冬小麦生物量高光谱遥感监测模型研究

贺 佳^{1,2}, 刘冰峰¹, 郭 燕², 王来刚², 郑国清², 李 军^{1*} (1西北农林科技大学农学院,陕西杨凌 712100; 2河南省农业科学院农业经济与信息研究所,河南郑州 450002)

摘要:【目的】高光谱遥感能快速、实时、无损监测作物长势。研究不同氮磷水平下冬小麦不同生育时期地上 部生物量高光谱遥感监测模型,可提高地上部生物量高光谱监测精度。【方法】在西北农林科技大学连续进行 了5年田间定位试验,设置5个施氮水平(N,0,75,150,225和300kg/hm²)和4个磷施用水平(P,O,0,60,120和 180 kg/hm²),选用不同抗旱类型冬小麦品种,测定了从拔节期至成熟期生物量与冠层光谱反射率,通过相关分 析、回归分析等统计方法,建立并筛选基于不同植被指数的冬小麦不同生育时期生物量分段遥感监测模型。 【结果】冬小麦生物量与光谱反射率在 670 nm 和 930 nm 附近具有较高相关性,在可见光和近红外波段处均有 敏感波段:在拔节期、孕穗期、抽穗期、灌浆期、成熟期,生物量与归一化绿波段差值植被指数 (GNDVI)、比 值植被指数 (RVI)、修正土壤调节植被指数 (MSAVI)、红边三角植被指数 (RTVI) 和修正三角植被指数 Ⅱ (MTVIⅡ)均达极显著相关性 (P < 0.01),相关系数 (r)范围为 0.923~0.979;在不同生育时期,分别基于 GNDVI、RVI、MSAVI、RTVI和 MTVIII 能建立较好的生物量分段监测模型,决定系数(R²)分别为 0.987、 0.982、0.981、0.985、0.976;估计标准误差 SE 分别为 0.157、0.153、0.163、0.133、0.132;预测值与实测值间 相对误差 (RE) 分别为 8.47%、7.12%、7.56%、8.21%、8.65%;均方根误差 (RMSE),分别为 0.141 kg/m²、0.113 kg/m²、0.137 kg/m²、0.176 kg/m²、0.187 kg/m²。【结论】在拔节期、孕穗期、抽穗期、灌浆期、成熟期可以用 GNDVI、RVI、MSAVI、RTVI和 MTVIⅡ 监测冬小麦生物量,具有较好的年度间重演性和品种间适用性。同 时,分段监测模型较统一监测模型具有较好的监测效果及验证效果,能有效改善高光谱遥感监测模型精度。 关键词:农作物;冬小麦;生物量;高光谱遥感;监测模型

Biomass estimation model of winter wheat (*Triticum aestivum* L.) using hyperspectral reflectances

HE Jia^{1,2}, LIU Bing-feng¹, GUO Yan², WANG Lai-gang², ZHENG Guo-qing², LI Jun^{1*}

(1 College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; 2 Agricultural Economy and Information Research Institution, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China)

Abstract: [Objectives] Hyperspectral remote sensing can rapidly and nondestructively acquire vegetation canopy information. The objectives of this study were to establish wheat biomass estimation model based on winter wheat (*Triticum aestivum* L.) canopy hyperspectral reflectances with different rates of nitrogen or phosphorus application, and to improve the forecast precision of the biomass estimation model at different growth stages of winter wheat in the Loess Plateau of China. **[Methods]** Field experiments were carried out during 2009–2014 at Northwest A&F University, Yangling, China. Winter wheat cultivars were used as tested materials, and five N application rates (0, 75, 150, 225 and 300 kg/ hm²) and four P₂O₅ application rates (0, 60, 120 and 180 kg/ hm²) were set. Biomass and canopy hyperspectral reflectances were measured at the jointing, booting, heading, grain filling and maturity stages, respectively. The biomass monitoring models were constructed using correlation and regression methods. **[Results]** The biomass of wheat from the jointing to maturity

收稿日期: 2016-04-26 接受日期: 2016-09-23

基金项目:国家高技术研究发展计划(863计划)资助项目(2013AA102902);国家自然科学基金(31071374,30771280,41601213); 河南省农业科学院优秀青年基金项目(2016YQ21)资助。

作者简介: 贺佳(1985—),男,河南陕县人,博士研究生,主要从事高效农作制度与农业遥感应用研究。E-mail: hejia2011@163.com * 通信作者 E-mail: junli@nwsuaf.edu.cn

showed a parabolic curve, and the maximum biomass was at the seed filling stage. When nitrogen or phosphorus application was sufficient, the canopy hyperspectral reflectances of wheat were reduced by 2.0%–5.0% in the visible wavelength (P < 0.05), and increased by 3.0%–21.0% in the near infrared wavelength (P < 0.05). There were significant (P < 0.01) correlations between the biomass and green normalized difference vegetation index (GNDVI), ratio vegetation index (RVI), modified soil adjusted vegetation index (MSAVI), red edge triangular vegetation index (RTVI) and modified triangular vegetation index II (MTVI II), the range of the correlation coefficient was from 0.923 to 0.979 at different growth stages. The monitoring models based on GNDVI, RVI, MSAVI, RTVI and MTVI II produced better estimation for biomass at the jointing, booting, heading, grain filling and maturity, respectively, and precision values of prediction R^2 were respectively 0.987, 0.982, 0.981, 0.985 and 0.976 (P < 0.01), and standard errors (SE) were respectively 0.157, 0.153, 0.163, 0.133 and 0.132. Meanwhile, the relative errors (RE) of the measured values and predicted values were 8.47%, 7.12%, 7.56%, 8.21% and 8.65%, and the root mean square errors (RMSE) were 0.141, 0.113, 0.137, 0.176 and 0.187 kg/m² at the jointing, booting, heading, grain filling and maturity stages, respectively. Therefore, vegetation indices of GNDVI, RVI, MSAVI, RTVI and MTVI II were the most suitable indexes for monitoring winter wheat biomass at the jointing, booting, heading, grain filling and maturity stages, respectively. [Conclusions] The five tested vegetation indices show high precision in predicting the biomass of winter wheat at different growth stages, which means they can be used for monitoring biomass of winter wheat in large areas of the Loess Plateau. Key words: crop; winter wheat; biomass; hyperspectral remote sensing; monitoring model

