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Abstract. The provably secure Schnorr signature scheme is popular and
efficient. However, each signature requires a fresh modular exponentia-
tion, which is typically a costly operation. As the increased uptake in
connected devices revives the interest in resource-constrained signature
algorithms, we introduce a variant of Schnorr signatures that mutualises
exponentiation efforts.
Combined with precomputation techniques (which would not yield as
interesting results for the original Schnorr algorithm), we can amortise
the cost of exponentiation over several signatures: these signatures share
the same nonce. Sharing a nonce is a deadly blow to Schnorr signatures,
but is not a security concern for our variant.
Our Scheme is provably secure, asymptotically-faster than Schnorr when
combined with efficient precomputation techniques, and experimentally 2
to 6 times faster than Schnorr for the same number of signatures when
using 1MB of static storage.

1 Introduction

The increased popularity of lightweight implementations invigorates the interest
in resource-preserving protocols. Interestingly, this line of research was popular
in the late 1980’s, when smart-cards started performing public-key cryptographic
operations (e.g. [11]). Back then, cryptoprocessors were expensive and cumber-
some, and the research community started looking for astute ways to identify
and sign with scarce resources.

In this work we revisit a popular signature algorithm published by Schnorr in
1989 [24] and seek to lower its computational requirements assuming that the
signer is permitted to maintain some read-only memory. This storage allows for
time-memory trade-offs, which are usually not very profitable for typical Schnorr
parameters.
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We introduce a new signature scheme, which is provably secure in the random
oracle model (ROM) under the assumption that the partial discrete logarithm
problem (see below) is intractable. This scheme can benefit much more from
precomputation techniques, which results in faster signatures.

Implementation results confirm the benefits of this approach when combining
efficient precomputation techniques, when enough static memory is available
(of the order of 250 couples of the form (x, gx)). We provide comparisons with
Schnorr for several parameters and pre-computation schemes.

1.1 Intuition and general outline of the idea

Schnorr’s signature algorithm uses a large prime modulus p and a smaller prime
modulus q dividing p − 1. The security of the signature scheme relies on the
discrete logarithm problem in a subgroup of order q of the multiplicative group
of the finite field Zp (with q | p− 1). Usually the prime p is chosen to be large
enough to resist index-calculus methods for solving the discrete-log problem
(e.g. 3072 bits for a 128-bit security level), while q is large enough to resist the
square-root algorithms [26] (e.g. 256 bits for 128-bit security level).

The intuition behind our construction is to consider a prime p such that p− 1
has several different factors qi large enough to resist these birthday attacks, i.e.

p = 1 + 2
∏̀
i=1

qi

then several “orthogonal” Schnorr signatures can share the same commitment
component r = gk mod p. This is not the case with standard Schnorr signatures
where, if a k is reused then the secret signing key is revealed.

It remains to find how r can be computed quickly. In the original Schnorr
protocol k is picked uniformly at random in Zq. However, to be secure, our
construction requires that k is picked in the larger set Zp−1. This means that a
much higher effort is required to compute r. Here we cut corners by generating an
r with pre-computation techniques which allow an exponentiation to be sub-linear.
The trick is that once the exponentiation is sub-linear, we are more effective in
our setting than in the original Schnorr setting.

We start by reminding how the original Schnorr signature scheme works and
explain how we extend it assuming that k is randomly drawn from Zp−1. We then
present applications of our construction, by comparing several pre-processing
schemes.

2 Preliminaries

We denote the security parameter by κ ∈ N which is given to all algorithms in
the unary form 1κ. Algorithms are randomized unless otherwise stated, and PPT
stands for “probabilistic polynomial-time,” in the security parameter. We denote
random sampling from a finite set X according to the uniform distribution with
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x� X. We also use the symbol � for assignments from randomized algorithms,
while we denote assignment from deterministic algorithms and calculations with
the symbol ←. If n is an integer, we write Zn for the ring Z/nZ. We let Z∗n
the invertible elements of Zn. As is usual, f ∈ negl(κ) denotes a function that
decreases faster than the inverse of any polynomial in κ; such functions are called
negligible. The set of numbers 1, 2, . . . , k is denoted [k]. Most of our security
definitions and proofs use code-based games. A game G consists of an initializing
procedure Init, one or more procedures to respond to oracle queries, and a
finalizing procedure Fin.

2.1 Schnorr’s Signature Scheme

Schnorr signatures [24] are an offspring ElGamal signatures [10] which are
provably secure in the Random Oracle Model under the assumed hardness of
solving generic instances of the Discrete Logarithm Problem (DLP) [22]. The
Schnorr signature scheme is a tuple of algorithms defined as follows:

– Setup(1κ): Large primes p, q are chosen, such that q ≥ 2κ and p−1 = 0 mod q.
A cyclic group G ⊂ Zp of prime order q is chosen, in which it is assumed
that the DLP is hard, along with a generator g ∈ G. A hash function
H : {0, 1}∗ → G is chosen. Public parameters are pp = (p, q, g,G, H).

– KeyGen(pp): Pick an integer x uniformly at random from [2, q − 1] as the
signing key sk, and publish y ← gx as the public key pk.

– Sign(pp, sk,m): Pick k uniformly at random in Z∗q , compute r ← gk mod q,
e← H(m, r), and s← k − ex mod p. Output σ ← {r, s} as a signature.

