第三章 细菌和噬菌体遗传学 The Genetics Of Bacteria And Their Viruses

Live in a bacterial world

Table 8.1Advantages of using bacteriaand viruses for genetic studies

- 1. Reproduction is rapid.
- 2. Many progeny are produced.
- 3. The haploid genome allows all mutations to be expressed directly.
- 4. Asexual reproduction simplifies the isolation of genetically pure strains.
- 5. Growth in the laboratory is easy and requires little space.
- 6. Genomes are small.
- 7. Techniques are available for isolating and manipulating their genes.
- 8. They have medical importance.
- 9. They can be genetically engineered to produce substances of commercial value.

第一节 细菌的遗传分析与作图

Genetic Analysis and Mapping in Bacteria

Bacterial exchange DNA by several processes

I. Bacteria Conjugation

The Discovery of Conjugation

(a) Demonstration of gene transfer

(b) Conjugation requires cell-to-cell contact

Lederberg and Tatum, 1946

Bernard Davis

The gene transfer requires cell-to-cell contact, is unidirectional Donor: F⁺ cells (F for "fertility"); Recipient: F⁻ cells

1. The F plasmid and conjugation (F质粒与接合)

F plasmid (sex factor, fertility factor)

2. Integration of F plasmid and Hfr cells

Hfr: High frequency recombination

(b) Many different Hfr strains can form.

Hfr conjugational transfer of chromosomal genes

- The transfer is usually interrupted in the midstream, the second half of the F plasmid is not transferred.
- Only about 1/10000 Hfr cells transfers an entire strand of Hfr chromosome to a recipient F⁻ cell

Property of bacterial recombination

- A single crossover(or odd number) would be lethal because the ring is broken to produce a strange, partly diploid linear chromosome
- To produce recombination cells, there must be an even number of crossovers
- Only one product of recombination survives. The reciprocal exchange product is generally lost in subsequent cell growth

3. F' plasmid and sex conduction

F' 质粒和性导

Summary of conjugation in *E.coli*

4. Mapping bacterial genes with interrupted mating experiment

In the mid-1950s Ellie Wollman & Francois Jacob

Interrupted mating experiment

HfrH \times F⁻

 str^{s} (sensitive to streptomycin) thr^{+} (able to synthesize the amino acid threonine) azi^{r} (resistant to sodium azide)

ton^r (resistant to bacteriophage T1) lac^+ (able to grow with lactose as sole source of carbon) gal^+ (able to grow with galactose as sole source of carbon) str^{r} (resistant to streptomycin) thr^{-} (threonine auxotroph)

azi^s (sensitive to sodium azide) *ton^s* (sensitive to phage T1)

lac⁻ (unable to grow on lactose)

gal⁻ (unable to grow on galactose)

(a) Interrupted-mating experiment

Replica plating transfers each colony to media that select for four donor markers other than streptomycin.

Time (min) Transferred genes

Minutes prior to interruption of conjugation

Map based on mating results

(a) Gene transfer in different Hfrs

Hfr strain	Ord	er of	tran	sfer-					-	
Н	thr	azi	ton	lac	pur	gal	his	gly	thi	
1	thr	thi	gly	his	gal	pur	lac	ton	azi	
2	lac	pur	gal	his	gly	thi	thr	azi	ton	
3	gal	pur	lac	ton	azi	thr	thi	gly	his	

(b) Data interpretation

Comparisons of interrupted mating studies using different Hfr strains confirm that the bacterial chromosome is a circle 20

Hfr AB313

Hfr G11

plsB

mall

oyrD

pyrC

purB

Hfr KL19

Hfr B7

5. Mapping closely linked genes

- Interrupted mating experiments cannot distinguish the relative positions of genes within about 2 minutes of each other and thus give only a crude idea of gene location
- Recombination analyses of Hfr crosses improve mapping accuracy