生物量是反映作物长势状况的重要指标,是作 物重要的生态生理参数之一,与作物群体初级净生 产力和最终产量密切相关[1-2]。高光谱遥感凭借其波 段连续性强、光谱数据量大的优势,能及时有效地 宏观监测作物群体信息,在农业定量遥感研究中有 广泛应用,是观测地表植被状况的强有力工具[3-4]。 Wessman 等题指出导数光谱与生物量密切相关, Ian 等师指出高光谱遥感技术能够精确估算植被生物量。 Casanova 等四通过实测光谱数据建立水稻地上部生物 量高光谱监测模型,实现了水稻生物量的高光谱遥 感监测。Lukina 等¹⁸通过光谱处理图像估测小麦冠层 生物量。Thenkabail 等^[9]指出 650~700 nm, 500~ 550 nm 及 900~940 nm 等波段光谱反射率对地上部 干生物量较为敏感。Gitelson 等^[10]指出基于红边位置 的植被指数能有效估测作物生物量。Hansen 等凹利 用归一化差值植被指数通过偏最小二乘法精确估算 小麦地上部生物量。Mutanga 等^[12]用高光谱波段深度 指数估测草地生物量,具有较好的估算效果。 Nguyen 等^[13]指出 1100~1650 nm、1100~1200 nm 可 以精确估算水稻地上部干生物量。此外,还有学者 构建许多不同植被指数反演作物生物量,都在不同 程度上推动着高光谱遥感技术对生物量估测研究的 发展[14-17]。王秀珍等[18]建立了水稻鲜生物量高光谱遥 感模型。谭昌伟等鬥研究表明拔节期基于归一化植被 指数能有效估测冬小麦生物量,实现了冬小麦生物

量空间分布量化表达。唐延林等即提出比值植被指数 及红边参数与水稻、玉米和棉花等作物叶鲜重和叶 干重均存在极显著相关关系。宋开山等凹指出比值植 被指数可以抑制背景对目标的影响,进而提高光谱 遥感估算作物生物量的精度。王大成等[22]通过人工神 经网络方法提高小麦生物量估算精度,比传统回归 模型估测作物生物量有明显优势,可以扩展应用于 作物其他生态生理参数的估算。冯伟等[23]以不同植被 指数建立冬小麦叶干重监测模型。陈鹏飞等[24]提出红 边三角植被指数在较高生物量水平下对生物量变化 具有较高的敏感性,且不易受作物冠层结构影响, 是估测小麦玉米等作物生物量的最佳植被指数。付 元元等[25]将波段深度分析和偏最小二乘回归两种方法 相结合能克服生物量较大时模型的饱和性问题,能 提高模型估算精度。刘冰峰等[26]指出在不同生育时期 选择最佳植被指数能较好地监测玉米地上部干生物 量,并能有效提高模型的监测精度和验证效果。

由于作物生物量在不同生育时期、不同营养状况下具有一定差异,在作物不同发育阶段,大田观测视场内作物冠层结构和背景信息的差异引起冠层光谱反射率不断变化,导致所构建植被指数对生物量的敏感程度存在差异。同时,由于高光谱反演模型精度受冬小麦不同生育时期影响^[27],诸多因素导致高光谱遥感监测模型预测精度不高。本文通过连续5年大田试验,定位研究不同氮磷耦合水平下,不同

生育时期、不同抗旱类型冬小麦冠层光谱反射率与 地上部干生物量,分析不同生育时期生物量与植被 指数的定量关系,建立基于不同植被指数的不同生 育时期生物量高光谱遥感监测模型,为实现不同肥 力水平下冬小麦不同生育时期长势精确诊断提供理 论依据和技术支撑。

1 材料与方法

1.1 试验地概况

试验设于西北农林科技大学北校区 (108°10′E、 34°10′N),海拔 454.8 m,温带大陆性季风型气候, 年平均温度 12~14℃,无霜期 220 d,年蒸发量 1400 mm,年平均降水量 621.6 mm。试验地为粉砂 粘壤土,0—20 cm 土层土壤养分含量为有机质 14.26 g/kg,全氮 0.90 g/kg,碱解氮 36.00 mg/kg,速效磷 17.64 mg/kg; 20—40 cm 土层养分含量为有机质 10.04 g/kg, 全氮 0.62 g/kg, 碱解氮 25.29 mg/kg, 速效磷 23.85 mg/kg。

1.2 试验设计

试验于 2009~2014 年实施,采取随机区组设 计,每年设置 2 个抗旱程度不同的冬小麦品种,共 8 个品种,依据该地区小麦生产措施,设置 5 个氮素 水平,4个磷肥水平,3组重复。小区面积为30㎡(3m× 10 m)。5 个氮肥 (46% N 尿素)水平分别为 N 0 (N₀)、 75 (N₁)、150 (N₂)、225 (N₃)和 300 kg/hm² (N₄),总氮 肥 60% 作为基肥,40% 作为追肥,于返青后拔节前 施入。4 个磷肥[16% Ca(H₂PO₄)₂]水平分别为 P₂O₅ 0 (P₀)、60 (P₁)、120 (P₂)、180 kg/hm² (P₃),磷肥作为 底肥一次性施入。不施钾肥,其他田间管理按照黄 土高原高产田措施进行良好管理。播种量均为 187.50 kg/hm²,每小区播种量约 0.56 kg。不同年份 供试品种、播种、收获及数据采集日期见表 1。

表 1 不同年份田间试验基本情况 Table 1 Basic information for the experiment in different years

年份 Year	品种 C	播种日期	收获日期	数据采集日期	
	强抗旱型 Strong drought resistance	弱抗旱型 Weak drought resistance	Sowing date (y-m-d)	Harvesting date (y-m-d)	Data collection date (m–d)
2009~2010	晋麦 47 Jinmai 47	西农 979 Xinong 979	2009-10-09	2010-06-05	04-07、04-22、05-07、05-20、05-27
2010~2011	晋麦 47 Jinmai 47	西农 979 Xinong 979	2010-10-13	2011-06-10	04-09、04-23、05-07、05-18、06-03
2011~2012	普冰 9946 Pubing 9946	西农 2000 Xinong 2000	2011-10-16	2012-06-08	04-08、04-23、05-05、05-19、06-03
2012~2013	周麦 18 Zhoumai 18	小偃 22 Xiaoyan 22	2012-10-10	2013-06-09	04-03、04-17、05-03、05-18、05-30
2013~2014	长旱 58 Changhan 58	潔麦9号 Luomai 9	2013-10-08	2014-06-11	04-05、04-20、05-04、05-19、06-04

