for some j ≥ 2, such that VerifyNonMem(pk2, (id, j, a),W1, c2) = 1 and
a membership witness for W2 for (id, j − 1, d) such that VerifyMem(pk2, (id, j −
1, d),W2, c2) = 1, or, C should provide a valid non-membership witness W1 for
(id, 1, a). We show that, by the security of the accumulator c2, such an attack
takes place only with negligible probability. Recall that since id is currently
registered, it holds either that (1) there is ℓ ≥ 2 such that (id, ℓ, a) ∈ X2 and
(id, ℓ, d) /∈ X2, where X2 is set accumulated in c2, or, (2) (id, 1, a) ∈ X2. Starting
with (1), we consider the cases where 1 < j ≤ ℓ, and j > ℓ. If 1 < j ≤ ℓ, then
(id, j, a) ∈ X2 and (id, j − 1, d) ∈ X2. By the security of the accumulator c2, C
can produce a valid non-membership witness W1 for (id, j, a) only with negligible
probability. If j > ℓ, then (id, j, a) /∈ X2 and (id, j − 1, d) /∈ X2. By the security
of the accumulator c2, C cannot produce a valid membership witness W2 for
(id, j − 1, d). For the case (2), similarly, C can produce a valid non-membership
witness W1 for (id, 1, a) only with negligible probability. Hence, if a corrupted
client C sends (sid,Register, id, pk, j,W1,W2) to FTP , following the reasoning
described above, FTP will return (fail, state) (except with negligible probability).
Therefore, C returns fail in the hybrid world. Consistently to the hybrid world, in
the ideal world, C would also return fail. In detail, the simulator S, according to
Step 8, waits for the actions of A, i.e., the corrupted client C. Then, S simulates
FTP in the eyes of the corrupted client C and since FTP returns (fail, state), S
sends fail to Fns. Then, Fns sends fail to C and C returns fail.

Reg2: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before Z sends (sid,Register, id, pk),
such that DBstate′ ̸= DBstate and the set X ′

2 derived by DBstate′ is different from
the set X2 accumulated in c2

2. We consider the following subcases:

Reg2(a): The identity id is not registered but the last record including id in DBstate′

is of the form (Register, id, pk, j,W1,W2,W3): In the hybrid world, an hon-
est C sends (sid,RetrieveDB) to FUDB and when C receives DBstate′, checks
that id is registered and returns fail. In the ideal world, S, simulating C and

2As we explained in Section 5, a set X ′
2 is derived by DBstate′ in the following way: For any record of the

form (Register, id, pk, i,W1,W2,W3) , (id, i, a) is added toX2 and for any record of the form (Revoke, id, pk, i),
(id, i, d) is added to X2.
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FUDB, sends fail to Fns, which returns fail to C. A corrupted C may send
(Register, id, pk′, j′,W ′

1,W
′
2) to FTP . In that case, if FTP returns (fail, state),

then C will return fail. In the ideal world, S, simulating FTP , returns fail to
Fns, which returns fail to C. If FTP returns ((c′1,W

′
1), (c

′
2,W

′
2), state) and FUDB

returns success to C after receiving a message of the form (sid,Post, ·), then C
outputs success. Respectively, in the ideal world S, simulating FTP and FUDB,
returns allow to Fns, which first checks that id is not registered, adds the pair
(id, pk′) and sends success to C. In both cases, C returns consistent outputs in
the hybrid and ideal world.

Reg2(b): The identity id is not registered and the last record including id in DBstate′ is
of the form (Revoke, id, pk, j), or there is no record for id: The reasoning in this
subcase is the same with Reg2(a), except that an honest client interacts with
FTP after receiving DBstate′ from FUDB.

Reg2(c): The identity id is registered and the last record including id in DBstate′ is of
the form (Revoke, id, pk, j), or there is no record for id: In the hybrid world, an
honest client C sends (sid,RetrieveDB) to FUDB. Upon receiving DBstate′ from
FUDB, she runs Steps 3a, 3b of the protocol π (Figure 7) and computes W1,
a non-membership witness for (id, j + 1, a) and W2, a membership witness for
(id, j, d) or sets W2 = ⊥ for the case where there is no record for id in DBstate′.
Then, C sends (sid,Register, id, pk, j + 1,W1,W2) to FTP . Assuming that an
honest client C, given the accumulated set X ′

2 ̸= X2 could produce a valid
non-membership witness W1 for (id, j + 1, a) and a valid membership witness
W2 for (id, j, d) with non-negligible probability following the corresponding non-
membership and membership generation algorithms, then, the security of the
accumulator c2 would break, using the same arguments as in the case Reg1(b).
Therefore, FTP returns (fail, state) to C and C returns fail in the hybrid world.
The client C also returns fail in the ideal world, since S simulates FTP and C
and returns fail to Fns.

