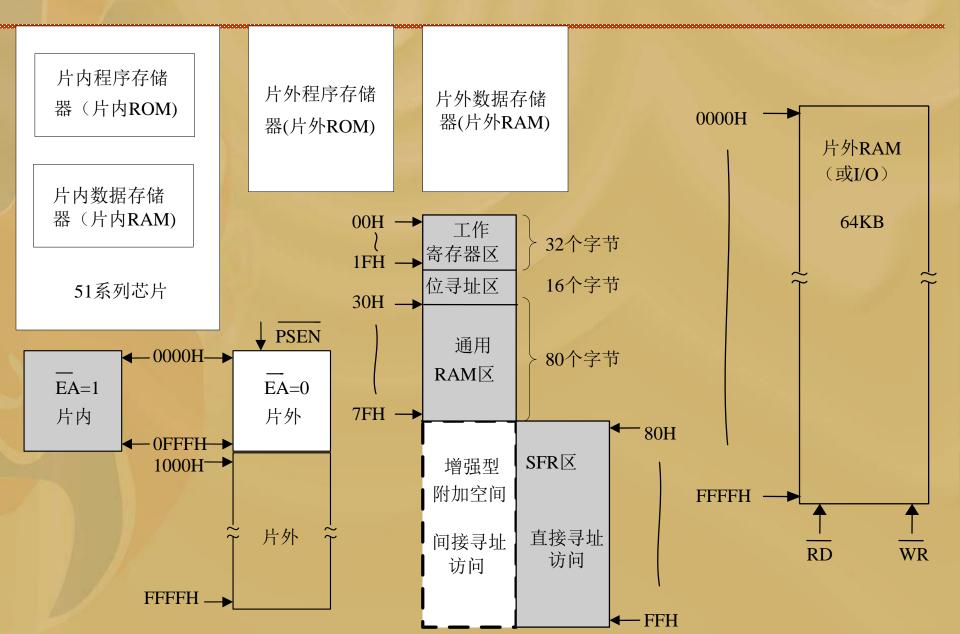
单片机的存储器可以分成两大类:

RAM, CPU在运行时能随时进行数据的写入和读出,但在关闭电源时,其所存储的信息将丢失。它用来存放暂时性的输入输出数据、运算的中间结果或用作堆栈。

ROM是一种写入信息后不易改写的存储器。 断电后,ROM中的信息保留不变。用来存放 固定的程序或数据,如系统监控程序、常数 表格等。


51系列单片机有5个独立的存储空间

- ◆ 64K字节程序存储器空间(0-0FFFFH);
- ◆ 256字节内部RAM空间(0-0FFH);
- ◆ 128字节内部特殊功能寄存器空间(80H-OFFH);
- ◆ 位寻址空间(0-0FFH);
- ◆ 64K字节外部数据存储器空间(0-0FFFFH);

物理位置,51系列单片机的存储器有4个存储器空间,即片内数据存储器(简称片内RAM)、片内程序存储器(片内ROM)、片外数据存储器(片外RAM)和片外程序存储器(片外ROM)。

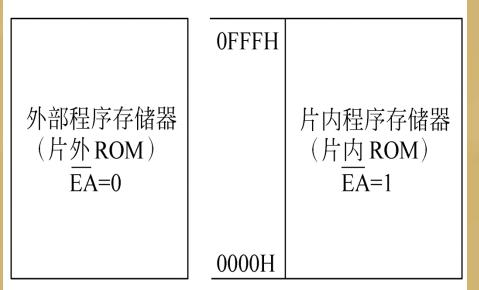
使用角度,51系列单片机的存储器空间又可分为3个部分。

- (1) 片内外统一编址的64KB程序存储器空间,地址范围0000H~0FFFFH。
- (2)64KB的片外数据存储器空间,地址范围0000H~0FFFFH。
- (3) 51单片机片内数据存储器RAM 128B, 地址范围为00H~7FH; 增强型89C52的片内数据存储器RAM 256B, 地址范围为00H~0FFH。

2.2.1 程序存储器

最大存储空间:64KB

内部和外部


相关引脚:EA、PSEN

程序计数器:PC

89C52片内有8KB的Flash ROM。

当 EA =1时:程序计数器PC在 0000H~0FFFH范围内(即前4KB 单元),则执行片内Flash ROM 中的程序;PC的值超过0FFFH时,则会自动转去执行片外ROM中 1000H~0FFFH范围的程序。当 EA =0时:只能寻址片外程序存储器,地址从0000H开始,到0FFFFH。