– Verify(pp, pk,m, σ): Let (r, s)← σ, compute e← H(m, r) and return True if
gsye = r, and False otherwise.

2.2 Security model

We recall the strong3 EUF-CMA security notion:

Definition 1 (Strong EUF-CMA Security). A signature scheme Σ is secure
against existential forgeries in a chosen-message attack (strongly EUF-CMA-
secure) if the advantage of any PPT adversary A against the EUF-CMA game
defined in Figure 1 is negligible: AdvEUF

A,Σ(κ) = Pr
[
EUFAΣ(κ) = 1

]
∈ negl(κ).

3 Our Scheme: Using Multiple q’s

Our construction relies on using a prime p of the form mentioned in the intro-
duction. This is not a trivial change, and requires care as we discuss below.
3 In contrast to the weak version, the adversary is allowed to forge for a message that
they have queried before, provided that their forgery is not an oracle response.
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EUFAΣ(κ):
L← ∅
(sk, pk)� Σ.KeyGen(1κ)
(m∗, σ∗)← ASign(·),Verify(·,·),H(·)(1κ)
if (m∗, σ∗) 6∈ L

return Σ.Verify(pk,m∗)
return 0

Sign(m):
σ � Σ.Sign(sk,m)
L← L ∪ {m,σ}
return σ
Verify(m,σ):
return Σ.Verify(pk,m, σ)

Fig. 1: The strong EUF-CMA experiment for digital signature schemes.

Technically, our construction is a stateful signature scheme (see e.g. [15,
Chapter 12]), in which we simultaneously sign only one message and keep a state
corresponding to the values k, gk and the index i for the current prime number.
However, it is more compact and convenient to describe it as a signature for `
simultaneous messages.

3.1 Our Signature Scheme

Similar to the Schnorr signature scheme, our scheme is a tuple of algorithms
(Setup, KeyGen, Sign, and Verify), which we define as follows:

– Setup(1κ): Generate ` primes q1, . . . , q` of size ≥ 2κ and ` groups G1, . . . ,G`
respectively of order q1, . . . q` such that the DLP is hard in the respective Gi,
and such that p = 1 + 2

∏
qi is prime. This is easily achieved by selecting

(` − 1) safe primes qi and varying the last one until p is prime.4 Choose
a cryptographic hash function H : {0, 1}∗ → {0, 1}q1 . The hash function
will be used to produce elements of Zqi

. For this we will denote by Hi the
composition of H and a conversion function from {0, 1}q1 to Zqi

5. Finally,
choose g a generator of the group Z∗p of order p− 1. The public parameters
are therefore

pp =
(
p, {qi}`i=1, H, g, {Gi}`i=1

)
.

– KeyGen(pp): The signer chooses x� Z∗p−1 and computes y ← gx mod p. The
key sk = x is kept private to the signer, while the verification key pk = y is
made public.

– Sign(pp, sk,m1, . . . ,m`): The signer chooses k � Zp, such that k 6= 0 mod qi
for all i, and computes r ← gk mod p.
The signer can now sign the ` messages mi as:

ρi � {0, 1}κ, ei ← Hi(mi, r, ρi), and si ← k − eix mod qi
4 See the full version of this paper for a discussion on some particularly interesting
moduli.

5 This conversion function can read the string as a binary number and reduce it mod qi
for example.
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outputting the ` signatures σi = {r, si, ρi}—or, in a more compact form6,

σ = {r, s1, . . . , s`, ρ1, . . . , ρ`}.

– Verify(pp, pk,mi, (r, si, ρi), i) : Verifying a signature is achieved by slightly
modifying the original Schnorr scheme: First check that si ∈ {0, . . . qi − 1}
and compute ei ← Hi(mi, r, ρi), then observe that for a correct signature7:

(gsiyei)
p−1

qi = r
p−1

qi mod p.

The signature is valid if and only if this equality holds, otherwise the signature
is invalid (see Lemma 1).

Remark 1. Note that unlike Schnorr, in the Sign algorithm we add a random ρi
for a signature to make the argument of the hash function unpredictable. This
will be useful for the proof of Theorem 1 in the ROM.

Remark 2. Note also that one almost recovers the original Schnorr construction
for ` = 1—the only differences being in the verification formula, where both sides
are squared in our version, and the addition of a fresh random to hash.

Lemma 1 (Correctness). Our signature scheme is correct.

Proof. Let g, y, r, si, and ρi be as generated by the KeyGen and Sign algorithms
for a given message mi. We check that,

(
gsiyei

r

) p−1
qi

= 1 mod p.

By the definition of si, there exists λ ∈ Z such that gsi = gk−eix+λqi , hence

gsiyeig−k = gλqi mod p.

Raising this to the power of p−1
qi

we get gλ(p−1) = 1 since the order the multi-
plicative group Z∗p is p− 1. ut

3.2 Security

To aid in the proof of security, we introduce the following problem which we
call the partial discrete logarithm problem (PDLP). Intuitively it corresponds to
solving a discrete logarithm problem in the subgroup of our choice.
6 The compact form allows not to send the nonce ` times, which gives an “amortized”
size of the signature, and avoid an overhead in communication.