The relationship of interrupted mating mapping and recombination mapping

- 中断杂交图是以基因转移的先后顺序为依据, 基因间距离以转移时间(min)为单位绘制的, 对于紧密连锁的基因无法定位
- 一般选择距离在2min内的基因进行重组作图
- 中断杂交图1min的图距相当于重组图中的20 m.u., 1 m.u.相当于1600bp

6. Conjugational Gene Transfer and Antibiotic Resistance

- 1943, streptomycin was discovered
 In 1950s, antibiotics-resistant *Shigella*, Japan,
 - 1953, 0.2% were resistant
 - 1965, 58% were resistant, multi-drugresistant (MDR)
- The antibiotics-resistant genes often are present on plasmids----R plasmid

R plasmid

- Most R plasmids consist of two components: the resistance transfer factor (RTF) and one or more r-determinants
- R plasmids can be transferred from one bacterium to another, sometimes even across species
- Overuses of antibiotics accelerate the antibioticsresistant bacteria spread
 - Further Reading: "Antibiotic resistant bacteria"

"Get pigs off antibiotics"

Kan^R Sm

r-detern

R plasmid

4mp^R

Hg^K

 Tc^R

II. Bacterial Transformation

Transformation and gene mapping

- The size of DNA that is effective in transformation is between 10~20kb, about 1/200 of the *E.coli* chromosome. The DNA thus contains several genes.
- Cotransformation is the simultaneous transformation of two or more genes.
- Genes that are close enough to each other to be cotransformation are said to be linked.
- If two genes are not linked, the probability of them to be transformed simultaneously equals to the product of the individual probabilities, which is much lower than they are linked.

Transformation can be used to map bacterial genes

Conclusion: The rate of cotransformation is inversely proportional to the distances between genes.

Confirm whether the genes were linked or unlinked

Donor DNA	Recipient Cell Genotype	Transformed Genotypes(%)			
	Genotype	str ^r mtl ⁻	str ^s mtl ⁺	str ^r mtl ⁺	
str ^r mtl ⁺		4.3	0.40	0.17	
Str ^r mtl ⁻ and	str ^s mtl ⁻	28	0.85	0 0066	
str ^s mtl ⁺		2.0	0.00	0.0000	

Transduction is virus-mediated bacterial DNA transfer

The Lederberg-Zinder Experiment, 1952

Filterable agent (FA)

Bacteriophage P22, present initially as a prophage in the chromosome of the LA-22 *Salmonella* cells.

1. Generalized transduction (普遍性转导)

Cotransduction

The closer two genes are, the more likely they are appear on the same short DNA fragment and be packaged into the same transducing phage and be cotransduced.

Gene mapping by cotransduction

(a)

Donor: thyA+ lysA+ cysC+

make P1 lysate infect recipient

Recipient: thyA- lysA- cysC-

Selected marker	Unselected marker				
thy+	47% lys+; 2% cys+				
lys+	50% thy+; 0% cys+				

特异性转导只能转导位于原噬菌体附近的宿主遗传标记
λ噬菌体位点特异性重组 Site-specific recombination

- The integration and excision of λDNA involves site specific recombination
- Attachment sites (att) are the loci on a phage and the bacterial chromosome at which sitespecific recombination occurs
- When the *att*^A site is deleted from the *E. coli* chromosome, λ phage can integrate elsewhere, although the efficiency is <0.1% of the frequency of integration at *att*^A. This inefficient integration occurs at *secondary attachment sites*.

Integration (*attB*×*attP*) requires the product of the phage gene int, which codes for an integrase enzyme, and a bacterial protein called integration host factor (IHF)

The sequence O is common to *attB* and *attP*. It is called the *core sequence*; and the recombination event occurs within it.