1.3 测定指标及方法

1.3.1 冠层光谱反射率测量 冬小麦冠层光谱反射率 采集用美国 Analytical Spectral Devices (ASD) 公司 Field-spec Pro FR-2500 型背挂式野外高光谱辐射测量 仪,波段为 350~2500 nm, 350~1000 nm 光谱采样 间隔为 1.4 nm,光谱分辨率为 3 nm; 1000~2500 nm, 光谱采样间隔为 2 nm,光谱分辨率为 10 nm。冠层 光谱反射率在天气晴朗、无风时测量,适宜时间为 每天 10:00~14:00。测量时传感器探头垂直向下,光 谱仪视场角为 7.5°,探头距冠层顶部垂直高度约 30 cm,地面视场范围直径为 0.5 m。分别于冬小麦拔节 期、孕穗期、抽穗期、灌浆期、成熟期测量。每个 观测点记录 10 个采样光谱,每小区测 3 次重复,取 平均值作为该观测点冠层光谱反射率。每一处理测 量完毕后,及时进行标准白板校正 (标准白板反射率 为1,因此所得目标物光谱反射率为相对光谱反射 率),以便于准确测量下一处理。

1.3.2 地上部干生物量测定 与冠层光谱反射率测量 同步,在冠层光谱反射率测定范围内,选取长势均 匀一致冬小麦植株 20 株,不同植株按器官(茎、 叶、穗)分离,在105℃杀青 30 min,85℃烘干至恒 重,将各器官分别称重,加和为植株干物质重,记 作单株地上部干重,据密度计算单位土地面积上的 干生物量。

1.4 植被指数及拟合模型的选择

本文在前人研究基础上,对大量植被指数进行 优选,选取修正土壤调节植被指数 (modified soil adjusted vegetation index, MSAVI)^[27],红边三角植被 指数 (red edge triangular vegetation index, RTVI)^[24], 修正三角植被指数 II (modified triangular vegetation index II, MTVI II)^[28], 比值植被指数 (ratio vegetation index, RVI)^[29], 归一化绿波段差值植被指数 (green normalized difference vegetation index, GNDVI)^[30] 5 种植被指数,于不同生育时期监测冬小麦地上部干

生物量,以生物量为因变量,不同类型植被指数为 自变量,选择不同生育时期最佳植被指数,建立不 同生育时期生物量分段遥感监测模型。不同植被指 数计算公式及来源见表 2。

	Tuble 2 Tryperspectrum regenation matters used in this article		
植被指数 Vegetation index	计算公式 Expression	来源 Reference	_
regetation maex	Expression	Reference	
MSAVI	$MSAVI = 2R_{nir} + 1 - sqrt[(2R_{nir} + 1)2 - 8(R_{nir} - R_{red})]/2$	[28]	
RTVI	$RTVI = [100 (R_{750} - R_{730}) - 10 (R_{750} - R_{550})] \times sqrt(R_{700}/R_{670})$	[24]	
MTVI II	$MTVI \ II \ = 1.5[1.2(R_{nir} - R_{green}) - 2.5(R_{red} - R_{green})]/sqrt\{2(R_{nir} + 1)^2 - [6R_{nir} - 5sqrt(R_{red})] - 0.5\}$	[29]	
RVI	$RVI = R_{\lambda i}/R_{\lambda 2}$	[30]	
GNDVI	$GNDVI = (R_{nir} - R_{green})/(R_{nir} + R_{green})$	[31]	

表 2 本文采用的高光谱植被指数 Table 2 Hyperspectral vegetation indices used in this article

注 (Note): MSAVI—修正土壤调节植被指数 Modified soil adjusted vegetation index; RTVI—红边三角植被指数 Red edge triangular vegetation index; MTVIII—修正三角植被指数 II Modified triangular vegetation index II; RVI—比值植被指数 Ratio vegetation index; GNDVI—归—化绿波段差值植被指数 Green normalized difference vegetation index. R_{nir}、R_{red}、R_{green}、R_{λ1}、R_{λ2}、R₇₅₀、R₇₅₀、R₇₅₀、R₇₀₀、R₆₇₀分别 为近红外 (700~1300 nm)、红光 (620~760 nm)、绿光 (500~560 nm)、λ1、λ2、750、730、550、700、670 nm 波段处光谱反射率 R_{nir}, R_{red}, R_{green}, R_{λ1}, R_{λ2}, R₇₅₀, R₇₃₀, R₇₅₀, R₇₅₀, R₇₀₀ and R₆₇₀ are spectral reflectances of near-infrared (700~1300 nm), red (620~760 nm), green (500~560 nm), λ₁, λ₂, 750, 730, 550, 700 and 670 nm, respectively.

1.5 数据处理与分析

将试验所得数据,依据不同年份、不同氮磷耦 合水平、不同生育时期、不同冬小麦品种将生物量 和冠层光谱反射率数据分别汇总。用 ViewSpec 软件 对冠层光谱反射率进行预处理。以 2012~2013 年抽 穗期小偃 22 冠层光谱反射率为例,分析不同氮磷水 平下冬小麦冠层光谱反射率的变化;综合 2009~2014 年独立数据,按不同年份、不同氮磷水平、不同品种、 不同生育时期分类,分析冠层光谱反射率与其相对 应生物量的相关性,以2010~2013年建立生物量统 一监测模型,并以 2009~2010 和 2013~2014 年独 立数验证之;将2010~2013年连续3年不同品种、同 一生育时期冬小麦生物量与相应植被指数进行相关 性分析,并建立不同生育时期生物量分段监测模型; 以 2009~2010 和 2013~2014 年独立数据为实测值, 对拟合模型预测值进行验证。统一监测模型和分段 监测模型均通过分析实测值与预测值的均方根误差 (root mean square error, RMSE) 和相对误差 (relative error, RE), 评价监测模型的稳定性和可靠性。