A corrupted C, in the hybrid world may send (Register, id, pk∗, ℓ,W ∗
1 ,W

∗
2 ) to

convince FTP that id is not registered. Following the same analysis as in the
subcase Reg1(b), we can conclude that C returns the same output both in the
hybrid and ideal world.

Reg2(d): The identity id is registered but the last record including id in DBstate′ is of
the form (Register, id, pk, i+1,W1,W2,W3): Following the arguments of Reg2(c)
with the only difference that an honest client returns fail after receiving DBstate′

from FUDB, we conclude that C returns consistent outputs in the hybrid and
ideal world.

Reg3: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before (sid,Register, id, pk) sent
by Z, such that DBstate′ ̸= DBstate but the set X ′

2 derived by DBstate′ is the
same with X2 accumulated in c2. In this case, a similar reasoning with Reg1 can
be followed, where the adversary has not sent a message which changes the contents
stored by FUDB. This happens because the accumulated set remains the same and
thus an honest client is able to compute correctly the witnesses W1,W2.
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Z sends (sid,Revoke, id, pk, aux) to a client C: Similarly to the previous case, we examine
the output of the client C in the hybrid and ideal world by distinguishing different cases
depending on whether the adversary has tampered with the contents stored by FUDB. Note
that in all the cases we describe below, we assume that R(pk, aux) = 1, otherwise, it can be
easily observed that a client C returns fail both in the hybrid and ideal world.

Rev1: A has not sent (sid,ChangeDBstate, DBstate′) to FUDB before (sid,Revoke, id, pk, aux)
is sent to C. We consider two different subcases:

Rev1(a): (id, pk) is registered: In the hybrid world, an honest C sends (sid,RetrieveDB)
to FUDB. If A returns allow, then FUDB sends DBstate to C. C computes the
witnesses W ′

1,W
′
2,W

′
3 following the steps 4a, 4b of the protocol π in Figure 7.

Recall that W ′
1 is a membership witness for (id, i, a), W ′

2 is a non-membership
witness for (id, i, d) and W ′

3 is a membership witness for (id, pk, i, a). Then,
C sends (sid,Revoke, id, pk, i,W ′

1,W
′
2,W

′
3, aux) to FTP . If A returns allow and

since R(pk, aux) = 1, then FTP returns ((c1,W
′′
1 ), (c2,W

′′
2 ), state). Then C

sends (sid,Post, (Revoke, id, pk, i)) to FUDB and if A returns allow, FUDB re-
turns success to C. In the ideal world, S, upon receiving (sid,Revoke, id, pk, aux)
simulates C,FTP and FUDB as described in Step 4 of Figure 8. f A returns
allow as response in all cases it is requested, S sends allow to Fns. Then, Fns

checks that R(pk, aux) = 1 and (id, pk) ∈ X, it deletes the pair (id, pk) and sends
success to C. Thus, an honest client C returns success both in the hybrid and
ideal world.

Rev1(b): (id, pk) is not registered: In the hybrid world, an honest C sends (sid,RetrieveDB)
to FUDB and if A returns allow, FUDB returns DBstate to C. C checks if the
last record related to id is a Register record and, since this does not hold, C
returns fail. In the ideal world, S, simulating C and FUDB, sends fail to Fns

which, in turn, sends fail to C. As a result, C returns fail in the ideal world as
well.

A corrupted C, in the hybrid world, may try to convince FTP that (id, pk) is
currently registered. We will consider three cases. First, we will consider the
case where the identity id has never been registered, second, the case where id
is not currently registered but id has been registered in the past, and third, the
case where a pair (id, pk′) is currently registered, where pk′ ̸= pk.
• In the first case, where the identity id has never been registered, C should find
i and compute a membership witness W ′

1 for (id, i, a) and a non-membership
witness W ′

2 for (id, i, d). However, since id has never been registered, (id, i, a) /∈
X2 and (id, i, d) /∈ X2. By the security of the accumulator c2, an adversary can
find a membership witness W ′

1 for (id, i, a) /∈ X2 only with negligible probability.
Therefore, FTP will return fail and C returns fail in the hybrid world except with
negligible probability.
• We proceed with the second case, where id has been registered in the past.
Similarly to the first case, C should find i and compute a membership witness
W ′

