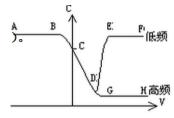
(答案必须写在考点提供的答题纸上)


一、 选择题(每空1分, 共30分)

- 1. 与绝缘体相比, 半导体的价带电子激发到导带所需要的能量()。
- A. 比绝缘体的大 B. 比绝缘体的小 C. 和绝缘体的相同
- 2. 受主杂质电离后向半导体提供(), 施主杂质电离后向半导体提供(), 本征激发向半导体提供()。
- A. 电子和空穴 B. 空穴 C. 电子
- 3. 对于一定的 N 型半导体材料,在温度一定时,减小掺杂浓度,费米能级会()。
- A. 上移 B. 下移 C. 不变
- 4. 在热平衡状态时, P型半导体中的电子浓度和空穴浓度的乘积为常数, 它和()有关
- A. 杂质浓度和温度 B. 温度和禁带宽度
- C. 杂质浓度和禁带宽度 D. 杂质类型和温度
- 5. MIS 结构发生多子积累时,表面的导电类型与体材料的类型()。
- A. 相同 B. 不同 C. 无关
- 6. 空穴是()。
- A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子
- C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子
- 7. 砷化稼的能带结构是()能隙结构。
- A. 直接 B. 间接
- 8. 将 Si 掺杂入 GaAs 中, 若 Si 取代 Ga 则起() 杂质作用, 若 Si 取代 As 则起() 杂质作用。
- A. 施主 B. 受主 C. 陷阱 D. 复合中心
- 9. 在热力学温度零度时,能量比 E_F 小的量子态被电子占据的概率为(),当温度大于热力学温度零度时,能量比 E_F 小的量子态被电子占据的概率为()。
- A. 大干 1/2 B. 小干 1/2 C. 等干 1/2 D. 等干 1 E. 等干 0
- 10. 如图所示的 P 型半导体 MIS 结构

的 C-V 特性图中, AB 段代表

(), CD 段代表()。

- A. 多子积累 B. 多子耗尽
- C. 少子反型 D. 平带状态

(答案必须写在考点提供的答题纸上)

科目代码:3823 科目名称	半导体物理
11. 电离后向半导体提供空穴的杂质	是(),电离后向半导体提供电子的杂质是()。
A. 受主杂质 B. 施主杂质 C. 中性	生杂质
12. 1×10 ¹⁵ cm³的硼杂质,半导体中氢	多数载流子是(),多子浓度为(),费米能级的位置
();如果,此时温度从室温升高	至 550 K,则杂质半导体费米能级的位置()。(已知:
室温下, n _i =10 ¹⁰ cm ³ ; 550 K 时, n _i =1	0^{17}cm^3)
A. 电子和空穴 B. 空穴 C. 电子	D. $10^{14} cm^3$ E. $10^{15} cm^3$ F. $1.1 \times 10^{15} cm^3$ G. 高于 E_i
H. 低于 E _i I. 等于 E _i	
13. 在室温下,对于 n 型硅材料,如	1果掺杂浓度增加,将导致禁带宽度(),电子浓度和空穴
浓度的乘积 n_0p_0 () n_i^2 , 功函数	()。如果有光注入的情况下,电子浓度和空穴浓度的乘
积 np() n _i ² 。	
A. 增加 B. 不变 C. 减小 D. 等于	E. 不等于 F. 不确定
14. 导带底的电子是()。	
A. 带正电的有效质量为正的粒子	
B. 带正电的有效质量为负的准粒子	
C. 带负电的有效质量为正的粒子	
D. 带负电的有效质量为负的准粒子	
15. P 型半导体 MIS 结构中发生少子	反型时,表面的导电类型与体材料的类型()。
A. 相同 B. 不同 C. 无关	
16. 重空穴是指()	
A. 质量较大的原子组成的半导体中的	的空穴
B. 价带顶附近曲率较大的等能面上的	的空穴
C. 价带顶附近曲率较小的等能面上的	的空穴
D. 自旋一轨道耦合分裂出来的能带_	上的空穴
17. 硅的晶格结构和能带结构分别是	
A. 金刚石型和直接禁带型 B. 闪锌矿	广型和直接禁带型
C. 金刚石型和间接禁带型 D. 闪锌矿	广型和间接禁带型

(答案必须写在考点提供的答题纸上)

科目代码:_	3823	_ 科目名称	:	
18. 电子在晶体	中的共有化	化运动指的是	是电子在晶体()。	
A. 各处出现的。	几率相同	B. 各处的	相位相同	
C. 各元胞对应.	点出现的厂	L率相同 D	. 各元胞对应点的相位相同	
二、判断题。	判断下列	叙述是否	正确,正确的打"√",错误的打	"X" (每题 1
分,共10分))			
		的价带电子	激发到导带所需要的能量比半导体的大	. ()
2. 砷化稼是直挡	妾能隙半导	体,硅和锗	是间接能隙半导体。()	
3. 室温下,对于	于某 n 型半	导体,其费	米能级在其本征半导体的费米能级之下	. ()
4. 在热力学温度	度零度时,	能量比 E _F /	小的量子态被电子占据的概率为 100%,	如果温度大于热力
学温度零度时,	能量比 E _I	小的量子态	·被电子占据的概率为小于 50%。()
5. 费米分布函数	数适用于简	并的电子系	统,波耳兹曼分布函数适用于非简并的	电子系统。 ()
6. 肖特基势垒	是由两种半	兰导体接触形	/成。 ()	
7. 无论本征半导	导体还是杂	:质半导体,	其电子浓度和空穴浓度的乘积为常数,	由温度和禁带宽度
决定。 ()				
8. 一块半导体标	才料,光照	在材料中会	产生非平衡载流子,其中非平衡载流子!	的寿命为τ。若光照
忽然停止,经过	τ 时间后	,非平衡载流	流子全部消失。 ()	
9. 在一定温度	下,光照在	半导体材料	中会产生非平衡载流子,光照稳定后,	由于电子空穴对的
产生率与复合率	区相等,所	以称为热平	衡状态,有统一的费米能级。 ()	
10. 金属和半导	体接触分为	可有整流特性	性的肖特基接触和非整流的欧姆接触。	()
三、概念解释	(每题 5	分,共 20	分)	
1. 欧姆接触:				
2. 空间电荷区	:			
3. 光生伏特效	应:			
4. 费米能级的	物理意义:			
四、简述题(毎题 10 タ	分,共 20 分	分)	

1. 以 As 掺入 Ge 中为例,说明什么是施主杂质、施主杂质电离过程和 n 型半导体。

(答案必须写在考点提供的答题纸上)

科目代码: _	3823	_ 科目名称: _		半导体物理			
2. PN 结内建电	场的形成;						
五、计算题(名	每题 10 分	分,共20分)					
1. 一个理想的 p-n 结, $N_D=10^{18} cm^{-3}$, $N_A=10^{16} cm^{-3}$, $\tau_p=\tau_n=10^{-6} s$,器件的面积为 $1.2\times 10^{-5} cm^{-2}$,计算 300K 下饱和电流的理论值, $\pm 0.7 V$ 时的正向和反向电流。							
2. 现有三块半导体硅材料,已知室温下(300K)它们的空穴浓度分别为: $p_{01} = 2.25 \times 10^{16} cm^{-3}$,							
			室温时硅的 $n_i = 1.5 \times$,		
(1) 分别计算这	区上块材料	的电子浓度 ⁿ 01 ,	n_{02} , n_{03} ; (6%))			
(2) 判断这三岁							