2 结果与分析

2.1 不同氮磷施肥水平对冬小麦冠层光谱反射率的影响

以 2012~2013 年抽穗期小偃 22 冠层光谱反射

率为例,分析不同氮磷水平下冬小麦冠层光谱反射 率的变化(图1)。为降低噪声干扰,将原始光谱反射 率数据 350~2500 nm 范围内受水汽影响的波段 1350、1850 和 2450 nm 附近数据剔除,以便于进行 数学分析及建模。由图 1 可知,不同氮磷水平下, 冬小麦冠层光谱反射率趋势相似。在可见光波段 550 nm 附近有一反射峰,光谱反射率随氮磷供应量的增 加,呈降低趋势;650 nm 附近有一吸收谷,不同氮 磷供应水平下,反射率差异不显著; 650~760 nm 波 段之间,光谱反射率随波长急剧增加。在近红外反 射平台 (760~1300 nm) 光谱反射率达最大值,为 25.0%~45.0%,随着氮磷供应水平的增加,光谱反 射率呈递增趋势,不同处理间有较大差异;970 nm 附近光谱反射率出现一个吸收谷。短波红外波段 (1400~2500 nm) 光谱反射率又呈降低趋势,不同处 理间反射率为 2.0%~18.0%, 不同氮磷供应水平 下,呈现较大差异。

由图 1a 可知,在适量磷水平下 (P₂O₃120 kg/hm²),随着施氮量的增加 (N₀P₂、N₁P₂、N₂P₂、N₃P₂、N₄P₂),不同处理间有相似趋势。在可见光波段 (380~760 nm),随着施氮量的增加,光谱反射率呈递减趋势,N₁P₂、N₂P₂、N₃P₂、N₄P₂较 N₀P₂降低 2.0%~5.0% (*P* < 0.05);在近红外反射平台 (760~1400 nm) 处,随施氮量的增加,光谱反射率呈递增趋势,N₁P₂、

N₂P₂、N₃P₂、N₄P₂较 N₆P₂ 增加 6.0%~21.0% (P < 0.05); 在短波红外波段 (1400~2500 nm), 光谱反射 率与近红外波段有相似趋势,随着施氮量的增加呈 显著递增趋势 (P < 0.05)。由图 1b 可知,在适量氮水 平下 (N 150 kg/hm²),随着施磷量的增加 (N₂P₀) N₂P₁、N₂P₂、N₂P₃),不同处理间趋势相似。在可见光 波段 (380~760 nm) 随着施磷量的增加,光谱反射率 呈递减趋势, N₂P₁, N₂P₂、N₂P₃ 较 N₂P₀ 降低 1.0%~ 2.0% (P < 0.05),不同肥力梯度下差异较小;在近红 外反射平台 (760~1400 nm) 处随施磷量的增加,光 谱反射率呈递增趋势, N₂P₁、N₂P₂、N₂P₃较 N₂P₀ 显著 增加 3.0%~13.0% (P < 0.05), 在短波红外波段 (1400~2500 nm),随着施磷量的增加呈显著递增 (P < 0.05)。总之,随着氮磷供应量的增加,冬小麦 冠层光谱反射率在可见光波段呈降低趋势,降低幅 度为 2.0%~5.0% (P < 0.05), 在近红外及短波红外波 段均随氮磷供应量的增加呈显著递增趋势,增加幅 度为 3.0%~21.0%。

2.2 冠层光谱反射率与生物量的相关性

综合 2009~2014 年独立数据,按不同年份、不同氮磷水平、不同品种、不同生育时期分类,分析 冠层光谱反射率与其相对应生物量的相关性 (图 2)。 由图 2 可知,从拔节期到成熟期,在不同光谱波段 光谱反射率与生物量的相关性趋势相似,不同生育 时期间具有一定差异。在可见光波段呈现显著负相 关 (P < 0.05),近红外波段呈显著正相关 (P < 0.05), 短波红外波段呈显著负相关 (P < 0.05)。可见光波 段,从拔节期至成熟期,光谱反射率与生物量的相 关系数差异较小,670 nm 附近有较大相关系数 0.69~ 0.76;随着波长的增加,至710~740 nm 波段,相关

图 2 冬小麦过层尤谙反射率与生物重的相大性 (2009~2014)

Fig. 2 Correlation between canopy hyperspectral reflectances and biomass of winter wheat (2009–2014)

[注 (Note): 0.05 表示达到 5% 显著水平 0.05 indicates significant at the 0.05 levels.]

性急剧上升,730 nm 附近相关性最小,约为0,相 关性较差;730~1100 nm 之间有一个相对稳定的相 关性平台,孕穗期至成熟期冠层光谱反射率与生物 量间相关性较好,930 nm 附近有较大相关系数 0.55~0.61;拔节期相关系数较低,约0.33 左右; 1120~1300 nm 波段,相关性开始降低;在短波红外 波段,1400~1800 nm 和1950~2400 nm 之间,光谱 反射率与生物量呈显著负相关 (*P* < 0.05),不同生育 时期间相关性差异较小。总之,冬小麦生物量的敏 感波段在对可见光 (670 nm)和近红外波段 (930 nm) 的敏感性较短红外波段好。

2.3 拔节期至成熟期冬小麦生物量统一监测模型的建立与验证

2.3.1 拔节期至成熟期植被指数与生物量的相关性

通过分析不同年份、不同氮磷水平、不同品种、不同生育期冠层光谱反射率与相应处理生物量的相关性,依据表 2 公式计算不同类型植被指数,分析拔节期至成熟期植被指数与生物量的相关性,分析表明,不同类型植被指数均与生物量达极显著相关水平,相关系数 r 范围为 0.754~0.801。按照统计学规定:相关系数 $|r| \ge 0.8$ 时为高度相关; 0.5 \le |r| < 0.8时为中度相关; 0.3 \le |r| < 0.5时为低度相关。所以,从拔节期至成熟期 MSAVI、RTVI、MTVIII、RVI、GNDVI等植被指数与生物量达中度相关 (r 分别为 0.754**、0.801**、0.773**、0.762**、0.787**),表明所选 5 种植被指数均能用来监测拔节期至成熟期冬小麦生物量,可作为构建冬小麦生物量监测模型的参数。

2.3.2 拔节期至成熟期生物量统一监测模型的建立与验证 通过对拔节期至成熟期植被指数与生物量的相关性分析,选择 2010~2013 年冬小麦生物量与对应

植被指数 (n = 600),建立基于拔节期至成熟期冬小麦生物量统一监测模型,并以 2009~2010 年和 2013~2014 年实测数据 (n = 400) 对模型预测值进行验证 (表 3)。由表 3 拟合模型可知,所选 MSAVI、RTVI、MTVIII、RVI、GNDVI 等 5 种植被指数,均能与生物量建立较好的拟合模型,拟合精度 R²为 0.569~0.642,标准误差 SE为 0.197~0.235;由验证模型可知:通过不同年度间独立数据对模型预测值具有较好的验证效果,实测值与预测值间相对误差 RE 为 17.83%~24.07%,均方根误差 RMSE 为 0.213~0.637 kg/m²。