1 for (id, i, a) and a non-membership witness W ′
2 for (id, i, d). Assume that id

has been registered in the past ℓ times, and C chooses i ∈ {1, . . . , ℓ}. Then, C
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has to compute a membership witness W ′
1 for (id, i, a) and a non-membership

witness W ′
2 for (id, i, d). However, we have that (id, i, a) ∈ X2 and (id, i, d) ∈ X2

since id is not currently registered. By the security of the accumulator c2, C
can compute a non-membership witness for (id, i, d) ∈ X2 only with negligible
probability, and therefore C returns fail. If C chooses i > ℓ, following the same
arguments with the first case, C returns fail except with negligible probability
(by the security of the accumulator c2).
• In the third case, since (id, pk′) is registered, there is ℓ such that (id, ℓ, a) ∈
X2, (id, ℓ, d) /∈ X2, (id, pk

′, ℓ, a) ∈ X1 and (id, pk′, i, d) /∈ X1. Supposing that C
chooses ℓ then C, has to compute a membership witness W ′

1 for (id, ℓ, a) ∈ X1, a
non-membership witness W ′

2 for (id, ℓ, d) /∈ X2 and a membership witness W ′
3 for

(id, pk, ℓ, a) ∈ X1
3. By the security of the accumulator c1, C cannot compute

a valid membership witness for (id, pk, ℓ, a) /∈ X1. Therefore, C returns fail,
except with negligible probability. If C chooses i < ℓ or i > ℓ, following similar
arguments with the first and the second case, by the security of the accumulator
c2, we conclude that C returns fail except with negligible probability. In the ideal

world, in all the aforementioned cases, S, simulates FTP ,FUDB and since FTP

returns (fail, state), S sends fail to Fns, which , in turn, sends fail to C.

Rev2: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before Z sends (sid,Revoke, id, pk, aux),
such that DBstate′ ̸= DBstate at least one of the accumulated sets X ′

i(i ∈ {1, 2})
derived by DBstate′ is different from the corresponding one derived by DBstate:
Considering the way X ′

1, X
′
2 are computed given DBstate′ (see Section 5), there are

two possible scenarios, (1) X ′
2 ̸= X2 and X ′

1 ̸= X1 and (2) X ′
2 = X2 and X ′

1 ̸= X1.
For both scenarios, we have the following subcases:

Rev2(a): (id, pk) is registered: In the hybrid world, an honest C sends (sid,RetrieveDB)
to FUDB and if A returns allow, then C computes the witnesses W ′

1,W
′
2,W

′
3

according to Steps 4a, 4b of Figure 7, and sends (Revoke, id, pk, j,W ′
1,W

′
2,W

′
3)

to FTP . If FTP returns fail, then C returns fail, otherwise, if A returns allow
after C sending (sid,Post, (Revoke, id, pk, j)) to FUDB, C returns success in the
hybrid world. In the ideal world, S, simulating C,FTP ,FUDB, if FTP returns
fail, then S returns fail to Fns and Fns returns fail to C. Even in the case where
FTP returns success which means that S, simulating FTP , will return allow to
Fns. Since (id, pk) is registered, Fns will delete the pair (id, pk) and it will return
success to the client C. Therefore, a client C returns consistent outputs both in
the hybrid and ideal world.

Rev2(b): (id, pk) is not registered: In the hybrid world, an honest C sends (sid,RetrieveDB)
to FUDB. If A returns allow, FUDB returns DBstate′ and then C checks whether
her registration record 4 exists in DBstate′. If there does not exist such a record,
C returns fail. If the ideal world, S simulates C and FTP and therefore S
returns fail to Fns and therefore C returns fail in the ideal world as well. If

3Note that even if (id, pk) had been registered in the past, X1 would contain an element (id, pk, j, a) but
for j ̸= ℓ.

4Note that in our protocol π the clients have state, and thus they store the last registration record.
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there exists such a record, then C follows Steps 4a, 4b of Figure 7, computes the
witnesses W ′

1,W
′
2,W

′
3 and sends (Revoke, id, pk, j,W ′

1,W
′
2,W

′
3) to FTP . By the

security of the accumulators c1, c2, FTP returns (fail, state) except with negligible
probability. In more detail, if an honest client given DBstate′ could convince
FTP that (id, pk) is currently registered, then following the same arguments as in
the case Rev1(b), the accumulators’ security would break. Therefore, C returns
fail in the hybrid world. In the ideal world, since S simulates C,FTP sends fail to
Fns which returns fail to C. Consequently, C also returns fail in the ideal world.

A corrupted client C may try to convince FTP that (id, pk) is currently registered
(irrespectively of what FUDB has sent), by sending (Revoke, id, pk, j∗,W ∗

1 ,W
∗
2 ,W

∗
3 )

to FTP . By the security of the accumulators c1, c2, following the same arguments
as in Rev1(b), this happens only with negligible probability. Therefore, C returns
fail both in the hybrid and ideal world.

