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Abstract. We propose some new baby-step giant-step algorithms for computing
“low-weight” discrete logarithms; that is, for computing discrete logarithms in
which the radix-b representation of the exponent is known to have only a small
number of nonzero digits. Prior to this work, such algorithms had been proposed
for the case where the exponent is known to have low Hamming weight (i.e.,
the radix-2 case). Our new algorithms (i) improve the best-known deterministic
complexity for the radix-2 case, and then (ii) generalize from radix-2 to arbitrary
radixes b > 1. We also discuss how our new algorithms can be used to attack
several recent Verifier-based Password Authenticated Key Exchange (VPAKE)
protocols from the cryptographic literature with the conclusion that the new algo-
rithms render those constructions completely insecure in practice.
Keywords: Discrete logarithms; baby-step giant-step; meet-in-the-middle; crypt-
analysis; verifier-based password authenticated key exchange (VPAKE)

1 Introduction
In this paper, we deal with the problem of computing discrete logarithms when
the radix-b representation of the exponent sought is known to have low weight
(i.e., only a small number of nonzero digits). We propose several new baby-step
giant-step algorithms for solving such discrete logarithms in time depending
mostly on the radix-b weight (and length) of the exponent.

Briefly, the discrete logarithm (DL) problem in a multiplicative group G
of order q is the following: Given as input a pair (g, h) ∈ G × G, output an
exponent x ∈ Zq such that h = gx , provided one exists. The exponent x is
called a discrete logarithm of h with respect to the base g and is denoted, using
an adaptation of the familiar notation for logarithms, by x ≡ logg h mod q. A
longstanding conjecture, commonly referred to as the DL assumption, posits that
the DL problem is “generically hard”; that is, that there exist infinite families
of groups in which no (non-uniform, probabilistic) polynomial-time (in lg q)
algorithm can solve uniform random instances of the DL problem with inverse
polynomial (again, in lg q) probability.

Our results do not refute (or even pose a serious challenge to) the DL
assumption. Indeed, although our algorithms are generic,1 they do not apply to
uniform random DL instances nor do they generally run in polynomial time.
Rather, we demonstrate that, for certain non-uniform instance distributions, one

1 In other words, our algorithms only require black-box oracle access to the group operation, its inverse, and
an equality test; they can, therefore, be run over any finite group.
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can solve the DL problem in time that depends mostly on a parameter strictly
smaller than lg q. Specifically, to solve a DL problem instance in which the
radix-b representation of the exponent has length m and weight t, our fastest
deterministic algorithm evaluates

(
t + o(1)

) (m/2
t/2

)
(b − 1)t/2 group operations and

stores 2
(
m/2
t/2

)
(b − 1)t/2 group elements in the worst case; for the same problem,

our randomized (Las Vegas) algorithm evaluates fewer than
√

16t
π

(
m/2
t/2

)
(b − 1)t/2+

O(1) group operations and stores
(
m/2
t/2

)
(b−1)t/2 group elements, on average. For

the special case of radix-2, our fastest deterministic algorithm improves on
the previous result (due to Stinson [30; §4.1]) by a factor c

√
t lg m for some

constant c, reducing the number of group operations used fromΘ
(
t3/2 lg m

(
m/2
t/2

))
to
(
t + o(1)

) (m/2
t/2

)
. While a far cry from challenging established cryptographic

best practices, we do observe that our new algorithms are not without practical
ramifications. Specifically, we demonstrate a practical attack against several
recent Verifier-based Password Authenticated Key Exchange (VPAKE) protocols
from the literature [12–15,35].

Organization. The remainder of this paper is organized as follows. In Sec-
tion 2, we recall mathematical preliminaries necessary to frame our main results.
In Section 3, we review and improve on several variants of an algorithm for
solving the “low-Hamming-weight DL problem” and then, in Section 4, we
present our new generalizations to arbitrary radixes b > 1. In Section 5, we
review existing work that addresses some related “low-weight” DL variants. In
Section 6, we showcase the cryptanalytic implications of the new algorithms
by explaining how they can be used to attack several Verifier-based Password
Authenticated Key Exchange (VPAKE) protocols from the literature.