2.4 不同生育期冬小麦生物量分段监测模型的建 立与验证

2.4.1 不同生育时期植被指数与生物量的相关性 将2010~2013 年连续 3 年不同品种、同一生育时期冬小麦生物量与相应植被指数进行相关性分析 (*n* = 120)。由表 4 可知,不同生育时期冬小麦生物量与植被指数均达极显著相关性 (*P* < 0.01),相关系数范围

表 3 拔节期至成熟期生物量统一监测模型的拟合与验证

Table 3	Fitting and	performance of	f monitoring mod	lels of b	iomass of	winter v	wheat from	the jointing	to maturity s	tages
---------	-------------	----------------	------------------	-----------	-----------	----------	------------	--------------	---------------	-------

植被指数	拟合模型	验证模型 Performance model			
Vegetation index	拟合方程 Equation	R^2	SE	RE (%)	RMSE (kg/m ²)
MSAVI	y = 0.055x + 0.179	0.569	0.235	24.07	0.347
RTVI	y = 0.068x + 0.225	0.642	0.197	17.83	0.213
MTVI II	y = 0.059x + 0.189	0.598	0.216	21.33	0.445
RVI	y = 0.057x + 0.302	0.581	0.224	23.19	0.556
GNDVI	y = 0.064x + 0.244	0.619	0.207	19.47	0.637

注(Note): MSAVI—修正土壤调节植被指数 Modified soil adjusted vegetation index; RTVI—红边三角植被指数 Red edge triangular vegetation index; MTVI II—修正三角植被指数 II Modified triangular vegetation index II; RVI—比值植被指数 Ratio vegetation index; GNDVI—归一化绿波段差值植被指数 Green normalized difference vegetation index.

数 (r)
数 ()

Table 4	Correlation coefficients betw	en vegetation indices and	l biomass at different growth stages
---------	-------------------------------	---------------------------	--------------------------------------

生育时期	植被指数 Vegetation Index							
Growth stage	MSAVI	RTVI	MTVI II	RVI	GNDVI			
拔节期 Jointing	0.947**	0.934**	0.927**	0.943**	0.959**			
孕穗期 Booting	0.945**	0.949**	0.943**	0.964**	0.956**			
抽穗期 Heading	0.977**	0.968**	0.955**	0.946**	0.934**			
灌浆期 Filling	0.968**	0.971**	0.956**	0.934**	0.923**			
成熟期 Maturity	0.968**	0.976**	0.979**	0.951**	0.957**			

注(Note): MSAVI—修正土壤调节植被指数 Modified soil adjusted vegetation index; RTVI—红边三角植被指数 Red edge triangular vegetation index; MTVI II—修正三角植被指数 II Modified triangular vegetation index II; RVI—比值植被指数 Ratio vegetation index; GNDVI—归一化绿波段差值植被指数 Green normalized difference vegetation index. **表示在 0.01 水平上显著相关 Indicates significant correlation at the 0.01 level.

为 0.923~0.979, 较拔节期至成熟期生物量与植被指数 相关性 (r = 0.754~0.801) 有所提高, 表明 MSAVI、RTVI、MTVIII、RVI、GNDVI 等植被指数可以用来监测从拔节期至成熟期不同生育时期冬 小麦生物量,可以作为构建冬小麦生物量分段监测模型的参数。

2.4.2 不同生育时期生物量分段监测模型的建立与验证 通过分析不同生育时期植被指数与生物量的相关性,在 2010~2013 年连续 3 年独立数据的基础上,

建立基于最佳植被指数的不同生育时期生物量分段 监测模型,选择拟合度 (*R*²) 较高,标准误差 (SE) 较 小的拟合模型作为不同生育时期生物量最佳监测模 型。同时,以 2009~2010 年和 2013~2014 年独立 数据为实测值,对拟合模型预测值进行验证,通过 分析实测值与预测值的 RE 和 RMSE 评价监测模型 的可靠性 (表 5)。

由表 5 拟合模型 (n = 120) 可知,在不同生育时期, MSAVI、RTVI、MTVI II、RVI、GNDVI 等植

生育时期	植被指数	拟合模型	뒏 Fitting model		验证模型 Pe	rformance model
Growth stage	Vegetation index	拟合方程 Equation	R^2	SE	RE (%)	RMSE (kg/m ²)
拔节期 Jointing	MSAVI	y = 0.082 x + 0.166	0.969	0.185	9.23	0.156
	RTVI	y = 0.004x + 0.147	0.940	0.183	9.83	0.174
	MTVI II	y = 0.105 x + 0.144	0.944	0.167	9.33	0.161
	RVI	y = 0.085 x + 0.158	0.984	0.163	9.19	0.153
	GNDVI	y = 0.080 x + 0.158	0.987	0.157	8.47	0.141
孕穗期 Booting	MSAVI	y = 0.263 x + 0.536	0.945	0.180	9.01	0.111
	RTVI	y = 0.011 x + 0.527	0.973	0.171	7.51	0.132
	MTVI II	y = 0.246 x + 0.533	0.953	0.167	8.36	0.157
	RVI	y = 0.232 x + 0.548	0.982	0.153	7.12	0.113
	GNDVI	y = 0.163 x + 0.577	0.968	0.167	8.13	0.124
抽穗期 Heading	MSAVI	y = 0.385 x + 1.172	0.981	0.163	7.56	0.137
	RTVI	y = 0.021 x + 0.688	0.972	0.163	8.11	0.141
	MTVI II	y = 0.682 x + 0.626	0.957	0.177	8.15	0.153
	RVI	y = 0.059 x + 1.020	0.955	0.180	8.24	0.161
	GNDVI	y = 0.295 x + 0.810	0.958	0.181	8.17	0.157
灌浆期 Filling	MSAVI	y = 0.141 x + 1.182	0.953	0.136	8.63	0.183
	RTVI	y = 0.021 x + 0.990	0.985	0.133	8.21	0.176
	MTVI II	y = 0.456 x + 1.028	0.980	0.146	8.57	0.181
	RVI	y = 0.532 x + 0.919	0.898	0.158	9.27	0.201
	GNDVI	y = 0.394 x + 1.027	0.885	0.166	9.13	0.192
成熟期 Maturity	MSAVI	y = 0.431 x + 0.980	0.950	0.138	8.73	0.203
-	RTVI	y = 0.023 x + 0.926	0.919	0.145	9.24	0.214
	MTVI II	y = 0.455 x + 0.954	0.976	0.132	8.65	0.187
	RVI	y = 0.745 x + 0.716	0.948	0.141	8.79	0.193
	GNDVI	y = 0.502 x + 0.913	0.902	0.140	9.11	0.211

表 5 不同生育时期生物量监测模型拟合及验证

Table 5 Fitting and performance of the monitoring models of biomass of winter wheat at different growth stages

注(Note): MSAVI—修正土壤调节植被指数 Modified soil adjusted vegetation index; RTVI—红边三角植被指数 Red edge triangular vegetation index; MTVI II—修正三角植被指数 II Modified triangular vegetation index II; RVI—比值植被指数 Ratio vegetation index; GNDVI—归一化绿波段差值植被指数 Green normalized difference vegetation index.