程序有7个特殊入口地址。	0	复位入口
复位和中断入口	3	中断入口(INTO)
	0BH	中断入口(T0)
	13H	中断入口(INT1)
	1BH	中断入口 (T1)
	23H	中断入口 (串行口)
	2BH	中断入口 (T2)

2.2.2 内部RAM数据存储器

RAM数据存储器分片内RAM和片外RAM两部分。片内、外数 据存储器是两个独立的地址空间,分别单独编址。片内数据存 储器除RAM块外,还有特殊功能寄存器(SFR)块。对于51子系 列,前者有128个字节,其编址为00H~7FH:后者有128个字 节, 其编址为80H~FFH: 二者连续而不重叠。对于52子系列, 前者有256个字节,其编址为00H~FFH:后者有128个字节, 其编址为80H~FFH。后者与前者高128个字节的编址是重叠的。 由于访问它们所用的指令不同(前者只能寄存器间接寻址,后 者只能直接寻址),并不会引起混乱。对于低128个字节的片 内RAM块,既可间接寻址,又可直接寻址。片外数据存储器一 般是16位编址。

内部RAM从功能和用途来划分为:工作寄存器、位寻址区、 堆栈或数据缓冲区。

SFR区 直接地 址访问	增强型单片 机片内 RAM 区的高128B 间接寻 址访问	128B H08	外部数据存储器	FFFFH A
用户RAM区 30H-7FH 位寻址区 20H-2FH 工作寄存器区 00H-1FH			(片外RAM)	00000 ¥

一、工作寄存器区

00H~1FH单元为工作寄存器区。也称通用寄存器,用于临时寄存8位信息。分成4组,每组都有8个寄存器,用R0~R7来表示。CPU当前使用的工作寄存器区由程序状态字PSW的第四和第五位指示,CPU通过修改PSW中的RS1、RS0两位的状态,就能任选一个工作寄存器区。程序中每次只用1组,其它各组不工作。使用哪一组寄存器工作由程序状态字PSW中的PSW.3(RS0)和PSW.4(RS1)两位来选择。通过软件设置RS0和RS1两位的状态,就可任意选一组工作寄存器工作。单片机具有快速现场保护功能,有利提高程序效率和中断响应速度。

位序	PSW. 7	PSW. 6	PSW. 5	PSW. 4	PSW. 3	PSW. 2	PSW. 1	PSW.0
位标志	CY	AC	F0	RS ₁	RS₀	OV	F1	P

RS1	RS0	寄存器组	片内RAM地址	通用寄存器名称
0	0	0组	00H~07H	R0∼R7
0	1	1组	08H~0FH	R0∼R7
1	0	2组	10H~17H	R0∼R7
1	1	3组	18H~1FH	R0∼R7

	组号	RS1 RS0	R7	R6	R5	R4	R3	R2	R1	R0
	0	0 0	07H	06H	05H	04H	03H	02H	01H	00H
	1	0 1	0FH	0ЕН	0DH	0СН	ОВН	0AH	09H	08H
1	2	1 0	17H	16H	15H	14H	13H	12H	11H	10H
1	3	1 1	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H

二、位寻址区

字节地址为20H~2FH单元。

16个单元(共计16×8=128位)的每一位都赋予了一个位地址, 位地址范围为00H~7FH。

既可作RAM,进行字节操作,也可位操作。

位寻址区的每一位都可当作软件触发器,由程序直接进行位处理。

通常可以把各种程序状态标志、位控制变量存于位寻址区内。

小结: 16个单元。可以进行字节操作和位操作。字节(单元)地

址: 20H~2FH; 位地址: 00H~7FH。

今世界中に	/		-	位均	也址			
字节地址	D7	D6	D5	D4	D3	D2	D1	D0
20H	07H	06H	05H	04H	03H	02H	01H	00H
21H	0FH	0EH	0DH	0CH	0BH	0AH	09H	08H
22H	17H	16H	15H	14H	13H	12H	11H	10H
23H	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H
24H	27H	26H	25H	24H	23H	22H	21H	20H
25H	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H
26H	37H	36H	35H	34H	33H	32H	31H	30H
27H	3FH	3EH	3DH	3CH	3BH	3AH	39H	38H
28H	47H	46H	45H	44H	43H	42H	41H	40H
29H	4FH	4EH	4DH	4CH	4BH	4AH	49H	48H
2AH	57H	56H	55H	54H	53H	52H	51H	50H
2BH	5FH	5EH	5DH	5CH	5BH	5AH	59H	58H
2CH	67H	66H	65H	64H	63H	62H	61H	60H
2DH	6FH	6EH	6DH	6CH	6BH	6AH	69H	68H
2EH	77H	76H	75H	74H	73H	72H	71H	70H
2FH	7FH	7EH	7DH	7CH	7BH	7AH	79H	78H

