

Transposable Elements (transposons)

A DNA sequence capable of moving (transposing) from one location to another in a genome.

Discovery of Transposable Elements

Barbara McClintock (1902-1992) 1940s ~ 1950s

Indian corn, 10 chromosomes numbered from largest (1) to smallest (10)

Ds (for *Dissociation*) located at the site of the break *Ac* (for *Activator*) unlinked genetic factor, present in some maize stocks but absent in others McClintock found it is impossible to map *Ac*.

Transposable element in *E. coli*, 1960

McClintock received the Nobel Prize in 1983

第一节 细菌的转座因子 Transposable Elements in Bacteria

Two major groups:

- Simple transposable elements which carry only the information required for movement
- Complex transposable elements which contain DNA sequences not directly related to transposition

1. Insertion sequences (IS) (插入序列)

Insertion sequences (IS) are the simplest transposons

The structure of IS element

These sequences are direct repeats; they have the same 5'-to-3' polarity and are in the same DNA strand.

> C A G T

GGTGT CCACA

B. Inverted repeat

C C A G G T G T A C A G G T C C A C A T G T

A. Directed repeat

These sequences are inverted repeats; they are in opposite DNA strands in order to preserve the same 5'-to-3' polarity.

An IS element ends in short *inverted terminal repeats* ; usually the two copies of the repeat are closely related rather than identical.

 IS elements code for transposase

Insertion sequence	Normal occurrence in <i>E. coli</i>
IS1	5–8 copies on chromosome
IS2	5 copies on chromosome; 1 copy on F
IS3	5 copies on chromosome; 2 copies on F
IS4	1 or 2 copies on chromosome
IS5	Unknown

The IS elements are normal constituents of bacterial chromosomes and plasmids.

Formation of a conjugative R plasmid by recombination between IS elements

2. Composite Transposons

Composite transposons contain a variety of genes that reside between two nearly identical **IS elements**

Composite transposon is designated by **Tn**, followed by a number

- In some cases, IS modules are identical. In other cases, the IS modules are closely related, but not identical.
- A functional IS module can transpose either itself or the entire transposon.
- When the two IS modules are identical, either module can sponsor the transposition.
- When the modules are different, transposition can depend on one of the modules

4. Mechanism of transposition

Replicative transposition of Tn3

DNA transposons (cut and paste transposons)

- Ac and Ds elements in maize
- P elements in Drosophila
- Retrotransposons

1. The Ac-Ds system in maize (玉米的Ac-Ds 转座系统)

Transposable element in other plants

peas

2. P element transposons in *Drosophilia* 果蝇的P因子

Hybrid dysgenesis: a condition causing sterility, elevated mutation rate, and a chromosome rearrangement in the offspring of crosses between certain strains of fruit flies.

Hybrid dysgenesis in Drosophila

Somatic cells contain a protein that binds to sequences in exon 3 to prevent splicing of the last intron

The absence of this protein in germline cells allows splicing to generate the mRNA that codes for the transposase

Retroviruses are single-stranded RNA animal viruses that employ a double-stranded DNA intermediate for replication.

- The viral DNA integrates into the host genome at randomly selected sites.
- Sometimes (probably rather rarely), the integrated retrovirus can convert a host cell into a tumorigenic state through activating certain types of host genes.

Nonacute retrovirus

Retroposons

Transposable elements that utilize reverse transcriptase to transpose through an RNA intermediate are termed **retrotransposons**.

(逆转录转座子是指通过RNA为中介,反转录成 DNA后进行转座的转座因子。逆转座作用出 现在真核生物)

Structural comparison of a retrovirus to retrotransposons found in eukaryotic genomes

(a) A retrovirus, MoMLV

Retroposons

Yeast Ty elements

- About 35 Ty1 copies in the yeast genome.
- δ sequences : 330 bp, about 100 copies.
- solo δ element

Ty transpositions with DNA lacking intron

Drosophila copia elements

第三节 转座的遗传学效应 Genetic Effects of Transposition

1. Transposable elements shape the genomes of many organisms

Transposable Elements in the Human Genome

Element	Structure	Length (kb)	Number	Genome fraction	
Retrotransposons					
LINEs	ORF1 pol AAA	6-8	1,000,000	20%	
SINEs	AAA	<0.3	2,000,000	13%	
HERVs	LTR gag pol env LTR	1-11	600,000	8%	
DNA transposons					
	→ transposase ←	2-3	400,000	3%	
L		Total	4,000,000	44%	

LINEs (long interspersed elements), SINEs (short interspersed elements), HERV (human endogenous retrovirus)

The Alu sequences make up more than 10% of the human genome.