7 One can note, p−1
qi

= 2q1 · · · qi−1qi+1 · · · q`.
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Definition 2 (PDLP). Let ` ≥ 2 be an integer, q1, . . . , q` distinct prime num-
bers and q = q1 . . . q`. Let G be a group of order q and g a generator of G.
Given g, q, q1, . . . , ql, and y = gx, the partial discrete logarithm problem (PDLP)
consists in finding i ∈ [`] and xi ∈ Zqi such that xi = x mod qi.

In our context, we are chiefly interested in a subgroup of order q of a multiplicative
group of a finite field Z∗p, where q divides p− 1—ideally, q = (p− 1)/2. The best
known algorithms to solve the PDLP are index-calculus based methods in Z∗p and
square-root algorithms in subgroups of prime order qi for some i ∈ [`]. With p of
bit-size 3072, q = (p− 1)/2, ` = 12 and q1, . . . , q` of bit-size 256, we conjecture
that solving the PDLP requires about 2128 elementary operations. In the full
version of this paper, we provide a security argument in the generic group model
on the intractability of the PDLP for large enough prime numbers q1, . . . , q`.

Theorem 1 (Existential unforgeability). Our scheme is provably EUF-CMA-
secure assuming the hardness of solving the PDLP, in the ROM.

To prove this result, we will exhibit a reduction from an efficient EUF-CMA
forger to an efficient PDLP solver. To that end we first show a sequence of
indistinguishability results between the output distributions of

– Our signature algorithm Sign = Sign0 on user inputs.
– A modified algorithm Sign1 (see Figure 2), where the hash of user inputs is re-

placed by a random value. This situation is computationally indistinguishable
from the previous one in the ROM.

– A modified algorithm Sign2 (see Figure 2), that has no access to the signing
key x. The output distribution of this algorithm is identical to the output of
Sign1 (Theorem 2).

Then we use the forking lemma [3, 23] to show that an efficient EUF-CMA-
adversary against Sign2 can be used to construct an efficient PDLP solver. Finally
we leverage the above series of indistinguishably results to use an adversary against
Sign0. Let CRT (for Chinese Remainder Theorem) be the isomorphism that maps
Zq1 × · · · × Zq`

× Z2 to Zp−1.

Theorem 2. The output distributions of Sign1 and Sign2 are identical.

Proof. This theorem builds on several intermediate results described in Lemmas 2
to 6. We denote δ the output distribution of Sign1 and δ′ the output distribution
of Sign2. The structure of the proof is the following :

– In Lemma 2 we show that the output of Sign2 is a subset of the output of
Sign1.

– Lemma 3 shows that in Sign1 there is a unique random tape per output.
– Lemma 4 shows that in Sign2 there are exactly two random tapes per output.
– Lemma 6 shows that there are twice as many random tapes possible for Sign2

than for Sign1
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Sign1 :
ρ� {0, 1}κ

k � Zp \
(⋃`

i=1{qi, 2qi, . . . , p− 1}
)

r ← gk mod p
for i = 1 to `

ei � Zqi

si ← k − eix mod qi
ρi � {0, 1}κ

end for
return (r, e1, . . . , e`, s1, . . . , s`, ρ1 . . . , ρ`)

Sign2 :
for i = 1 to `

ei � Zqi

si � Zqi

ρi � {0, 1}κ
end for
a� {0, 1}
b� {0, 1}
S ← CRT(s1, . . . , s`, a)
E ← CRT(e1, . . . , e`, b)
r ← gSyE

for i = 1 to `
check that r 6= 1 mod qi,
otherwise abort

end for
return (r, e1, . . . , e`, s1, . . . , s`, ρ1 . . . , ρ`)

Fig. 2: The algorithms used in Theorem 2, as part of the proof of Theorem 1.

This demonstrates that by uniformly choosing the random tape, the resulting
distributions for Sign1 and Sign2 are identical, which is the uniform distribution
on the set of valid signatures.

Lemma 2. Every tuple of δ′ is a valid signature tuple. Therefore δ′ ⊆ δ.

Proof (of Lemma 2). Let (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`) ∈ δ′. Let i ∈ [`]. By
the Chinese Remainder Theorem we have:

S = si mod qi and E = ei mod qi.

So there exists λ, µ ∈ Z such that

S = si + λqi and E = ei + µqi.

Hence:

r
p−1

qi =
(
gSyE

) p−1
qi

=
(
gsi+λqiyei+µqi

) p−1
qi

= (gsiyei)
p−1

qi gλ(p−1)yµ(p−1)

= (gsiyei)
p−1

qi

The last equality holds since the order of the multiplicative group Z∗p is p− 1,
and this concludes the proof with the fact that r 6= 1 mod qi. ut

Lemma 3. There is exactly one random tape upon which Sign1 can run to yield
each particular tuple of δ.
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Proof (of Lemma 3). Let k, e1, . . . , e`, ρ1, . . . , ρ` and k′, e′1, . . . , e′`, ρ′1, . . . , ρ′` be
random choices of δ that both yield (r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`). It is
immediate that ei = e′i and ρi = ρ′i for all i ∈ [`]. Also since gk = gk

′ , g is of
order p− 1 and since k and k′ are in [p] then k = k′. ut

Lemma 4. There are exactly two random tapes over k, ρ1, . . . , ρ`, e1, . . . , e` that
output each tuple of δ′.

