10 Indexing

Indexing

Goals:
— Store large files
— Support multiple search keys

— Support efficient insert, delete, and range
qgueries

Terms(1)
Entry sequenced file: A I1Jlii5 3 44:Order

records by time of insertion.
— Search with sequential search
Index file: & 5] 3¢ f4-consists of key/pointer

pairs, where each key is associated with a
pointer to an actual record in the main file.

— Could be organized with a tree or other data
structure.

Primary Key:
records.

Terms(2)

F A unique identifier for

May be inconvenient for search.

Secondary Key: An alternate search key,

often not unique for each record. Often
used for search key.

Contents

10.1 Linear Indexing

10.2 ISAM (read by yourself)
10.3 Tree-based Indexing
10.4 2-3Trees

10.5 B-Trees

Contents

10.1 Linear Indexing

10.2 ISAM (read by yourself)
10.3 Tree-based Indexing
10.4 2-3Trees

10.5 B-Trees

10.1 Linear Indexing

2R T

Linear Indexing

Linear index: Index file organized as a simple
sequence of key/record pointer pairs with key
values are in sorted order.

Linear indexing is good for searching variable-length

records, and good for indexing an entry sequenced
file.

Linear Index

37 42 52 73 98

' . il

73 92 98 37| 42

Database Records

Linear Indexing (2)

If the index is too large to fit in main memory,
a second-level index might be used.

1 2003 | 5894 (10528

Second Level Index

1 2001 (2003 5688 | 5894 9942110528 10984

Linear Index: Disk Pages

Inverted List(1)
. IR

* Inverted list is another term for a secondary
iIndex. A secondary key is associated with a
list of primary keys, which in turn locate the
records.

* |tis inverted in that searches work backwards
from the secondary key to the primary key,
then to the actual data record.

Inverted List(2)

Each secondary key

Secondary Primary
value has a list of Key Key
primary keys Jones =1 AALC
associated with it. Smith AB12

Zukowski AB39

FF37
Jones AA10 | AB12 | AB39 | FF37
Smith AX33 | AX35 | ZX45 AX33
Zukowski | ZQ99 AX35
ZX 45

£Q99

Inverted List(3)

Primary
Key Next

S

AALOQ

S |

AX33

Secondary

Key Index
Jones 0
Smith 1 —
Zukowski | 3

ZX45

Combines the storage for
all of the primary key
lists into a single array,
probably saving space.

ZQ99

AB12

AB39

h

AX35

-.d

FF37

4

RN

R | &,

)

Contents

10.1 Linear Indexing

10.2 ISAM (read by yourself)
10.3 Tree-based Indexing
10.4 2-3Trees

10.5 B-Trees

13

10.3 Tree-based Indexing

Tree Indexing (1)

Linear index is poor for insertion/deletion.

Tree index can efficiently support all desired
operations:
— Insert/delete
— Multiple search keys (multiple indices)
— Key range search

Tree Indexing (2)

Difficulties when storing tree
Index on disk:

— Tree must be balanced.
— Each path from root to leaf

should cover few disk pages. A/‘\

Example: '/‘(o

The path from the root to any leaf is
contained on two blocks.

Tree Indexing (3)

Insert 1 to the BST and keep it balanced.

It is difficult to keep a tree balanced.

In this case, rebalancing the BST requires that all
nodes be moved. It is too expensive.

Solution: Use new tree structure.

Contents

10.1 Linear Indexing

10.2 ISAM (read by yourself)
10.3 Tree-based Indexing
10.4 2-3Trees

10.5 B-Trees

18

10.4 2-3 Tree

2-3 Tree (1)

A 2-3 Tree has the following properties:
1. A node contains one or two keys

2. Every internal node has either two children
(if it contains one key) or three children (if it
contains two keys).

3. All leaves are at the same level in the tree,
so the tree is always height balanced.

The 2-3 Tree has a search tree property
analogous to the BST.

2-3 Tree (2)

The advantage of the 2-3 Tree over the BST
Is that it can be updated at low cost.

Example:

18 | 33
12 23 (30 48

10 15 20| 21 24 31 45 | 47 50 [52

2-3 Tree Insertion (1)

Insert 14

1833
12 23 | 30 48
10 15 20[21| |24 31 45|47| |50|52
18 |33
///\
2| | 23 (30 48
10 18 (15 20 4\31 45|47| |50|52

2-3 Tree Insertion (2)

18|33
12 23| 30 48
10 15 201 21 24 \31 45 | 47 50 | 52
Insert 55
18 | 33

12 23|30 48 52L

10 15 20| 21| |24 31 45 473'| 50 55| |1

0
o — — — — — — — — — —

2-3 Tree Insertion (3)

18 |33
//'\
12 23|30 48
10 15 20 ;/24\31 45|47| |50|52
Insert 19
—_— [T 23
2+o 23 [30 20 b 30
e \
19 i21 24 31 19 21 24 31

(a)

(b)

2-3 Tree Insertion (4)

—_— | T 23
20 23 |30 20 $ 30
19 21 24 31 19 21 24 31
(@) (b)
23
18 33
12 20 30 48

10 15 19 21 24 31 45 |47 | | 50

()

Contents

10.1 Linear Indexing

10.2 ISAM (read by yourself)
10.3 Tree-based Indexing
10.4 2-3Trees

10.5 B-Trees

26

10.5 B-Trees

B-Trees (1)

The B-Tree is an extension of the 2-3 Tree.

The B-Tree is now the standard file
organization for applications requiring
Insertion, deletion, and key range
searches.