被指数均与生物量具有较好的线性关系,同时具有 较高的拟合精度 (*R*² = 0.885~0.987)和较小的估计标 准误差 (SE = 0.132~0.185)。在不同生育时期均具有 基于最佳植被指数的最佳拟合模型。这一结果较拔 节期至成熟期生物量统一监测模型预测精度 (*R*² = 0.569~0.642)和估计标准误差 (SE = 0.197~0.235)有 所改善。在拔节期基于 GNDVI 建立的监测模型 *R*² 和 SE 分别为 0.987 和 0.157;在孕穗期基于 RVI 建 立的监测模型 *R*² 和 SE 分别为 0.982 和 0.153;在抽 穗期基于 MSAVI 建立的监测模型 *R*² 和 SE 分别为 0.981 和 0.163;在灌浆期基于 RTVI 建立的监测模型 *R*²和 SE 分别为 0.985 和 0.133;在成熟期基于 MTVI II 建立的监测模型 *R*²和 SE 分别为 0.976 和 0.132。

基于不同年份不同品种的实测独立数据对不同 生育时期生物量分段监测模型进行验证,通过分析 实测值与模型预测值间 RMSE 和 RE 对分段模型进 行综合评价,筛选不同生育时期最佳植被指数及最 佳拟合模型。由表 5 验证模型 (n = 80) 可知,基于不 同植被指数建立的监测模型预测值与独立样本实测 值具有较小的相对误差 (RE 为 7.12%~9.83%) 和均 方根误差 (RMSE 为 0.111~0.214 kg/m²)。这一验证 结果较拔节期至成熟期生物量统一监测模型验证效 果的相对误差 (RE 为 17.83%~24.07%) 和均方根误 差 (RMSE 为 0.213~0.637 kg/m²) 均有一定程度的提 高(表 3)。拔节期基于 GNDVI 对生物量监测,模型 预测值与实测值间 RE 和 RMSE 分别为 8.47% 和 0.141 kg/m²; 孕穗期基于 RVI 对生物量监测, 模型 预测值与实测值间 RE 和 RMSE 分别为 7.12% 和 0.113 kg/m²; 抽穗期基于 MSAVI 对生物量监测, 模 型预测值与实测值间 RE 和 RMSE 分别为 7.56% 和 0.137 kg/m²; 灌浆期基于 RTVI 对生物量监测, 模型 预测值与实测值间 RE 和 RMSE 分别为 8.21% 和 0.176 kg/m²; 成熟期基于 MTVI Ⅱ 对生物量监测, 模 型预测值与实测值间 RE 和 RMSE 分别为 8.65% 和 0.187 kg/m^2 $_{\odot}$

3 讨论

3.1 不同氮磷水平对生物量及冠层光谱反射率的 影响

本研究通过连续5年定位研究不同氮磷水平下 不同抗旱类型冬小麦生物量及冠层光谱反射率,于 不同生育时期随机选取大田样本,通过分析不同氮 磷水平对冠层光谱反射率及生物量的影响,确立了 不同生育期冬小麦生物量与冠层光谱反射率的定量 关系,明确不同生育时期生物量与冠层光谱反射率 在可见光波段呈现显著负相关,近红外波段呈显著 正相关,短波红外波段呈显著负相关,拔节期冬小 麦生物量与冠层光谱反射率间相关性较其他生育时 期差,不同生育时期冬小麦生物量与 670 nm 及 930 nm 附近光谱反射率具有较好的相关性。所以,可以 利用可见光及近红外波段冠层光谱反射率反映冬小 麦在不同生育时期的生物量变化。

3.2 拔节期至成熟期生物量统一监测模型

本研究结合前人对不同作物冠层光谱反射率及 生物量的研究,基于冬小麦生物量对冠层光谱反射 率的敏感波段,选择并优化不同类型植被指数,在 连续多年大田实测数据的基础上,分析从冬小麦拔 节期至成熟期 MSAVI、RTVI、MTVI II、RVI、GNDVI 等植被指数与生物量的相关性,发现不同类型植被 指数均与生物量具有极显著相关性 (P < 0.01), 目达 中度相关水平,说明可以利用不同类型植被指数构 建从拔节期至成熟期冬小麦生物量的统一监测模 型,这一结果与前人研究结果一致[24,32]。但是由于冬 小麦生物量在不同氮磷水平下、不同生育时期变化 幅度较大,大田冠层光谱反射率容易受土壤背景状 况及作物残茬影响, 使不同植被指数在建立连续生 育时期生物量统一监测模型时,样本数量过大,建 模数据饱和,模型预测精度不高(R²=0.569~0.642), 实测值与预测值间相对误差较大 (RE = 17.83%~ 24.07%)。鉴于此,本文将生育时期按时间序列分 段,使建模样本分布更加合理,针对不同生育时期 生物量状况,选择最佳植被指数,提高光谱反射率 对生物量的敏感性,建立不同生育时期生物量分段 监测模型,以提高监测模型的预测精度及验证精度。

3.3 不同生育时期生物量分段监测模型

在不同生育时期,MSAVI、RTVI、MTVIII、 RVI、GNDVI等植被指数与生物量达极显著相关性 (P < 0.01),在不同生育时期均具有较高的相关系数 (r = 0.923~0.979)。不同生育时期生物量分段监测模 型具有较高的预测精度(R² = 0.885~0.987)和较小的 估计标准误差(SE为 0.132~0.185)。通过不同年份 独立数据对分段监测模型进行验证,大田实测值与 模型预测值间具有较小的相对误差(RE为 7.12%~ 9.83%)和均方根误差(RMSE为 0.111~0.214 kg/m²)。在拔节期、孕穗期、抽穗期、灌浆期和成熟 期分别基于 GNDVI、RVI、MSAVI、RTVI和MTVII 等植被指数建立的监测模型具有较高的预测精度, 并且具有较好的验证效果。不同生育时期生物量分 段监测模型的预测精度和验证效果均较拔节期至成 熟期统一监测模型有所改善。本文分段监测模型的 建立与验证,均包括了不同生长季的不同类型冬小 麦品种,所以该模型具有较好的年度间重演性和品 种间的适用性。本文从时间尺度上将冬小麦按拔节 期至成熟期划分,在不同生育期取样,使样本分布 更加合理,同时可以避免建模数据的饱和性,对改 善模型监测精度不失为一种较好的方法。