Proof (of Lemma 4). Let e1, . . . , e`, s1, . . . , s`, a, b, ρ1, . . . , ρ` and e′1, . . . , e
′
`,

s′1, . . . , s
′
`, a′, b′, ρ′1, . . . , ρ′` be random choices that both give (r, e1, . . . , e`,

s1, . . . , s`, ρ1, . . . , ρ`). It is immediate that ei = e′i, si = s′i, and ρi = ρ′i for
all i ∈ [`]. Let S, S′, E, and E′ be the corresponding CRT images. We have
gSyE = gS

′
yE
′ , which is gS+xE = gS

′+xE′ , and S + xE = S′ + xE′ mod (p− 1).
Since x is odd (it is invertible mod p− 1), it follows that S +E and S′ +E′ have
the same parity. Therefore a+ b = a′ + b′ mod 2 and we have two choices: a = b,
or a = 1− b, both of which are correct. ut

Lemma 5. #
(
Zp \

(⋃`
i=1{qi, 2qi, . . . , p− 1}

))
= 2

∏`
i=1(qi − 1).

Proof (of Lemma 5). The number of invertible elements modp is
∏`
i=1(qi − 1)×

(2− 1) so the number of invertible mod qi for all i (and not necessarily for 2) is
2
∏`
i=1(qi − 1). This is exactly the cardinality of the set(

Zp \

(⋃̀
i=1
{qi, 2qi, . . . , p− 1}

))
.

ut

Lemma 6. There are twice as many possible random choices in δ′ as in δ.

Proof (of Lemma 6). For the number of random choices in δ we use Lemma 5 to
count the number of k and then count the number of ei and get 2

∏`
i=1(qi− 1)×∏`

i=1 qi. For δ′, having r 6= 1 mod qi is equivalent to having si 6= −eix. Therefore
it has the same number of random choices as a distribution picking the si from
Zqi \ {eix} which is

∏`
i=1 qi ×

∏`
i=1(qi − 1)× 2× 2. ut

It follows from the above results that the two distributions are the same, i.e. the
uniform distribution over the set of valid signatures.
This concludes the proof of Theorem 2. ut

Theorem 3 (Security under Chosen Message Attack). An efficient at-
tacker against Sign2 can be turned into an efficient PDLP solver in the ROM.

Proof. Let A be an attacker that wins the EUF-CMA game for our scheme,
illustrated in Figure 3. We construct in Figures 4 and 5 an algorithm R that uses
A to solve the PDLP. A′ is equivalent to A (with the same random tape which we
omit in the notation), the difference being that it interacts with different oracles.
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A

H

Osign

pp, pk m∗, r∗, s∗, ρ∗, i

Fig. 3: An efficient EUF-CMA adversary A against our scheme, with random oracle H
and a signing oracle O.

RAR.Hi

R.Sign

A′R.H ′i

R.Sign′

R.Init R.Fingx, g, p, q1, . . . , q` xi, i

Fig. 4: An efficient solver R for the PDLP, using a polynomial number of queries to
A. R implements the random oracle as R.H and the signing oracle as R.Sign. The
rewinded adversary and oracles are indicated with a prime symbol.

Abusing notation we denote by R.Hi the composition of the hash function and
the conversion function. If L is a list of pairs, we denote by L−1[e] the index of
the element e in the list, and by L[i] the i-th element of the list. If they cannot
(i.e. if e is not in the list, or the list does not have an i-th element) they abort.

The algorithm R aborts in four possible ways during the simulation (denoted
(?), (†), (‡) and (§)) in Figures 4 and 5. We upper-bound the probability of these
events in the following list:

– (?) This occurs with negligible probability since the ρ is a fresh random which
is unpredictable by the adversary.

– (†) This occurs with non overwhelming probability since the adversary is
efficient.

– (‡) The element is in the list with non negligible probability because if the
adversary forges on an unqueried hash in the ROM, it has a negligible chance
to succeed.

– (§) This happens with non overwhelming probability due to the forking
lemma [23].

If R does not abort, then
(
gs
∗
ye
∗) p−1

qi∗ = (r∗)
p−1
qi∗ =

(
gs̃
∗
yẽ
∗) p−1

qi∗ mod p. Then
s∗ + e∗x = s̃∗ + ẽ∗ mod qi∗ . It follows that the value returned by R is equal to
x mod qi∗ .
R succeeds with non negligible probability, as explained earlier. The probability
of forking is polynomial in the number of queries to the random oracle, the
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R.Init(y = gx, g, p, q1, . . . , q`) :
L← ∅
L′ ← ∅
Σ ← ∅
j ← 1
k ← 0
l← 0
pk← y

pp← {p, {qi}`i=1, g}
return (pk, pp)

R.Fin(pk, pp) :
(m∗, r∗, s∗, ρ∗, i∗)� A(pp, pk)
e∗ ←R.Hi∗(m∗, r∗ mod qi∗ , ρ∗)
a← L−1[((m∗, r∗ mod qi∗ , ρ∗), e∗)]‡
if not Verifypp,pk(m∗, r∗, s∗, i∗)
abort†