2 Mathematical preliminaries
Throughout this paper, G denotes a fixed cyclic group with order q, which we
express using multiplicative notation, and g denotes a fixed generator of G. We
are interested in computing the DLs of elements h ∈ G to the base g. We assume
that the group order q is known, though our techniques work much the same
when q is not known.

Radix-b representations. Let b > 1 be a positive integer (the “radix”). For
every positive integer x, there exists a unique positive integer m and an m-tuple
(xm, . . . , x1) ∈ {0, 1, . . . , b − 1}m with xm , 0 such that

x =
∑m

i=1 xi · b
i−1, (1)

called the radix-b representation of x. Here the component xi is called the i th
radix-b digit, and m = ⌈logb x⌉ the radix-b length, of x. The number of nonzero
digits in the radix-b representation of x is called its radix-b weight (or simply its
weight when the radix is clear from context). When b = 2, the radix-b weight of
x is its Hamming weight and the radix-b length of x is its bit length.
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Decomposing radix-b representations. Let m and t be positive integers. We
write [m] as shorthand for the set {1, 2, . . . ,m} of positive integers less than or
equal to m and, given a finite set A, we define

(
A
t

)
as the set of all size-t subsets

of A. We are especially interested in
(
[m]
t

)
, a collection of

(
m
t

)
subsets equipped

with a natural bijective mapping to the set of all (at-most)-m-bit positive integers
with Hamming weight t. The mapping from

(
[m]
t

)
to the set of such integers is

given by the function valm, t :
(
[m]
t

)
→ N that maps each size-t subset Y ∈

(
[m]
t

)
to

the integer valm, t (Y ) B
∑

i∈Y 2i−1.
The above valm, t function naturally generalizes to a family of two-operand

functions parametrized by a radix b > 1. Specifically, for any integer b > 1, the
function valb,m, t : [b − 1]t ×

(
[m]
t

)
→ N maps each t-tuple X = (x t, . . . , x1) ∈

[b−1]t and size-t subset Y ∈
(
[m]
t

)
to the integer valb,m, t (X,Y ) B

∑t
i=1 xi ·b

Y [i]−1.
In the preceding notation, Y [i] denotes the i th smallest integer in the set Y . Note
that the function valb,m, t is injective: the (b − 1)t

(
m
t

)
possible inputs to valb,m, t

map to pairwise distinct positive integers, each having radix-b weight t and radix-
b length at most m. Also note that when b = 2, the all-ones tuple (1, 1, . . . , 1)
is the only element in [b − 1]t ; thus, val2,m, t is functionally equivalent to the
valm, t function introduced in the preceding paragraph. Going forward, we omit
the subscripts m, t from the preceding notations, noting that m and t can always
be inferred from context when needed.

Stinson [30] describes three algorithms to compute low-Hamming-weight
DLs. Lemmas 1 and 2 generalize Lemmas 1.1 and 1.2 from Stinson’s paper to
the above-generalized family of radix-b val functions. Proofs of these simple
lemmas are located in Appendix A.1 and Appendix A.2, respectively.

Lemma 1. Fix a radix b > 1, let m be a positive integer, and let t be an even
integer in [m]. If gvalb (X1,Y1) = h ·

(
gvalb (X2,Y2))−1 for X1, X2 ∈ [b − 1]t/2 and

Y1,Y2 ∈
(
[m]
t/2

)
, then logg h ≡

(
valb (X1,Y1) + valb (X2,Y2)

)
mod q.

Note that h ·
(
gvalb (X2,Y2))−1

= h ·
(
g−1)valb (X2,Y2). The algorithms we present

in the next two sections use the right-hand side of this expression instead of the
left-hand side, as doing so allows us to invert g once and for all, rather than
inverting gvalb (X2,Y2) once for each new choice of (X2,Y2).