Transposable elements in grasses are responsible for genome size differences

2. Transposable elements can disrupt genes and alter genomes

About 50% of all spontaneous mutations in *Drosophila* are due to transposition, 10%(mouse), 0.2%(human)

• Gene relocation due to transposition

Imprecisely excise of transposable elements:

- MULEs (*Mutator*-like transposable elements) and Pack-MULEs
- More than 3000 Pack-MULEs in rice genome, containing multiple fragments of genes from different chromosomal locations

3. The evolution of new genes through transposons

Exon shuffling

- Origin of "*jingwei* " gene
- Domestication of transposable elements (转座子驯化)
 - A. thaliana transcription factors
 - Human recombinase enzymes essential to the immune system

Further Discussion

Transposable elements: Genomic parasites? Selfish DNA?

- The insertion of TEs into a gene will often destroy its function, with harmful consequences for the cell
- Replication and spread of TEs may serve no purpose for the cell
- The time and energy required to replicate large numbers of TEs are likely to place a metabolic burden on the cell

Or a treasure trove?

- The evolution of new genes
- Potentially regulating gene expression and rewiring gene networks
 - TEs maintain the length of *Drosophila* chromosomes
- TEs represent a rich and constantly changing pool of genetic and epigenetic variation on which selection can operate----TEs for adaptive evolution?

Model for TE-derived genomic and epigenomic modifications

How do plants and animals survive and thrive with so many insertions in genes and so much mobile DNA in the genome?

- Insertions into exons are negative selection.
 Successful transposable elements insert into socalled safe havens in the genome (retrotransposons, centric heterochromatin, introns)
- Most TEs in the genome are inactive, being the relics that have accumulated inactivating mutations over evolutionary time
- Others are still capable of movement but are rendered inactive by host regulatory mechanisms.

Transposable elements in humans

LINEs

- L1: 3000-5000 complete L1 (a small number are active), more than 500,000 truncated L1 (inactive)
- L2: 315,000 copies, inactive
- **L3**: 37,000 copies, inactive
- SINEs depend on LINEs for transposition
 - Alu (active), MIR and Ther2/MIR3
- 400,000 retroviruslike elements, only a few are active
- DNA transposons

Regulation of Transposable Element Movement by the Host

• Reversible changes in *Ac* activity

Transgene silencing

Epigenetic regulation

Identify genes required to repress transposition

A mutant search leads to the genes required to repress transposition

25 *C. elegans* genes
were identified,
whose mutations
allowed the host to
excise Tc1 in the
germ line

Many are integral components of the **RNAi** silencing pathway, including proteins found in Dicer and RISC

Eukaryotic hosts use RNAi to repress the expression of active transposable elements in their genomes. In this way, a single element that inserts near a gene can be transcribed to produce dsRNA that will trigger the silencing of all copies of the element in the genome.

Genome Surveillance

Sirna

- **piRNAs** in animals
 - Single-stranded RNAs, 26–30 nt in mammals
 - Originate from picluster, comprised of remnants of many transposons
- crRNAs in bacteria
 - CRISPR loci is composed of invading virus sequence.

How do some transposons escaped from the surveillance of the host?

A genomic battleground

A constant battle between the proliferation of transposable elements and host attempts to silence or otherwise inactivate them.

The Frequency of Transposition

- The frequency varies among different elements.
- The overall rate of transposition is 10⁻³ ~ 10⁻⁴ per element per generation.
 - New germ-line transpositions are estimated to occur once in every 50 to 100 human births
- Insertions in individual targets occur at a level comparable with the spontaneous mutation rate, usually 10⁻⁵ ~ 10⁻⁷ per generation.

Human diseases caused by TEs

- To date, at least 14 cases of human diseases are determined due to insertions of L1 element
 - *dystrophin* gene, *APC* and *c-myc* genes
- SINE insertions are also responsible for more than 30 cases of human disease
 - BRCA2 gene, factor IX gene, ChE, NF1 gene, etc.
- A transposon "caught in the act"
 - A male child with hemophilia, blood-clotting factor VIII on X chromosome

The figures and tables are cited from:

- Genetics (From genes to genomes), Leland Hartwell, Mcgraw-Hill Companies, Inc
- Concept of Genetics, William S.Klug, Prentice Hall, Inc
- Introduction to Genetics Analysis, Anthony J.F. Griffiths, W.H.Freeman, Inc
- Principle of Genetics, D.Peter Snustad, John Wiley & Sons, Inc
- Genetics-A Conceptual Approach, Benjamin A.
 Pierce, W. H. Freeman