(m′∗, r′∗, s′∗, ρ′∗, i′∗)� A′(pp, pk)
if i∗ 6= i′∗ then abort§
if r∗ 6= r′∗ then abort§
e′∗ ←R.Hi∗(m′∗, r∗ mod qi∗ , ρ′∗)
if e∗ = e′∗ then abort§
if not Verifypp,pk(m′∗, r∗, s′∗, i∗)
abort†

∆s← s∗ − s′∗
∆e← e′∗ − e∗
return (i∗,∆s/∆e)
R.Sign′(m) :
l← 0
return Σ.[l]
l← l + 1

R.H(α) :
if ∃(α′, h′) ∈ L s.t. α′ = α
return h′

else
h� Zp
L← L ∪ {(α, h)}
return h

R.H ′(α) :
if ∃(α′, h′) ∈ L′ s.t. α′ = α
return h′

else
if k ≤ a

(α′, h′)← L.[k]
return h′
k ← k + 1
L′ ← L′ ∪ {(α, h)}

else
h� Zp
L′ ← L′ ∪ {(α, h)}
return h

R.Sign(m) :
if j = 1

(r, e1, . . . , e`, s1, . . . , s`, ρ1, . . . , ρ`)� δ′

if ∃h s.t. ((m, r mod q1, ρ1), h) ∈ L
abort?

L← L ∪ {((m, r mod q1, ρ1), e1)}
j ← j + 1 mod `
return (s1, r, ρ1, 1)
Σ ← Σ ∪ {(s1, r, ρ1, 1)}

else
if ∃h s.t. ((m, r mod qj , ρj), h) ∈ L

abort?
L← L ∪ {(m, r mod qj , ρj), ej}
j ← j + 1 mod `
return (sj , r, ρj , j)
Σ ← Σ ∪ {(sj , r, ρj , j)}

Fig. 5: An efficient solver for the PDLP, constructed from an efficient EUF-CMA adversary
against our scheme.

number of queries to the signature oracle, and `. Note that the reduction is `
times looser than [23]. This concludes the proof of Theorem 3. ut

Proof (of Theorem 1). Using Theorem 2, we can use Sign0 instead of Sign2 as a
target for the attacker in Theorem 3. ut
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4 Provably Secure Pre-Computations

Often the bottleneck in implementations centers around modular exponentiation.
In this section we briefly outline several proposed pre-computation techniques,
as well as presenting in more detail two pre-computation schemes which were
used in our implementation to compare timings between classical Schnorr and
our scheme.

4.1 Brief Overview of Speed-up techniques

The problem of computing modular exponentiations is well-known to imple-
menters of both DLP-based and RSA-based cryptosystems. In the specific case
that we want to compute gx mod p, the following strategies have been proposed
but their security is often heuristic:

– Use signed expansions (only applicable to groups where inversion is efficient);
– Use Frobenius expansions or the GLV/GLS method (only applicable to certain

elliptic curves);
– Batch exponentiations together, as suggested by M’Raïhi and Naccache [18].

The above approaches work for arbitrary values of x. Alternatively, one may
choose a particular value of x with certain properties which make computation
faster; however there is a possibility that doing so weakens the DLP:

– Choose x with low Hamming weight as proposed by Agnew et al. [1];
– Choose x to be a random Frobenius expansion of low Hamming weight, as

discussed by Galbraith [12, Sec. 11.3];
– Choose x to be given by a random addition chain, as proposed by Schroeppel

et al. [25];
– Choose x to be a product of low Hamming weight integers as suggested by

Hoffstein and Silverman [13]—broken by Cheon and Kim [6];
– Choose x to be a small random element in GLV representation—broken by

Aranha et al. [2];

Finally, a third branch of research uses large amounts of pre-computation to gener-
ate random pairs (x, gx mod p). The first effort in this direction was Schnorr’s [24],
quickly broken by de Rooij [9]. Other constructions are due to Brickell et al. [5],
Lim and Lee [17], and de Rooij [8]. The first provably secure solution is due to
Boyko et al. [4], henceforth BPV, which was extended and made more precise
by [7, 19,20]. This refined algorithm is called E-BPV (extended BPV).

4.2 The E-BPV Pre-computation Scheme

E-BPV8 relies on pre-computing and storing a set of n pairs (ki, gki mod p); then
a “random” pair (r, gr mod p) is generated by choosing a subset S of size k the
8 BPV is a special case of E-BPV where h = 2. As such they share the same precom-
puting step.
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ki, and for each i a random exponent xi between 1 and h. Then a pair (r,R) is
computed as r ← Σi∈Sxidi mod φ(p), R← gr mod p with a non trivial speedup
due to Brickell et al. [5] (BGMW). To guarantee an acceptable level of security,
and resist lattice reduction attacks, the number n of precomputed pairs must be
sufficiently large; and enough pairs with large enough exponents must be used to
generate a new couple.

(E-)BPV.Preprocessing:

k1, . . . , kn � Z∗p
L← ∅
for j ∈ [n]
L← L ∪ {(kj ,Kj = gkj mod p)}

return L

E-BPV.GetRandomPair:

pick S ⊆ [n] s.t. |S| = k
for j ∈ S

(di, Di)� D
xi � [h− 1]

r ← Σi∈Sxidi mod φ(p)
R← 1
acc← 1
for j = h− 1 to 0

for j ∈ S
if xj = j
acc = acc×Dj

R← R · acc mod p
return(r,R)

Fig. 6: The E-BPV algorithm for generating random pairs (x, gx mod p). The BPV
algorithm is a special case of E-BPV for h = 2.