三、堆栈和数据缓冲器

位寻址区之后的30H至7FH共80个字节为通用RAM区。

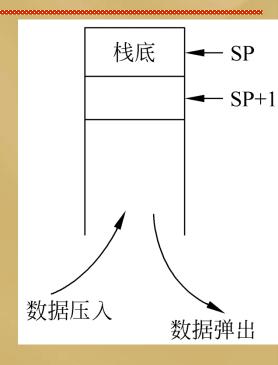
可以作为数据缓冲器使用。操作指令非常丰富,数据处理方便灵活。

在实际应用中,常需在RAM区设置堆栈。

堆栈是一个连续的数据存储区域,其存取原则为"后进先出" ,或"先进后出"。

堆栈的操作有两种: 进栈和出栈。

堆栈有两种形式,一是向上生成,二是向下生成。 51系列单片机的堆栈是向上生成型(向地址增大的方向生成),进栈操作过程是SP先加1,然后数据压入;出栈过程是SP指向的数据从中弹出,然后SP减1。


堆栈:后进先出的RAM缓冲器,用于保护CPU的现场。堆栈是一种数据结构。数据写入堆栈称为入栈(PUSH)。数据从堆栈中读出称之出栈(POP)。数据操作规则:"后进先出"LIFO。即先入栈的数据由于存放在栈的底部,因此后出栈;而后入栈的数据存放在栈的顶部,因此先出栈。

1.堆栈的功用

堆栈主要是为子程序调用和中断操作而设立的。其具体功能有两个:保护断点和保护现场。

2. 堆栈的开辟

堆栈只能开辟在芯片的内部数据存储器中,即所谓的内堆栈形式。

3. 堆栈指示器

堆栈指示器SP(Stack Pointer)的内容是堆栈栈顶的存储单元地址。SP 是一个8位寄存器。

说明:

系统复位后,SP的内容为07H,但由于堆栈最好在内部RAM的30H~7FH单元中开辟,所以在程序设计时应注意把SP值初始化为30H以后。

数据缓冲器:内部RAM中除了作为工作寄存器、位标志和堆栈区以外的单元,用于存放输入的数据或运算的结果。

由于工作寄存器区、位寻址区、数据缓冲区统一编址,使用同样的指令访问,这三个区的单元既有自己独特的功能,又可统一调度使用。因此,前两个区未使用的单元也可作为用户RAM单元使用,使容量较小的片内RAM得以充分利用。

52子系列片内RAM有256个单元,前两个区的单元数与地址都和51子系列的一致,用户RAM区却为30H~FFH,共有208个单元。

2.2.3 特殊功能寄存器SFR

- 片内数据存储器的高128字节单元供专用寄存器使用,它们分布在单元地址为80H~0FFH的空间中。
- 特殊功能寄存器(SFR,即Special Function Registers),又称为专用寄存器,专用于控制、管理片内算术逻辑部件、并行I/O口、串行I/O口、定时器/计数器、中断系统等功能模块的工作。用户在编程时可以置数设定,却不能自由移作它用。
- 51子系列单片机中,各专用寄存器(PC例外)与片内RAM统一编址,且作为直接寻址字节,可直接寻址。除PC外,51子系列有18个专用寄存器,其中3个为双字节寄存器,共占用21个字节。
- 增强型单片机89C52(52子系列)的SFR有27个字节单元,所增加的6个单元均与定时/计数器2相关。其中有12个专用寄存器可以位寻址,它们字节地址的低半字节都为0H或8H,即可位寻址的特殊功能寄存器字节地址具有能被8整除的特征。

共27个SFR

带*的特殊功能寄存器可以位寻址。

特殊功能寄存器	字节地址	特殊功能寄存器	字节地址	
*P0	80H	*P1	90H	
SP	81H	*SCON	98H	
DPL	82H	SBUF	99H	
DPH	83H	*P2	0A0H	
PCON	87H	*IE	0A8H	
*TCON	88H	*P3	0В0Н	
TMOD	89H	*IP	0B8H	
TL0	8AH	*PSW	0D0H	
TL1	8BH	*ACC	0E0H	
TH0	8CH	*B	0F0H	
TL1	8DH	RCAP2L	0САН	
TL2	TL2 0CCH		0СВН	
TH2	TH2 0CDH		0C8H	
T2MOD	0С9Н			

功能已经作了特殊规定,通常用来存储当前要执行的指令的存储地址、操作数和指令执行后的状态等信息。因此也称为特殊功能寄存器,简称为SFR寄存器。访问SFR只能使用直接地址方式。