Lemma 2. Fix a radix b > 1, let m be an arbitrary positive integer, and let t be
an even integer in [m]. If there is an x ≡ logg h mod q with radix-b weight t and
radix-b length at most m, then there exist two disjoint subsets Y1,Y2 ∈

(
[m]
t/2

)
and

corresponding X1, X2 ∈ [b − 1]t/2 such that gvalb (X1,Y1) = h ·
(
gvalb (X2,Y2))−1.

Lemmas 1 and 2 assume that t is even so that t/2 is an integer. We make
this simplifying assumption purely for notational and expositional convenience;
indeed, both lemmas still hold if, for example, we let (X1,Y1) ∈ [b−1] ⌊t/2⌋×

(
[m]
⌊t/2⌋

)
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and (X2,Y2) ∈ [b−1] ⌈t/2⌉ ×
(

[m]
⌈t/2⌉

)
. The algorithms that follow in Sections 3 and 4

make the same simplifying assumption (in fact, the algorithms in Section 3.3 also
assume that m is even); however, we stress that each algorithm is likewise trivial to
adapt for t and m with arbitrary parities (as discussed by Stinson [30; §5]).

3 Computing DLs with low Hamming weight

In this section, we describe and improve upon two variants of the celebrated
“baby-step giant-step” algorithm [29] for computing DLs. These algorithm vari-
ants have been specially adapted for cases in which the exponent is known to
have low Hamming weight. The most basic form of each algorithm is described
and analyzed in a paper by Stinson [30], who credits the first to Heiman [9]
and Odlyzko [25] and the second to Coppersmith (by way of unpublished corre-
spondence with Vanstone [4]).2 In both cases, our improvements yield modest-
yet-notable performance improvements—both concretely and asymptotically—
over the more basic forms of the algorithms; indeed, our improvements to the
second algorithm yield a worst-case computation complexity superior to that
of any known algorithm for the low-Hamming-weight DL problem. In Sec-
tion 4, we propose and analyze a simple transformation that generalizes each
low-Hamming-weight DL algorithm in this paper to a corresponding low-radix-
b-weight DL algorithm, where the radix b > 1 can be arbitrary.

Algorithm 3.1 LowHammingDL(m, t; g, h) // Attempts to compute x = logg h mod q
(assumes len2(x) <= m, wt2(x) = t, and t is even)

1: Initialize a hash table H
2: /* "Giant step": Populate lookup table */

3: for each
(
Y1 ∈

(
[m]
t/2

))
do // loop runs (m choose t/2) times

4: y1 ← gval(Y1 )

5: H.put(y1,Y1) // y1 = g
val(Y1) is key; Y1 is value

6: end for
7: /* "Baby step": Search for a collision */

8: for each
(
Y2 ∈

(
[m]
t/2

))
do // loop runs <= (m choose t/2) times

9: y2 ← h · (g−1)val(Y2 ) // cf. Lemma 2

10: if
(
H.containsKey(y2)

)
then

11: Y1 ← H.get(y2)
12: return

(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

13: end if
14: end for
15: return ⊥ // logg h = undefined, len2(logg h) > m,

or wt2(logg h) , t

2 In addition to the basic algorithms described herein, Stinson’s paper introduces a generalization of the
second algorithm based on a combinatorial structure he coins splitting systems [30; §4], which we describe
in Appendix C, as well as a randomized variant (also credited to Coppersmith) [30; §2.2], which we
describe in Appendix D.
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3.1 The basic algorithm
Algorithm 3.1 gives pseudocode for the most basic form of the algorithm, which
is due to Heiman and Odlyzko [9, 25].

Theorem 3. Algorithm 3.1 is correct: If there is an m-bit integer x with Hamming
weight t such that gx = h, then the algorithm returns a DL of h to the base g.