Nguyen et al. [19] showed that using E-BPV instead of standard exponentiation
gives an adversary an advantage bounded by

m

√
K(

n
k

)
(h− 1)k

with m the number of signature queries by the adversary, (k, n, h) E-BPV pa-
rameters, and K the exponent’s size.9

We fix conservatively m = 2128. For our scheme, at 128-bit security, we have
K = P = 3072. As suggested in [19] we set n = k, and constrain our memory:

hk ≥ 23400

Optimizing 2k + h under this constraint, we find (h, k) = (176, 455). This
corresponds to 1087 modular multiplications, i.e., an amortized cost of 90 multi-
plications per signature, for about 170 kB of storage.

Alternatively, we can satisfy the security constraints by setting n = 2048,
h = 100, k = 320, which corresponds to about 770 kB of storage, giving an
amortized cost of 62 modular multiplications per signature.
9 For Schnorr, the exponent’s size is Q; for our scheme, it is P .
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In the implementation (Section 5), we solve the constrained optimisation
problem to find the best coefficients (i.e., the least number of multiplications) for
a given memory capacity.

Remark 3 (Halving storage cost). The following idea can halve the amount of
storage required for the couples (x, gx): instead of drawing the values x at random,
we draw a master secret s once, and compute xi+1 = OWF(x, gxi) with OWF
being a one-way function. Only s, x0, and the values gxi need to be stored;
instead of all the couples (xi, gxi). This remark applies to both BPV and E-BPV.

4.3 Lim and Lee Precomputation Scheme

We also consider a variation on Lim and Lee’s fast exponentiation algorithm [17].
Their scheme originally computes gr for r known in advance, but it is easily
adapted to the setting where r is constructed on the fly. The speed-up is only
linear, however, which ultimately means we cannot expect a sizable advantage
over Schnorr. Nevertheless, Lim and Lee’s algorithm is less resource-intensive
and can be used in situations where no secure E-BPV parameters can be found
(e.g., in ultra-low memory settings).

The Lim-Lee scheme (LL) has two parameters, h and v. In the original LL
algorithm, the exponent is known in advance, but it is easily modified to generate
an exponent on the fly. Intuitively, it consists in splitting the exponent in a
“blocks” of size h, and dividing further each block in b sub-blocks of size v. The
number of modular multiplications (in the worst case) is a+ b− 2, and we have
to store (2h − 1)v pairs. The algorithms are given in Figure 7.

For a given amount of memory M , it is easy to solve the constrained opti-
mization problem, and we find

hopt = 1
ln(2)

(
1 +W

(
1 +M

e

))
where W is the Lambert function. For a memory M of 750 kB, this gives h ≈ 8.6.
The optimal parameters for integers are h = 9 and v = 4.10

Remark 4. For LL, Remark 3 on halving storage requirements does not apply,
as x need not be stored.

A summary of the properties for the pre-computations techniques E-PBV
and LL can be found in Table 1.

5 Implementation Results

Our scheme, using the algorithms described in Sections 3 and 4, has been
implemented in C using the GMP library. In the interest of timing comparison
10 In practice, it turns out that h = v = 8 performs slightly better, due to various

implementation speed-ups possible in this situation
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LimLee.Preprocessing(h, v):

g0 ← g
L = ∅
for i = 0 to h− 1
gi ← g2a

i−1
for i = 0 to 2h − 1
let i = eh−1 . . . e1 in binary
g0,i = g

eh−1
h−1 . . . ge1

1
for i = 0 to 2h − 1
for j = 0 to v − 1
gj,i ← g2b

j−1,i
L← L ∪ {gj,i}

return L

LimLee.GetRandomPair:

R← 1
r ← 0
for i = b− 1 to 0
R← R2

r ← r + r
for j = v − 1 to 0
ri,j � {0, . . . , 2h − 1}
R← R× gj,ri,j

r ← r + ri,j
return (r,R)

Fig. 7: The LL algorithm for generating random pairs (x, gx mod p).

Table 1: Precomputation/online computation trade-offs.

Algorithm Storage Multiplications Security

Square-and-multiply 0 1.5 logP Always
BPV [4] nP k − 1 m

√
P

(n
k) < 2−κ

E-BPV [19] nP 2k + h− 3 m
√

P

(n
k)(h−1)k

< 2−κ

Lim and Lee [17] 2h × v × P logP
h

(1 + 1
v

)− 3 Always

we have also implemented the classical Schnorr scheme. The results for several
scenarios are outlined in Table 2 (at 128-bit security) and Table 3 (at 192-bit
security). Complete source code and timing framework are available upon request
from the authors.

These experiments show that our scheme is faster than Schnorr when at least
250 pairs (i.e., 750 kB at 128-bit security) have been precomputed. This effect is
even more markedly visible at higher security levels: our scheme benefits more,
and more effectively, from the E-BPV+BGMW optimisation as compared to
Schnorr.

Schnorr and our scheme achieve identical performance when using Lim and
Lee’s optimisation, confirming the theoretical analysis. When less than 1MB of
memory is allotted, this is the better choice.

