Chapter 1
Data structures and algorithms



Contents

1.1 A Philosophy of Data Structure

1.2 Abstract Data Types and Data
Structures

1.3 Problems, Algorithms, and
Programs



Contents

1.1 A Philosophy of Data Structure

1.2 Abstract Data Types and Data
Structures

1.3 Problems, Algorithms, and
Programs



1.1 A Philosophy of Data Structure

What is data structure

e Algorithm + data structures = programs

* Algorithm: a method or process followed
to solve a problem.

e Data structures: mathematics model for
solving a problem.

 Programs: a function or mapping of
input to outputs.



1.1 A Philosophy of Data Structure

The Need for Data Structures

« Data structures organize data
— more efficient programs.

* More powerful computers = more
complex applications.

* More complex applications demand more
calculations.

« Complex computing tasks are unlike our
everyday experience.



1.1 A Philosophy of Data Structure

Organizing Data

« Any organization for a collection of records
can be searched, processed in any order,
or modified.

« However, the choice of data structure and
algorithm can make the difference
between a program running in a few
seconds or many days.



1.1 A Philosophy of Data Structure

Efficiency

A solution is said to be efficient if it solves
the problem within its resource constraints.

— Space
—Time

* The cost of a solution is the amount of
resources that the solution consumes.




1.1 A Philosophy of Data Structure

Selecting a Data Structure

Select a data structure as follows:

1. Analyze the problem to determine the
resource constraints a solution must meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.



1.1 A Philosophy of Data Structure

Costs and Benefits

 Each data structure has costs and benefits.

» Rarely is one data structure better than
another in all situations.

A data structure requires:
— space for each data item it stores,

— time to perform each basic operation,
— programming effort.



1.1 A Philosophy of Data Structure

Costs and Benefits (cont)

« Each problem has constraints on available
space and time.

« Only after a careful analysis of problem
characteristics can we know the best data
structure for the task.

« Bank example:
— Start account: a few minutes
— Transactions: a few seconds
require exact-match query
— Close account: overnight
— Hash table is suitable



1.1 A Philosophy of Data Structure

Costs and Benefits (cont)

 City database example:
— Find a city or town: by name
require exact-match query
a few seconds

— Find all places that match a range of values for
attributes

require range query
a few minutes
— B*-tree is suitable

— Linear index would be more appropriate if the
database is not changed after created



1.1 A Philosophy of Data Structure

Some Questions to Ask
when you choose a data structure

« Are all data inserted into the data structure
at the beginning, or are insertions
interspersed with other operations?

e Can data be deleted?

« Are all data processed in some well-
defined order, or is random access
allowed?



Contents

1.1 A Philosophy of Data Structure

1.2 Abstract Data Types and Data
Structures

1.3 Problems, Algorithms, and
Programs



1.2 Abstract Data Types and Data Structures

Basic terminology

* Type: a collection of values
— Simple type: integer, boolean, ...
— Aggregate type: record, ...

« Data Type: a type together with a
collection of operations to manipulate the

type.



1.2 Abstract Data Types and Data Structures

Abstract Data Types

Abstract Data Type (ADT): is the realization
of a data type as a software component.

The interface of the ADT is defined in terms

of a set of values and a set of operations on
that data type.

Each ADT operation is defined by its inputs
and outputs.

Encapsulation: Hide implementation details.

In a program, implement an ADT, then think
only about the ADT, not its implementation.



1.2 Abstract Data Types and Data Structures

Data Structure

» A data structure is the physical
iImplementation of an ADT.
— Each operation associated with the ADT is

Implemented by one or more subroutines in
the implementation.

« Data structure usually refers to an
organization for data in main memory.

« File structure is an organization for data on
peripheral storage, such as a disk drive.




1.2 Abstract Data Types and Data Structures

Logical vs. Physical Form

« Data items have both a logical and a
physical form.

 Logical form: definition of the data item
within an ADT.

— Ex: Integers in mathematical sense: +, -

« Physical form: implementation of the data
item within a data structure.

— Ex: 16/32 bit integers, overflow.




1.2 Abstract Data Types and Data Structures

Data Type
Am‘l-':ype Data ltems:
Operations Logical Form
Data Structure: Data Items:
Storage Space Physical Form
Subroutines




1.2 Abstract Data Types and Data Structures

Logical structure

Linear structure O->O-0O-0

2%

Tree structure

Graph structure g:g\o

Collection (set) structure

O
O
oOO O



Contents

1.1 A Philosophy of Data Structure

1.2 Abstract Data Types and Data
Structures

1.3 Problems, Algorithms, and
Programs



1.3 Problems, Algorithms, and Programs

Problems

* Problem: a task to be performed.

— Best thought of as inputs and matching
outputs.

— Problem definition should include constraints
on the resources that may be consumed by
any acceptable solution.

— But NO constraints on HOW the problem is
solved.




1.3 Problems, Algorithms, and Programs

Problems (cont)

 Problems < mathematical functions

— A function is a matching between inputs (the
domain) and outputs (the range).

— An input to a function may be single number,
or a collection of information.

— The values making up an input are called the
parameters of the function.

— A particular input must always result in the
same output every time the function is
computed.




1.3 Problems, Algorithms, and Programs

Algorithms and Programs

 Algorithm: a method or a process followed
to solve a problem.

— A recipe.

« An algorithm takes the input to a problem
(function) and transforms it to the output.

— A mapping of input to output.

« A problem can have many algorithms.



1.3 Problems, Algorithms, and Programs

Algorithm Properties

« An algorithm possesses the below properties:
— It must be correcit.
— It must be composed of a series of concrete steps.

— There can be no ambiguity as to which step will be
performed next.

— It must be composed of a finite number of steps.
— It must terminate.
« A computer program is an instance, or concrete

representation, for an algorithm in some
programming language.




1.3 Problems, Algorithms, and Programs

Compare the concepts

* A problem is a function or a mapping of inputs to
outputs.

» An algorithm is a recipe for solving a problem
whose steps are concrete and unambiguous. The
algorithm must be correct, of finite length, and
must terminate for all inputs.

« A program is an instantiation of an algorithm in a
computer programming language.




Homework

e WiEE: 1.6 19 1.10 1.13