Proof (sketch). This follows directly from Lemmas 1 and 2. Specifically, Lem-
ma 1 ensures that any value returned on Line 12 of Algorithm 3.1 satisfies gx = h,
while Lemma 2 ensures that the baby-step loop (Lines 8–14) will indeed find
the requisite pair (Y1,Y2) if such a pair exists. ⊓⊔

Remark. When the order q is unknown, one can set m to be any upper bound on
⌈lg q⌉, and then omit the modular reduction on Line 12 of Algorithm 3.1. Indeed,
one may even set m > ⌈lg q⌉ when q is known if, for example, the canonical
representation of the desired DL has large Hamming weight but is known to be
congruent (modulo q) to an m-bit integer with low Hamming weight.
The next theorem follows easily by inspection of Algorithm 3.1. For complete-
ness, we include a sketch of its proof in Appendix A.3.

Theorem 4. The storage cost and (both average- and worst-case) computation
cost of Algorithm 3.1, counted respectively in group elements and group expo-
nentiations, each scale as Θ

(( m
t/2

))
.

Remark. Each exponentiation counted in Algorithm 3.1 is to a power with Ham-
ming weight t/2. By pre-computing gval( {i }) for i ∈ [m], one can evaluate these
exponentiations using just t/2 − 1 group operations a piece. The (both average-
and worst-case) computation complexity becomes Θ

(
t
(
m
t/2

))
group operations.

Going a step further, one can pre-compute gval( {i })−val( { j }) for each i , j, and then
iterate through

(
[m]
t/2

)
following a “minimal-change ordering” [19; §2.3.3] wherein

each successive pair of subsets differ by exactly two elements [31]. Then all but
the first iteration of the baby-step (respectively, giant-step) loop uses a single
group operation to “update” the y1 (respectively, y2) from the previous iteration.
The worst-case computation cost becomes 2

(
m
t/2

)
+ t − 3 group operations (plus

one inversion and m2 group operations for pre-computation).

3.2 Improved complexity via interleaving
Next, we propose and analyze an alternative way to implement the basic al-
gorithm (i.e., Algorithm 3.1), which interleaves the baby-step and giant-step
calculations in a manner reminiscent of Pollard’s interleaved variant of the clas-
sic baby-step giant-step algorithm [28; §3]. Although such interleaving is a
well-known technique for achieving constant-factor average-case speedups in
baby-step giant-step algorithms, it had not previously been applied in the context
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of low-Hamming-weight DLs. Our analysis reveals that interleaving can, in fact,
yield a surprisingly large (super-constant) speedup in this context.

The interleaved variant comprises a single loop and two lookup tables,
H1 and H2. The loop iterates simultaneously over the subsets Y1 ∈

(
[m]
t/2

)
and

Y2 ∈
(
[m]
t/2

)
in respectively increasing and decreasing order. (To keep the following

analysis simple, we assume the order is lexicographic; however, we note that
one can obtain a factor t speedup by utilizing some pre-computation and a
minimal-change ordering, exactly as we suggested in the above remarks following
the non-interleaved algorithm.) In each iteration, the algorithm computes both
y1 B gval(Y1) and y2 B h · (g−1)val(Y2), storing (y1,Y1) in H1 and (y2,Y2) in H2,
and also checking if y1 collides with a key in H2 or y2 with a key in H1. Upon
discovering a collision, it computes and outputs x ≡ logg h mod q using Lem-
ma 1 (cf. Line 12 of Algorithm 3.1) and then halts. A pseudocode description of
our interleaved algorithm is provided as Algorithm B.1 in Appendix B.

Despite its simplicity, this modification appears to be novel and has a surpris-
ingly large impact on the average-case complexity. Indeed, if we assume that the
interleaved loop iterates through

(
[m]
t/2

)
in increasing and decreasing lexicographic

order (for the giant-step and baby-step calculations, respectively), then the worst
possible costs arise when the t one bits in the binary representation of x occur
consecutively in either the t highest-order or the t lowest-order bit positions (i.e.,
when x = 1t0m−t or x = 0m−t1t ). In this case, the algorithm produces a collision
and halts after