6 Heuristic security

Several papers describe server-aided precomputation techniques (e.g., [16]), which
perform exponentiations with the help of a (possibly untrusted) server, i.e., such
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Table 2: Timing results for Schnorr and our scheme, at 128-bit security (P = 3072,
Q = 256). Computation was performed on an ArchLinux single-core 32-bit virtual
machine with 128MB RAM. Averaged over 256 runs.

Scheme Storage Precomp. Time (per sig.) Verify

Schnorr – – 6.14ms 73.9ms
Schnorr + [19] + [5] 170 kB 33 s 2.80ms 73.9ms
Schnorr + [19] + [5] 750 kB 33 s 2.03ms 73.9ms
Schnorr + [19] + [5] 1MB 34 s 2.00ms 73.9ms
Schnorr + [19] + [5] 2MB 37 s 2.85ms 73.9ms
Schnorr + [17] 165 kB 3 s 949µs 73.9ms
Schnorr + [17] 750 kB 3 s 644µs 73.9ms
Schnorr + [17] 958 kB 3 s 630µs 73.9ms
Schnorr + [17] 1.91MB 3 s F 472µs 73.9ms

Our Scheme – – 5.94ms 2.4 s
Our Scheme + [19] + [5] 170 kB 33 s 1.23ms 2.4 s
Our Scheme + [19] + [5] 750 kB 33 s 426µs 2.4 s
Our Scheme + [19] + [5] 1MB 34 s 371µs 2.4 s
Our Scheme + [19] + [5] 2MB 37 s F 327µs 2.4 s
Our Scheme + [17] 165 kB 3 s 918µs 2.4 s
Our Scheme + [17] 750 kB 3 s 709µs 2.4 s
Our Scheme + [17] 958 kB 3 s 650µs 2.4 s
Our Scheme + [17] 1.91MB 3 s 757µs 2.4 s

Table 3: Timing results for Schnorr and our scheme, at 192-bit security (P = 7680,
Q = 384). Computation was performed on an ArchLinux single-core 32-bit virtual
machine with 128MB RAM. Averaged over 256 runs.

Scheme Storage Time (/sig.)

Schnorr – 35.2ms
Schnorr + [17] 715 kB 508µs
Schnorr + [19] + [5] 750 kB 2.08ms
Schnorr + [19] + [5] 1.87MB 1.62ms
Schnorr + [17] 1.87MB F 476µs

Our Scheme – 33.0ms
Our Scheme + [17] 715 kB 486µs
Our Scheme + [17] 1.87MB 467µs
Our Scheme + [19] + [5] 1.87MB F 263µs

techniques allow to outsource the computation of gx mod n, with public g and n,
without revealing x to the server.

Interestingly, the most efficient algorithms in that scenario (which of course
we could leverage) use parameters provided by Hohenberger and Lysyanskaya [14]
for E-BPV. A series of papers took these parameters for granted (including [16]),
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but we should point out that these are not covered by the security proof found
in [19].

Despite this remark, it seems that no practical attack is known either; therefore
if we are willing to relax our security expectations somewhat it is possible to
compute the modular exponentiation faster. Namely, a Q-bit exponent can be
computed in O(logQ2) modular multiplications.

Our Scheme uses an exponent that is ` times bigger than Schnorr, which
is amortized over ` signatures. Comparing our scheme to Schnorr, the ratio is
` log(Q)2

(log `Q)2 . With Q = 256 and ` = 12 we get a ratio of approximately 5.7.
Note that as Q increases, so does `, and therefore so does the advantage of

our scheme over Schnorr in that regime.

7 Conclusion

We have introduced a new digital signature scheme variant of Schnorr signatures,
that reuses the nonce component for several signatures. Doing so does not
jeopardise the scheme’s security; attempting to do the same with classical Schnorr
signatures would immediately reveal the signing key. However the main appeal
of our approach is that precomputation techniques, whose benefits can only be
seen for large enough problems, become applicable and interesting. As a result,
without loss of security, it becomes possible to sign messages using fewer modular
multiplications. Our technique is general and can be applied to several signature
schemes using several speed-up techniques.
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A Generic Security of Partial Discrete Logarithm

In this section, we prove that the partial discrete logarithm problem introduced in
Section 3.2 is intractable in the generic group model. This model was introduced
by Shoup [27] for measuring the exact difficulty of solving classical discrete
logarithm problems. Algorithms in generic groups do not exploit any properties
of the encodings of group elements. They can access group elements only via a
random encoding algorithm that encodes group elements as random bit-strings.

Proofs in the generic group model provide heuristic evidence of some problem
hardness when an attacker does not take advantage of group elements’ encoding.
However, they do not necessarily say anything about the difficulty of specific
problems in a concrete group.

Let ` be some non-negative integers, let q1, . . . , q` be some distinct prime
numbers and let q = q1 · · · q`. We consider a cyclic group G of (composite) order
q generated by g. We assume without loss of generality that q1 = max(q1, . . . , q`).
A classical method [21] to solve the partial discrete logarithm problem in G given
h = gx ∈ G is to compute hq2···q` , an element of order dividing q1 (that belongs
to the subgroup generated by gq2···q`) and to compute its discrete logarithm x1
in base gq2···q` using a square root method such as Shanks “baby-step giant-step”
algorithm [26]. It is easy to see that x1 is equal to x mod q1 and is obtained
within time complexity O(√q1 + log(q2 · · · q`)) group operations.