Rev3: A has sent (sid,ChangeDBstate, DBstate′) until (sid,Revoke, id, pk, aux) sent by Z,
such that DBstate′ ̸= DBstate but the sets X ′

1, X
′
2 derived by DBstate′ are the same

as X1, X2: In this case, we follow a similar analysis with Rev1, since an honest client
can compute correctly the witnesses W ′

1,W
′
2,W

′
3.

Z sends (sid,Retrieve, id) to a client C: We consider the following cases:

Ret1: A has not sent (sid,ChangeDBstate, DBstate′) to FUDB before Z sends (sid,Retrieve, id)
to C. We consider the following subcases:

Ret1(a): There is (id, pk) which is currently registered: In the hybrid world, an honest
client C sends (sid,RetrieveDB) to FUDB. If A returns allow, then, FUDB sends
DBstate to C who follows Step 5a of protocol π in Figure 7 and computes the
witnesses W ′

1,W
′
2,W

′
3. Then, C sends (sid,Retrievestate) to FTP . If A returns

allow, then C runs Step 5b and returns pk as the retrieved public key. In the ideal
world, since S simulates C,FTP and FUDB, S returns allow to Fns. Then Fns

checks if there is a public key registered under the identity id, and since (id, pk)
is currently registered, Fns returns pk to C. Therefore, C returns consistent
outputs both in the hybrid and ideal world.

Ret1(b): id is not currently registered: In the hybrid world, an honest client C sends
(sid,RetrieveDB) to FUDB, If A returns allow, then, FUDB sends DBstate to C.
Then C checks if the last record related to id is a Register record. As this does
not hold, C returns fail in the hybrid world. In the ideal world, S, according to
Step 5 of Figure 8, will return fail to Fns which will return fail to C. Therefore,
C returns fail in the ideal world as well.

A corrupted client C, may still send (sid,Retrievestate) to FTP , however, C has
no advantage in influencing the output of FTP , and therefore C returns ⊥, both
in the hybrid and ideal world.

Ret2: A has sent (sid,ChangeDBstate, DBstate′) to FUDB before Z sends (sid,Retrieve, id)
to C such that the accumulated set X ′

2 derived by DBstate′ is different than X2. We
consider the following subcases:
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Ret2(a): There is (id, pk) which is currently registered and the last record related to id is
a register record: In the hybrid world, an honest client C sends (sid,RetrieveDB)
to FUDB. If A returns allow, then, FUDB sends DBstate to C who, following
Step 5a of protocol π in Figure 7, computes the witnesses W ′

1,W
′
2,W

′
3. Then,

C sends (sid,Retrievestate) to FTP . If A returns allow, then C runs Step 5b of
protocol π. Even if all algorithms return 1, and C returns pk in the hybrid world
then S will return allow to Fns and since (id, pk) is registered C will return pk
in the ideal world. If at least one algorithm returns 0, then C returns ⊥ in the
hybrid world. In the ideal world, S, returns fail to Fns, which returns fail to C.

Ret2(b): There is (id, pk) which is currently registered but the last record related to id is
a revoke record: The arguments for this subcase are the same as Ret2(a), except
that an honest client C, checking that the last record related to id is a revoke
record, will return fail.

Ret2(c): id is not registered but the last record related to id is a register record: In the
hybrid world, an honest client C sends (sid,RetrieveDB) to FUDB. If A returns
allow, then, FUDB sends DBstate to C who, following Step 5a of protocol π in
Figure 7, computes the witnesses W ′

1,W
′
2,W

′
3. Then, C sends (sid,Retrievestate)

to FTP . If A returns allow, then C runs Step 5b of protocol π. By the security of
the accumulators c1, c2, at least one of the verification algorithms will return 0.
Therefore, C returns fail. In the ideal world, S, sends fail to Fns which returns
fail to C.

Ret2(d): id is not registered but the last record is a revoke record: For this subcase we can
follow a similar reasoning to Ret2(c), with the difference that an honest client C,
returns fail when she checks that the last record related to id is a revoke record.

We omit the cases where an environment Z sends (sid,VerifyID, id) and (sid,VerifyMapping, id, pk)
to a client C since the analysis is similar to the case where Z sends (sid,Retrieve, id). This
can be easily observed by the description of Steps 6, 7 of the protocol π (Figure 7). This
completes our proof.

B Proof of Lemma 4.1

Lemma 4.1 ([30]). Let U be a 2-universal hash function family from {0, 1}3k to {0, 1}k.
Then, for all but a 2−k fraction of functions f ∈ U , for any y ∈ {0, 1}k, a fraction of at
least 1/ck elements in f−1(y) are primes where c is some small constant.