IV. Bacterial Genome Sequences

E.coli genome (1997)

- Close to 90% of *E. coli* DNA encodes proteins
- 4288 genes, with 40% of the genes remains unknown
- Existence in eight different locations of remnants of bacteriophage genomes

Table 20.2 Characteristics of some completely sequenced representative prokaryotic genomes			
Species	Size (millions of base pairs)	Number of Predicted Genes	
Archaea			
Archaeoglobus fulgidus	2.18	2407	
Methanobacterium thermoautotrophicum	1.75	1869	
Methanococcus jannaschii	1.66	1715	
Nanoarchaeum equitans	0.490	536	
Eubacteria			
Bacillus subtilis	4.21	4100	
Bradyrhizobium japonicum	9.11	8317	
Buchnera species	0.64	564	
Escherichia coli	4.64	4289	
Haemophilus influenzae	1.83	1709	
Mesorhizobium loti	7.04	6752	
Mycobacterium tuberculosis	4.41	3918	
Mycoplasma genitalium	0.58	480	
Staphylococcus aureus	2.88	2697	
Vibrio cholerae	4.03	3828	

Comparative Genome Studies How Bacteria Evolve

- The availability of genome sequences has provided evidence that many bacteria have acquired genetic information from other species of bacteria—and sometimes even from eukaryotic organisms—in a process called Horizontal Gene Transfer (HGT)
- HGT has taken place repeatedly among bacteria through transformation, conjugation and transduction
 - 17% of *E.coli*'s genome has been acquired from other bacteria

Genomic islands

- Large segments of DNA (10–200 kb)
 - The G+C content of the DNA in the island is different
 - Direct repeats of DNA are present at each end
 - Islands are found at the sites where tRNA genes are located
 - Islands encode enzymes for integration and sites at which these integrase enzymes act
- Genomic islands carry many different types of genes involved in newly derived functions
 - New metabolic enzymes, antibiotic resistance, toxins, or enzymes to degrade poisonous substances

In pathogenic bacteria, the pathogenic determinants are often clustered in a subtype of genomic islands, called **pathogenicity islands**.

The pathogenicity island of *E. coli* O157:H7

- This island encodes proteins that facilitate attachment to epithelial cells, and secretion systems and proteins that cause cytoskeletal changes and loss of fluid.
- A toxin from the bacterium Shigella that targets the rRNA of the host cells, stopping protein synthesis in these cells----bloody diarrhea (出血性痢疾)
- Additional smaller pathogenicity islands

A *Lactococcus lactis* plasmid with segments from many former bacterial hosts

Nature 389,1997, 801-802

Evolutionary implications of HGT

- The glimpse into prokaryotic history made possible by comparative genome analysis has altered our view of evolution.
- Bacterial genomes have picked up DNA from several different sources during the course of their evolution, that is crucial for rapid adaptation of bacteria to a changing environment
- HGT is a significant evolutionary factor in pathogenicity and many other bacterial functions.

Antibiotic-resistant bacteria

Get pigs off antibiotics

第二节 噬菌体的遗传分析 Bacteriophage Genetics

T4 bacteriophage

Plaques are clear patches of lysed cells on a lawn of bacteria

I. Bacteriophage Mutations

- Plaque morphology(噬菌斑形态突变型)
- Altered host range(宿主范围突变型)
- Conditional lethal (条件致死突变型)
 - ◇ temperature sensitive mutations (ts) (温度敏感突变)
 - ◇ suppressor-sensitive mutations (sus) (抑制因子敏感突变)

Suppressor-sensitive mutations (sus)

Nonsense mutation (无义突变)

琥珀型 (sus amber): UAG 赭石型 (sus ocher): UAA 乳白型 (sus opal): UGA

Nonsense mutation is conditional lethal mutation, because the host has **nonsense suppressor**

Nonsense suppressor (su⁺)

The nonsense suppressors encoded by altered tRNA genes can insert a specific amino acid at the position of stop codon.