B-Trees (2)

B-Trees address all of the major problems
encountered when implementing disk based
search trees:

 B-Trees are always balanced.

« B-Trees keep similar-valued records together on
a disk page, which takes advantage of locality of
reference.

« B-Trees guarantee that every node in the tree will
be full at least to a certain minimum percentage.

B-Tree Definition

A B-Tree of order m has these properties:

— The root is either a leaf or has at least two
children.

— Each node, except for the root and the
leaves, has between | m/2 | and m children.

— All leaves are at the same level in the tree,
so the tree is always height balanced.

A 24 h
= e

15]20 33|45|48

4 /NS

1012 18 21|23 30| 31 38 47 50|52(60

B-Tree Search

Search in a B-Tree is a generalization of search

in a 2-3 Tree.

1. Do binary search in current node. If found, then
return record. If current node is a leaf node and
key is not found, then report an unsuccess.

2. Otherwise, follow the proper branch and repeat
the process.

24

T

15|20 33(45|48

M

1012 18 21|23 30| 31 38 47 50152| 60

A B-tree of order four

B*-Trees

The most commonly implemented form of the
B-Tree is the B*-Tree.

Internal nodes of the B*-Tree do not store

record -- only key values to guide the
search.

Leaf nodes store records or pointers to records.

A leaf node may store more or less records
than an internal node stores keys.

B*-Tree Example

33

/

18 |23

\

|

/

\

-

48

S

1012 15

18 19 20 21 22

23 30 31

33 45 47

—48 50 52

An example of B*-Tree of order four

The leaf nodes of a B*-Tree are normally linked
together to form a doubly linked list.

B*-Tree |Insertion

=

[10 12 2333 48] [101223 [334850 7]
(@ o 7 '

(101215 (18 20 21 23 31|33 45 47 |48 50 52

(©)

101215 18 20 21 |—|235‘§0'31 (33 45 47 |48 50 52
)

B*-Tree Deletion (1)

18

33

23 B 48

/

10 1215

1189 20 21 22

23 30 31

33 45 47

—48 50 52

Delete 18

_

18

33

23 - »48

\

/

s,

101215

—192021 22

23 30 31

334547

—48 50 52

B*-Tree Deletion (2)

33

\

/
\

18 |2 48
1@1215 —18 19 20 21 22123 30 31 33 45 47 —48 50 52
Delete 12

33

/

\

1912 =148
101518 19202122 (2330 31 — 33 45 47 — 48 50 52

Borrow 18 from the second child

B*-Tree Deletion (3)

/33\-48

18|23 |-
101215 18 19 20 21 2223 30 31 233 45 47 —48 50 52
Delete 33
[101215 18 19 20 21 22| »(23 30 31 {45 47 48 50 52|
(b)

B-Tree Space Analysis (1)

B*-Trees nodes are always at least half full.

Asymptotic cost of search, insertion, and
deletion of nodes from B-Trees is O(log n).

— Base of the log is the (average) branching
factor of the tree.

B-Tree Space Analysis (2)

Minimum and maximum number of records that can be
stored by a B+-Tree.

Example: Consider a B+-Tree of order 100 with leaf
nodes containing 100 records.

1 level B+-tree: Min 0, Max 100

2 level B+-tree:
Min: 2 leaves of 50 for 100 records.
Max: 100 leaves with 100 for 10,000 records

3 level B+-tree:
Min: 2 x 50 nodes of leaves, for 5000 records.
Max: 1003 = 1,000,000 records

4 level B+-tree:
Min: 250,00 records (2 * 50 * 50 * 50).
Max: 1004 = 100 million records

Homework

10.9

10.11
10.12
10.13

#hFEAT B

— PR
(AVLA)

Named for its inventors
Adelson—Velskii and Landis

—RAVLIW 8 & 2 H, BiE 2R
B TR FRBIBST: & A T AT
WEZAVLE, HATWAAG FRES

Bz EMBIMEF B,
(C,
OBN®
B (E

£ N L]

(balance factor)

p—

T

AVLHF

-)t M2 /e
A él:l n\‘ '@]‘

-1, 0, 1

/

¥

B4 R In— 1 %%, SHi%
é*)f%ﬂi?ﬁ%mf?‘ﬁi%
Fﬁﬁﬁﬁfml—u
5T R

WS

RE, XN TEINSS

A ¥ R BEI

ST e

MR —RAVLR IR — 14 A
R T AP SRS DR B AR 1 4
¥, 2 P,
P R A P R
o B (MG)

o XUie#e (A A B A e hn A2 i)

Y=

BN — NS BB, AVLWE’*H?%?S
AETPIRS S RAERAE . Bk, &

MA— NG RE, FEMNGANMNE

=]

£

%E’JE%@

i, WL AN

i,

-1 P

N

O

mERAE

1E[=

A 3 o MZif
o] i) BR AR X B F

R R RAR RN, 17
EANFHTIRSS FUE, Y

i ‘ﬁ:jlg E‘J é:bg JIJ_:': o

MRX =GP T —%EHE b,
W R A B e e BEAT A B
%MffﬁﬁﬁﬁEﬁ%%ﬂEE

fies, Hr 2R IHER, K

77 1A %T—~@1El’]ﬂ’4ﬂﬁ9%

R X =g m A F— %P2k b,
MR XU AT P XU
B RS FEAMER R AP,

255 M) iEAVLAY

KIRTAKRREF: 5,4,2,8,6,9

YN EERL FEH N {16, 3,7, 11,9, 26, 18, 14,
ﬁ}aAﬂﬁ%L@mT

The End
Question?