Lemma 4.1 is proven using a sequence of lemmas. We follow the proof given in the
appendix of the paper [47].

Lemma B.1. Let U = {f : {0, 1}m → {0, 1}k} be a 2-universal hash function family.

For any A ⊆ {0, 1}m, for all but a O(2
2k

|A| )-fraction of f ∈ U , it holds that for any z ∈

{0, 1}k, |f
−1(z)∩A|
|f−1(z)| > |A|

2m+1 .

Lemma B.1 is proven by first showing Lemma B.2 and then Lemma B.3.
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Lemma B.2. Let A ⊆ {0, 1}m and z ∈ {0, 1}k. We say that f ∈ U is (A, z)-balanced if
2
3 ·

|A|
2k
≤ |f−1(z) ∩A| ≤ 4

3 ·
|A|
2k

. It holds that Prf∈U [f is not (A, z)-balanced] ≤ 9·2k
|A| .

Proof. Assume that A = {a1, . . . , aℓ} and that we choose f ∈ U uniformly at random. Since
U is a 2-universal hash function family (Definition 3.2) we have that Pr[f(ai) = z] = 1

2k
.

We define the random variable Xi, which equals 1 if f(ai) = z and 0 otherwise. There-
fore, it holds that Pr[Xi = 1] = 1

2k
. If X = Σℓ

i=1Xi, then it can be easily observed that

X = |f−1(z) ∩ A|. We also have that µ = E[X] = ℓ · Pr[f(ai) = z] = ℓ · 2−k. We will now
utilize the Chebychev inequality

Pr[|X − µ| ≥ t] ≤ V ar(X)

t2
.

If we set t = µ/3, we have that

Prf∈U [|X − µ| ≥ µ

3
] ≤ 9V ar(X)

µ2
. (2)

Since Xi, . . . , Xℓ are pairwise independent, we have that V ar(X) = Σℓ
i=1V ar(Xi). There-

fore, V ar(X) = Σℓ
i=1

(
E[X2

i ] − E[Xi]
2
)
= ℓ 1

2k

(
1 − 1

2k

)
≤ ℓ2−k. Hence, 9V ar(X)

µ2 ≤ 9·2k
ℓ .

Therefore, by (2), it holds that

2

3
· |A|
2k

< |f−1(z) ∩A| < 4

3
· |A|
2k

, (3)

except for 9·2k
ℓ fraction of functions f ∈ U .

Lemma B.3. Let A ⊆ {0, 1}m, z ∈ {0, 1}k and f ∈ U . We say that the pair (f, z) is “bad”

for the set A if |f−1(z)∩A|
|f−1(z)| ≤

|A|
2m+1 . Then, for any A ⊆ {0, 1}m, z ∈ {0, 1}k,

Prf∈U [(f, z) is “bad” for A] ≤ 18 · 2k

|A|
. (4)

Proof. We fix z ∈ {0, 1}k. Then, by Lemma B.2, if we set A = {0, 1}m, we have that

2

3
· 2m−k < |f−1(z)| < 4

3
· 2m−k, (5)

except for 9 · 2k−m fraction of functions f ∈ U . Next, by Lemma B.2 for an arbitrary
A ⊆ {0, 1}m, we have that

2

3
|A| · 2−k < |f−1(z) ∩A| < 4

3
|A| · 2−k, (6)

except for 9·2k
|A| fraction of functions f ∈ U .

Combining (5), (6), it holds that

|f−1(z) ∩A|
|f−1(z)|

>
|A|
2m+1

, (7)

except for 18·2k
|A| fraction of functions f ∈ U .

By Lemma B.3, using the union bound, we can get Lemma B.1.
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Proof of Lemma 4.1. Now, let A be the set of prime numbers less than 2m and m = 3k,
as Lemma 4.1 considers a 2-universal hash function family of functions from {0, 1}3k to
{0, 1}k. By the prime number theorem, we have that the number of primes which are less
or equal to x, denoted as π(x), is asymptotically x

lnx . Making use of a non-asymptotic
bound ([45]), we have that for any x ≥ 55, π(x) > x

lnx+2 . Therefore, we have that

|A| = π(23k) >
23k

ln 23k + 2
. (8)

By (8) and Lemma B.1, it holds that except for (18(3k+2 log2 e)
2k log2 e

)-fraction of functions f ∈ U ,

|f−1(z) ∩A|
|f−1(z)|

>
1

6k
log2 e

+ 2
≈ 1

4.16k + 2
. (9)
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