Nonsense mutation and nonsense suppressors

<u>a, b, c</u>

Phage		Bacteria	genotype	
genotype	\mathbf{su}^-	$\mathbf{su}^+\mathbf{amb}$	su ⁺ och	su^+op
wildtype	+	+	+	+
sus amber		+	_	
sus ochre			+	—
sus opal	—		—	+

+: produce progeny phage -: no progeny phage

II. Mapping phage genes by mixed infection experiments

Two-point cross of phage T2

- h⁺ can infect only *E. coli* B
- h⁻ can infect two *E. coli* strains (B and B-2)
 when infect a mixture of *E. coli* B and B-2, plaque of h⁻ is distinct, while plaque of h⁺ is fuzzy.
- r⁺ slowly lyses cells, producing small plaques
 r⁻ rapidly lyses cells, producing large plaques

- Firstly, *E. coli* B is infected with both parental T2 phages
- The progeny phage is then spread onto a bacterial lawn composed of a mixture of *E. coli* B and B-2
- Four plaque types appear

h⁻r⁺: distinct, small h⁺r⁻: fuzzy,large h⁺r⁺: fuzzy, small h⁻r⁻: distinct, large

Genotype	Plaques	Designation
hr^+	42	Parental progeny
h^+r	34 ∫	໌ 76%
h^+r^+	12]	∫ Recombinants
hr	12 ∫	ໂ 24%

Source: Data derived from Hershey and Rotman (1949).

$$\mathbf{RF} = \frac{(\mathbf{h}^+ \mathbf{r}^+) + (\mathbf{h}^- \mathbf{r}^-)}{\text{total plaques}}$$

Three-point cross of phage T4

	m r ti	h X H	- +- +	_	
Types	No. of	Percentage % -	Recombination frequency (%)		
	praques		m-r	r-tu	m-tu
m r tu	3467	60.6			
+ + +	3729	09.0			
$m \ + \ +$	520	96	./		./
+ r tu	474	9.0	Ň		Ŷ
$m\ r\ +$	853	17.5		d	J
+ + tu	965	17.5		Ň	v
$m \ + \ tu$	162	33	./	.1	
+ r tu	172	5.5	Ň	Ŷ	
total	10342		12.9	20.8	27.1

负干扰 (negative interference)

- In phage cross, negative interference often occurs
- Genetic exchange between phage chromosomes will occurs before, during, and after replication
- Recombination is not restricted to exchange between two chromosomes----three or more may be involved simultaneously

III. Intragenic Recombination Occurs in Phage T4

Bacteriophage T4 r// - mutation

T4 strain	E. coli : B	strain K(λ)
rll [_]	Large, distinct	No plaques
rll+	Small, fuzzy	Small, fuzzy

- Benzer obtained about 20,000 independent rII mutants
- Benzer assumed that most of these mutations, because they were randomly isolated, would represent different locations within the *rII* locus
- Benzer performed recombinational studies on these mutants so as to produce a genetic map of this locus
- The key to Benzer's analysis was that mutant phages could not successfully lyse strain *E.coli* K (λ)

Recombinational Analysis

Detect revertants?

- Recombination analysis revealed the positions of the different *r*// mutations along the phage chromosome.
- Eventually, Benzer mapped more than 2400 r// mutations, and some r// mutations were very closely linked.
- This finding raised the question: whether these mutations were at the same locus or at different loci?

Complementation experiments

For complementation test, the mutations must be recessive.

Recombination could take place within a single gene---- Intragenic Recombination

IV. Deletion testing of the r// locus

A partial map of mutations in the A and B cistrons of the *r*// locus of phage T4

The Significance of Benzer's Work

- At the time of Benzer's research, the relation between genes and DNA structure was unknown. A gene was defined as a functional unit of heredity that encoded a phenotype.
- Benzer demonstrated in 1955 that a gene is not an indivisible particle, but instead consists of mutational and recombinational units that are arranged in a specific order.
A gene is a linear sequence of nucleotide pairs that can mutate independently and recombine with each other

Intragenic complementation (基因内互补)

The figures and tables are cited from:

- Genetics (From genes to genomes), Leland Hartwell, Mcgraw-Hill Companies, Inc
- Concept of Genetics, William S.Klug, Prentice Hall, Inc
- Introduction to Genetics Analysis, Anthony J.F. Griffiths, W.H.Freeman, Inc
- Principle of Genetics, D.Peter Snustad, John Wiley & Sons, Inc
- Genetics-A Conceptual Approach, Benjamin A.
 Pierce, W. H. Freeman