植被指数将不同波长范围的光谱反射率通过不 同方式的运算组合,增强植被冠层的特征或细节。 根据冬小麦不同生育时期的长势状况,选择最佳植 被指数,建立生物量分段模型,充分利用不同生育 时期植被指数特性。在拔节期,作物群体覆盖度较 小,生物量相对较低,冠层光谱反射率易受土壤背 景影响,而绿波段归一化植被指数 (GNDVI) 是对归 一化植被指数 (NDVI) 的优化^[33],能有效降低冠层背 景因素对冠层光谱反射率的影响,提高光谱反射率 与生物量的相关性,故而能较好地监测该阶段冬小 麦生物量。在孕穗期,生物量逐渐增加,但光谱反 射率在一定程度上仍受来自土壤背景的影响,比值 植被指数 (RVI) 能减少植被指数在植被覆盖度较低 条件下光谱反射率受土壤背景的影响[34]。随着生育时 期的延长,冬小麦生物量逐渐增加。在抽穗期,冠 层郁闭,修正土壤调节植被指数 (MSAVI) 在降低土 壤调整植被指数 (SAVI) 中土壤背景对冠层光谱反射 率影响的同时,将近红外波段与红光波段结合,所 以能更好地监测中度生物量水平下冬小麦群体[28]。在 灌浆期,冬小麦植株各部分营养逐渐转向籽粒,该 阶段生物量达一生中最大值,而红边三角植被指数 (RTVI) 在比值植被指数的基础上将其比例化, 使其 对作物群体冠层结构不敏感,同时保持对较高的生 物量有较高的敏感性,所以 RTVI 能较好地监测该阶 段的生物量[24]。在成熟期,冬小麦群体植株变黄,修 正三角植被指数 Ⅱ (MTVI Ⅱ) 可充分降低光谱反射 率对叶绿素变化的敏感性[29],且对叶面积指数也有较 高的敏感性, 而叶面积指数与生物量又具有较好的 相关性,所以 MTVIⅡ 能较好地监测该阶段生物 量。

3.4 生物量高光谱遥感监测模型展望

高光谱数据波段连续性强,信息量大,不同植 被指数的产生及应用各具特点,如何筛选更为合理 有效的植被指数,建立冬小麦生物量更加精确的监 测模型,仍需不断探索研究。由于本试验长期定位 于黄土高原半干旱气候区,供试小麦品种也是该区 域内较为广泛应用的抗旱型品种,受试验条件局 限,该模型在其他区域不同类型小麦品种、耕作措 施、生态环境等条件下的预测精度,需要更为广泛 的检验和完善。实现不同耕作措施、品种类型、生 态环境等条件下,模型监测精度和适应范围的结 合,促进冬小麦大田生产实时监测和动态调控。

4 结论

1)随着氮磷供应量的增加,冬小麦冠层光谱反 射率在可见光波段显著降低 2.0%~5.0% (P < 0.05), 在近红外及短波红外波段均随氮磷供应量的增加显 著增加 3.0%~21.0% (P < 0.05),生物量与冠层光谱 反射率在可见光波段呈负相关,在近红外波段呈正 相关,在短红外波段呈负相关,生物量的敏感波段 主要位于 670 nm 和 930 nm 附近。

2) 在拔节期、孕穗期、抽穗期、灌浆期、成熟 期,冬小麦生物量分别与 GNDVI、RVI、MSAVI、 RTVI、MTVI II 呈较高的极显著相关,相关系数 (r) 分别为 0.959、0.964、0.977、0.971、0.979;基于 GNDVI、RVI、MSAVI、RTVI、MTVI II 分别建立 拔节期、孕穗期、抽穗期、灌浆期、成熟期冬小麦 生物量监测模型,决定系数 (R²)分别为 0.987、0.982、 0.981、0.985、0.976;估计标准误差 (SE)分别为 0.157、0.153、0.163、0.133、0.132;模型预测值与 大田实测值间相对误差 (RE)分别为 8.47%、7.12%、 7.56%、8.21%、8.65%;均方根误差 (RMSE)分别为 0.141、0.113、0.137、0.176、0.187。分段模型不仅 具有较好的年度间重演性和品种间适用性,同时模 型的预测精度和验证效果也较统一监测模型有所改 善。

参 考 文 献:

- [1] 柏军华,李少昆,王克如,等.基于近地高光谱棉花生物量遥感估算 模型[J]. 作物学报, 2007, 33(2): 311–316.
 Bai J H, Li S K, Wang K R, *et al.* Estimation models of cotton aboveground fresh biomass based on field hyperspectral remote sensing[J]. Acta Agronomica Sinica, 2007, 33(2): 311–316.
- [2] 李卫国, 赵春江, 王纪华, 等. 遥感和生长模型相结合的小麦长势监测研究现状与展望[J]. 国土资源遥感, 2007, (2): 6–9.
 Li W G, Zhao C J, Wang J H, *et al.* Research situation and prospects of wheat condition monitoring based on growth model and remote sensing [J]. Remote Sensing for Land & Resources, 2007, (2): 6–9.
- [3] 冯伟, 朱艳, 姚霞, 等. 小麦叶片色素含量的高光谱监测[J]. 应用生

态学报, 2008, 19 (5): 992-999.

Feng W, Zhu Y, Yao X, *et al.* Monitoring of wheat leaf pigment concentration with hyperspectral remote sensing [J]. Chinese Journal of Applied Ecology, 2008, 19 (5): 992–999.

[4] 童庆禧, 郑兰芬, 王晋年, 等. 湿地植被成像光谱遥感研究[J]. 遥感
 学报, 1997, 1(1): 50–57.
 Tong Q X, Zheng L F, Wang J N, *et al.* Study on imaging

spectrometer remote sensing information for wetland vegetation[J]. Journal of Remote Sensing, 1997, 1(1): 50–57.