各特殊功能寄存器分类简介。

- 1.与运算器相关的寄存器(3个)
- (1) 累加器 ACC (Accumulator 8位)

用于存放操作数或运算中间结果的8位专用寄存器,如算术运算、逻辑运算、数据传送、移位操作等。

物理地址为0E0H,也可使用ACC代表物理地址。对ACC可进行位寻址,通常用ACC.n(n=0~7)表示。

(2) 寄存器B (8位)

与累加器A配合执行乘、除运算,也可用作通用寄存器。

(3) 程序状态字PSW (8位)

PSW是可位寻址的8位寄存器,主要用于存储当前指令执行后的程序状态,这些状态可作为执行下一条指令的条件。其各位含义为:

PSW.7	PSW.6	PSW.5	PSW.4	PSW.3	PSW.2	PSW.1	PSW.0
CY	AC	F0	RS1	RS0	ov	F1	P

CY: 进位、借位标志。有进位、借位时 CY=1, 否则CY=0;

AC:辅助进位、借位标志;

F0、F1:用户标志位,由用户自己定义;

RS1、RS0: 当前工作寄存器组选择位;

OV: 溢出标志位。有溢出时OV=1, 否则OV=0;

P: 奇偶标志位。ACC中结果有奇数个1时P=1,否则P=0。

- 2.指针类寄存器(3个)
 - (1) 堆栈指针SP (Stack Pointer)。SP是8位专用寄存器,作为堆栈指针它始终指向堆栈的顶部。数据进入堆栈前SP加1,数据退出堆栈后SP减1,复位后SP为07H。
 - (2) 数据指针DPTR (Data Pointer)

DPTR是16位专用寄存器,用来存放读外部程序存储器或读/写外数据存储器的16位地址。间接寻址或变址寻址可访问片外的64KB范围的RAM或ROM数据。既可以按16位寄存器使用,也可以按两个8位寄存器DPH和DPL来使用。其中DPH是DPTR的高8位,DPL是DPTR的低8位。

- 3.与口相关的寄存器(7个)
 - (1) 并行I/O口PO、P1、P2、P3,均为8位;
 - (2) 串行口数据缓冲器SBUF;
 - (3) 串行口控制寄存器SCON;
 - (4) 串行通讯波特率倍增寄存器PCON(一些位还与电源控制相关,所以又称为电源控制寄存器)。
- 4.与中断相关的寄存器(2个)
 - (1) 中断允许控制寄存器IE;
 - (2) 中断优先级控制寄存器IP。

- 5.与定时器/计数器相关的寄存器(6个)
 - (1) 定时/计数器T0的两个8位计数初值寄存器TH0、TL0,它们可以构成16位的计数器,TH0存放高8位,TL0存放低8位;
 - (2) 定时/计数器T1的两个8位计数初值寄存器TH1、TL1,它们可以构成16位的计数器,TH1存放高8位,TL1存放低8位;
 - (3) 定时/计数器的工作方式寄存器TMOD;
 - (4) 定时/计数器的控制寄存器TCON。

- 6.程序计数器PC(Program Counter)
- PC不是特殊功能寄存器SFR,作用十分重要和特殊。
- PC是16位的二进制计数器,专门用于存储CPU要执行的下一条指令的第一字节在ROM中的存储地址,控制程序的执行顺序
- PC没有地址,是不可寻址的,用户无法对它进行读写,但可以通过转移、调用、返回等指令改变其值,以实现程序的转移。
- PC特点:它是16位的、按机器周期自动增1的计数器; 总指向下一条指令所在首地址(当前PC值);
- 一切分支/跳转/调用/中断/复位等操作的本质就是:改变 PC值。 专用寄存器只能使用直接寻址方式,书写时既可使用寄存器符号,也可使用寄存器单元地址。

2.2.4 位地址空间

内部RAM中的20H~2FH单元以及特殊功能寄存器中地 址为8的倍数的特殊功能寄存器可以位寻址,它们构 成了51系列单片机的位存储器。

位存储器既有一个字节地址,每一位又有一个位地址。

- 1.位寻址区:内部RAM中的20H~2FH单元。
- 2.可位寻址的特殊功能寄存器SFR: 12个带 * 号的专用寄存器可以位寻址,共有可寻址位12×8-3(未定义)=93位。