Our goal is to prove that this time complexity is essentially optimal in the
generic group model. Let A be a generic group adversary that solves the partial
discrete logarithm problem inG. As usual, the generic group model is implemented
by choosing a random encoding σ : G −→ {0, 1}m. Instead of working directly
with group elements, A takes as input their image under σ. This way, all A
can test is string equality. A is also given access to an oracle computing group
multiplication and division: taking σ(g1) and σ(g2) and returning σ(g1 · g2) and
σ(g1/g2) respectively. Finally, we can assume that A submits to the oracle only
encodings of elements it had previously received. This is because we can choose
m large enough so that the probability of choosing a string that is also in the
image of σ is negligible.
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Theorem 4. Let A be a generic algorithm that takes as input two encodings σ(g)
and σ(h) (where g is a generator of G and h = gx ∈ G) and makes at most τ
group oracle queries, then A’s advantage in outputting a partial discrete logarithm
(i, xi) with i ∈ {1, . . . , `} and xi = x mod qi is upper-bounded by O(τ2/q1).

Proof. We consider an algorithm B playing the following game with A. Algorithm
B picks two bit strings σ1, σ2 uniformly at random in {0, 1}m. Internally, B keeps
track of the encoded elements using elements in the ring Zq1 [X1]× · · · × Zq`

[X`].
To maintain consistency with the bit strings given to A, B creates a lists L of
pairs (F, σ) where F is a polynomial vector in the ring Zq1 [X1]× · · · × Zq`

[X`]
and σ ∈ {0, 1}m is the encoding of a group element. The polynomial vector F
represents the exponent of the encoded element in the group Zq1 × · · · × Zq`

.
Initially, L is set to

{((1, 1, . . . , 1), σ1) , ((X1, . . . , Xn), σ2)}

Algorithm B starts the game providing A with σ1 and σ2. The simulation of the
group operations oracle goes as follows:

Group operation: Given two encodings σi and σj in L, B recovers the cor-
responding vectors Fi and Fj and computes Fi + Fj for multiplication (or
Fi − Fj for division) termwise. If Fi + Fj (or Fi − Fj) is already in L, B
returns to A the corresponding bit string; otherwise it returns a uniform
element σ R←− {0, 1}m and stores (Fi + Fj , σ) (or (Fi − Fj , σ)) in L.

After A queried the oracles, it outputs a pair (i∗, x∗i ) ∈ {1 . . . , `} × Zqi∗ as a
candidate for the partial discrete logarithm of h in base g. At this point, B
chooses uniform random values x1, . . . , xn ∈ Zq1 × · · · × Zq`

. The algorithm B
sets Xi = xi for i ∈ {1, . . . , n}.

If the simulation provided by B is consistent, it reveals nothing about
(x1, . . . , x`). This means that the probability of A guessing the correct value for
(i∗, x∗i ) ∈ {1, . . . , `} × Zqi∗ is 1/qi∗ . The only way in which the simulation could
be inconsistent is if, after we choose value for x1, . . . , xn, two different polynomial
vectors in L happen to produce the same value.

It remains to compute the probability of a collision happening due to a
unlucky choice of values. In other words, we have to bound the probability that
two distinct vectors Fi, Fj in L evaluate to the same value after the substitution,
namely Fi(x1, . . . , xn)−Fj(x1, . . . , xn) = 0. This reduces to bound the probability
of hitting a zero of Fi − Fj . By the simulation, this happens only if Fi − Fj is
a vector of polynomials where at least one coordinate — say the k-th — is a
non-constant polynomial (and thus of degree one) denoted (Fi − Fj)(k).

Recall that the Schwartz-Zippel lemma says that, if F is a degree d polynomial
in Zqk

[Xk] and S ⊆ Zqk
then

Pr[F (xk) = 0 mod qk] ≤ d

|S|
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where xk is chosen uniformly from S. Going back to our case, we obtain by
applying the Schwartz-Zippel lemma :

Pr[(Fi − Fj)(k)(xk) = 0 ∈ Zqk
] ≤ 1/qk ≤ 1/q1.

Therefore, the probability that the simulation provided by B is inconsistent is
upper-bounded by τ(τ − 1)/q1 (by the union bound) and the result follows. ut

B Reduction-friendly moduli

As part of computing gk mod p, a very costly operation is the reduction mod p.
An interesting question is whether some particular moduli p can be found, for
which reduction is particularly easy.

An example of such moduli are those that start with a 1 followed by many 0.

Example 1. For P = 3072 and Q = 256, using (in hexadecimal notation)

∆i = {12d, 165, 1e7, 247, 2f5, 31b, 327, 34f, 3a3, 439, 56b, 4fe7}

and qi = 2Q +∆i, we have that p equals:

2[60]e0e8[56]18058164[53]1479d1e16e8[51]aa09581f139be[48]3a9dc2e99b
080dd[47]dfe705c4e9b3a45678[43]25a378c4e6b62835f401[42]471d330fbde5
6ef2c80281e[39]5c5388621a308a5425f007648[37]4e506ba1a5b68dc5faca115
5e64[35]270051399124b193e6716e08b4408[34]8a07b85ed815e7eac1135861bd
67e3

where [x] denotes a sequence of x hexadecimal zeros.
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