- [5] Wessman A A, Aber J D, Peterson D L, et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems [J]. Nature, 1988, 335: 154–156.
- [6] Ian B S, Elizabeth P, Johanne B B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance [J]. Remote Sensing of Environment, 2002, 80: 213–224.
- [7] Casanova D, Epema G F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI [J]. Field Crops Research, 1998, 55: 83–92.
- [8] Lukina E, Stone M, Raun W. Estimating vegetation coverage in wheat using digital images [J]. Journal of Plant Nutrition, 1999, 22(2): 341–350.
- [9] Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
 [J]. Remote Sensing of Environment, 2000, 71(2): 158–182.
- [10] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction [J]. Remote Sensing of Environment, 2002, 80(1): 76–87.
- [11] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote Sensing of Environment, 2003, 86(4): 542–553.
- [12] Mutanga O, Prins H H T, Skidmore A K, et al. Explaining grassnutrient patterns in a savanna rangeland of southern Africa[J]. Journal of Biogeography, 2004, 31(5): 819–829.
- [13] Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. Europe Journal of Agronomic, 2006, 24(4): 349–356.
- [14] Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing [J]. Journal of Plant Physiology, 1996, 148(3-4): 494–500.
- [15] Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture [J]. Remote Sensing of Environment, 2002, 81(2): 416–426.
- [16] Penuelas J, Filella I, Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance [J]. New Phytologist, 1995, 131(3): 291–296.
- [17] Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements [J]. Remote Sensing of Environment, 1991, 36(1):45–53.
- [18] 王秀珍, 黄敬峰, 李云梅, 等.水稻地上鲜生物量的高光谱遥感估算 模型研究[J]. 作物学报, 2003, 29(6): 815-821.
 Wang X Z, Huang J F, Li Y M, *et al.* Study on hyperspectral remote

sensing estimation models for the ground fresh biomass of rice [J]. Acta Agronomica Sinca, 2003, 29(6): 815–821.

[19] 谭昌伟, 王纪华, 朱新开, 等. 基于 Landsat TM 影像的冬小麦拔节 期主要长势参数遥感监测[J]. 中国农业科学, 2011, 44(7): 1358–1366.

Tan C W, Wang J H, Zhu X K, *et al.* Monitoring main growth status parameters at jointing stage in winter wheat based on Landsat TM images[J]. Scientia Agricultura Sinica, 2011, 44(7): 1358–1366.

[20] 唐延林, 王秀珍, 王福民, 等. 农作物 LAI 和生物量的高光谱法测 定[J]. 西北农林科技大学学报(自然科学版), 2004, 32(11): 100-104.

Tang Y L, Wang X Z, Wang F M, *et al.* Study on the determination of LAI and biomass of crop by hyperspectral [J]. Journal of Northwest A&F University (Natural Science Edition), 2004, 32(11): 100–104.

- [21] 宋开山,张柏,李方,等.高光谱反射率与大豆叶面积及地上鲜生物 量的相关分析[J]. 农业工程学报, 2005, 21(1): 36-40.
 Song K S, Zhang B, Li F, *et al.* Correlative analyses of hyperspectral reflectance with soybean LAI and aboveground biomass [J]. Transactions of the CSAE, 2005, 21(1): 36-40.
- [22] 王大成, 王纪华, 靳宁, 等. 用神经网络和高光谱植被指数估算小麦 生物量[J]. 农业工程学报, 2008, 24(增刊 2): 196-201.
 Wang D C, Wang J H, Jin N, *et al.* ANN-based wheat biomass estimation using canopy hyperspectral vegetation indices [J]. Transactions of the CSAE, 2008, 24(Supp.2): 196-201.
- [23] 冯伟,朱艳,姚霞,等. 基于高光谱遥感的小麦叶干重和叶面积指数 监测[J]. 植物生态学报, 2009, 33 (1): 34–44.
 Feng W, Zhu Y, Yao X, *et al.* Monitoring leaf dry weight and leaf area index in wheat with hyperspectral remote sensing[J]. Chinese Journal of Plant Ecology, 2009, 33 (1): 34–44.
- [24] 陈鹏飞, Nicolas T, 王纪华, 等. 估测作物冠层生物量的新植被指数的研究[J].光谱学与光谱分析, 2010, 30(2): 512–517.
 Cheng P F, Nicolas T, Wang J H, *et al.* New index for crop canopy fresh biomass estimation [J]. Spectroscopy and Spectral Analysis, 2010, 30(2): 512–517.
- [25] 付元元, 王纪华, 杨贵军, 等. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算[J]. 光谱学与光谱分析, 2013, 33(5): 1315–1319.

Fu Y Y, Wang J H, Yang G J, *et al.* Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements [J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1315–1319.

- [26] 刘冰峰, 李军, 贺佳, 等. 基于高光谱植被指数的夏玉米地上干物质 量估算模型研究[J]. 农业机械学报, 2016, 47(3): 254–262. Liu B F, Li J, He J, *et al.* Estimation models of above-ground dry matter accumulation of summer maize based on vegetation indexes of hyperspectral remote sensing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 254–262.
- [27] 王圆圆,李贵才,张立军,等.利用偏最小二乘回归从冬小麦冠层光 谱提取叶片含水量[J].光谱学与光谱分析,2010,30(4):1070-1074. Wang Y Y, Li G C, Zhang L J, *et al.* Retrieval of leaf water content of winter wheat from canopy hyperspectral data using partial least square regression [J]. Spectroscopy and Spectral Analysis, 2010,

30(4): 1070-1074.

- [28] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS [A]. Proceedings of 3rd Earth Resources Technology Satellite-1 Symposium, Greenbelt, NASA SP-351 [C]. Washington, DC, USA, 1974, 1: 309-317.
- [29] Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture [J]. Remote Sensing of Environment, 2004, 90 (3): 337–352.
- [30] Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie [J]. Remote Sensing of Enriroment, VIII, 1972, 45: 7-12.
- [31] Gitelson A A, Kaufman Y, Merzlyak M N. Use of a green channel in

remote sensing of global vegetation from EOS-MODIS [J]. Remote Sensing of Environment, 1996, 58(3): 289–298.

- [32] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index [J]. Remote Sensing of Environment, 1994, 48(2): 119–126.
- [33] Wang F, Huang J, Tang Y, *et al.* New vegetation index and its application in estimating leaf area index of rice [J]. Rice Science, 2007, 14(3): 195–203.
- [34] Haboudane D, Tremblay N, Miller J R, et al. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 423–437.