内部RAM中的20H-2FH单元

字节地址				位均	也址			
十 1 地址	D7	D6	D5	D4	D3	D2	D1	D0
20H	07H	06H	05H	04H	03H	02H	01H	00H
21H	0FH	0EH	0DH	0CH	0BH	0AH	09H	08H
22H	17H	16H	15H	14H	13H	12H	11H	10H
23H	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H
24H	27H	26H	25H	24H	23H	22H	21H	20H
25H	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H
26H	37H	36H	35H	34H	33H	32H	31H	30H
27H	3FH	3EH	3DH	3CH	3BH	3AH	39H	38H
28H	47H	46H	45H	44H	43H	42H	41H	40H
29H	4FH	4EH	4DH	4CH	4BH	4AH	49H	48H
2AH	57H	56H	55H	54H	53H	52H	51H	50H
2BH	5FH	5EH	5DH	5CH	5BH	5AH	59H	58H
2CH	67H	66H	65H	64H	63H	62H	61H	60H
2DH	6FH	6EH	6DH	6CH	6BH	6AH	69H	68H
2EH	77H	76H	75H	74H	73H	72H	71H	70H
2FH	7FH	7EH	7DH	7CH	7BH	7AH	79H	78H

可位寻址的特殊功能寄存器SFR

D7	D6	D5	D4	D3	D2	D1	D 0	特殊功能寄存器
87H	86H	85H	84H	83H	82H	81H	80H	P0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	TCON
8FH	8EH	8DH	8CH	8BH	8AH	89H	88H	TCON
97H	96H	95H	94H	93H	92H	91H	90H	P1
SM0	SM1	SM2	REN	TB8	RB8	TI	RI	SCON
9FH	9EH	9DH	9CH	9BH	9AH	99H	98H	SCON
A7H	A6H	A5H	A4H	АЗН	A2H	A1H	A0H	P2
EA		ET2	ES	ET1	EX1	ET0	EX0	IE
AFH		ADH	ACH	ABH	AAH	А9Н	A8H	112
В7Н	В6Н	В5Н	В4Н	ВЗН	В2Н	B1H	ВОН	Р3
	1	PT2	PS	PT1	PX1	PT0	PX0	IP
-	-	BDH	ВСН	ВВН	BAH	В9Н	В8Н	11
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	T2CON
CFH	CEH	CDH	ССН	СВН	САН	С9Н	С8Н	12001
CY	AC	F0	RS1	RS0	ov	F 1	P	PSW
D7H	D6H	D5H	D4H	D3H	D2H	D1H	D0H	1577
Е7Н	Е6Н	Е5Н	E4H	ЕЗН	E2H	E1H	ЕОН	ACC
F7H	F6H	F5H	F4H	F3H	F2H	F1H	F0H	В

2.2.5 外部RAM和I/O口

- 外部数据存储器一般由静态RAM构成,其容量大小由用户根据需要而定,最大可扩展到64 KB,地址是 0000H~0FFFFH。
- 可以扩展64KB的RAM和I/O端口,外部RAM和I/O端口是统一编址的,CPU对他们具有相同的操作。CPU通过MOVX指令访问外部数据存储器,用间接寻址方式,R0、R1和 DPTR都可作间接寄存器。
- 可扩展64K RAM和I/O口,即可寻址64K的外部数据存储器,外部扩展RAM和I/O口统一编址。具有4个8位准双向并行端口(P0~P3),共32根I/O口线。每一根I/O口线都能独立地用作输入或输出。这4个端口是单片机与外部设备进行信息(数据、地址、控制信号)交换的输入或输出通道。

1.P0口功能:

作为通用输入/输出口;地址线/数据线分时复用。在扩展系统中,低8位地址线与数据线分时使用P0口。P0口先输出片外存储器的低8位地址并锁存到地址锁存器中,然后再输出或输入数据。

2.P1口功能:

作为通用输入/输出口使用。

3.P2口功能:

- 1) 通用输入/输出口使用;
- 2)作为高8位地址总线口使用。

在扩展系统中,其作为扩展系统的高8位地址总线,与P0口低8位地址线一起组成16位地址总线。

3.P3口功能:

- 1) 作为通用输入/输出口使用;
- 2)涉及串行口、外部中断、定时器的工作(第二功能)。P3口的第二功能 见表2-2。

_			
	引脚	第二功能符号	第二功能描述
	P3.0 (10)	RxD	串行通信数据接收引脚
	P3.1 (11)	TxD	串行通信数据发送引脚
	P3.2 (12)	ĪNT0	外部中断0请求信号输入引脚,低电平有效
	P3.3 (13)	ĪNT1	外部中断1请求信号输入引脚,低电平有效
	P3.4 (14)	Т0	定时/计数器0外部计数脉冲输入引脚
Ī	P3.5 (15)	T1	定时/计数器1外部计数脉冲输入引脚
	P3.6 (16)	WR	外部数据存储器写选通信号,低电平有效
	P3.7 (17)	RD	外部数据存储器读选通信号,低电平有效