(
m − t/2
t/2

)
iterations of the loop. For t ∈ Θ

(√
m
)
, this gives a worst-

case constant factor speedup compared to the non-interleaved algorithm;3 for
t ∈ ω

(√
m
)
, the worst-case speedup is asymptotic (alas, we are unable to derive

a precise characterization of the speedup in terms of m and t). The average-case
speedup can be much more dramatic, depending on the distribution of the tar-
geted x ≡ logg h mod q. For a uniform distribution (among the set of all m-bit
exponents with Hamming weight t) on x, we heuristically expect the one bits in x
to be distributed evenly throughout its binary representation; that is, we expect to
find the (t/2) th and (t/2+ 1) th one bits in x in or around bit positions t

2
m
t+1 <

m
2

and t+2
2

m
t+1 >

m
2 , respectively. Therefore, we expect the interleaved algorithm to

produce a collision and halt after at most around
(
m/2
t/2

)
loop iterations. (Contrast

this with the original average-case Θ
(( m

t/2

))
complexity of the non-interleaved

algorithm.) We summarize our above analysis in Theorem 5.

Theorem 5. The worst-case storage and computation costs of the interleaved
algorithm described above, counted respectively in group elements and group

3 More precisely, when t = 2c
√
m , we find that limm→∞

(
m − t/2
t/2

)
/
(
m
t/2

)
= e−c

2; that is, as m grows large, the
worst-case computation cost of the interleaved algorithm approaches a factor e−c2 that of the non-interleaved
algorithm; moreover, this limiting factor is a lower bound that underestimates the true worst-case speedup
for small values of m. As a case in point, m = 256 and t = 64 (so that c = 2) yields a speedup by a factor
97.2, which is about 78% better than the predicted speedup factor of e4.
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operations, each scale asΘ
((m − t/2

t/2

))
. If x is uniform among m-bit exponents with

Hamming weight t, then the average-case storage and computation complexities
scale as Θ

((m/2
t/2

))
.

3.3 The Coppersmith algorithms
Algorithm 3.1 and our interleaved variant, Algorithm B.1, are “direct” algorith-
mic instantiations of Lemmas 1 and 2 with a fixed radix b = 2. Such direct
instantiations perform poorly in the worst case because Lemma 2 guarantees
only existence—but not uniqueness—of the subsets Y1 and Y2 and, as a result,
the collections of subsets over which these direct instantiations ultimately iterate
are only guaranteed to be sufficient—but not necessary—to compute the desired
logarithm. Indeed, given Y ∈

(
[m]
t

)
such that logg h ≡ val(Y ) mod q, there exist(

t
t/2

)
distinct ways to partition Y into Y1 ∈

(
Y
t/2

)
and Y2 = Y \ Y1 to satisfy the

congruence logg h ≡
(
val(Y1) + val(Y2)

)
mod q arising in Lemma 2. Stirling’s

approximation implies that
(
t
t/2

)
approaches 2t/

√
πt/2 as t grows large so that

the number of “redundant” values these basic algorithms may end up comput-
ing (and storing) grows exponentially with t. We now describe a more efficient
variant of this algorithm, originally proposed by Coppersmith [4], that improves
on the complexity of the basic algorithms by taking special care to iterate over
significantly fewer redundant subsets. (Actually, Coppersmith proposed two re-
lated algorithms—one deterministic and the other randomized; however, due to
space constraints, we discuss only the deterministic algorithm in this section,
relegating our discussion of the randomized algorithm to Appendix D.)

Coppersmith’s deterministic algorithm. The first variant of Algorithm 3.1
proposed by Coppersmith is based on the following observation.

Observation 6 (Coppersmith and Seroussi [5]). Let t and m be even positive
integers with t ≤ m and, for each i = 1, . . . ,m/2+ 1, define Bi = {i, i + 1, . . . , i +
m/2 − 1} and B̄i = [m] \ Bi . For any Y ∈

(
[m]
t

)
, there exists some i ∈ [m/2] and

(disjoint) subsets Y1 ∈
(
Bi

t/2

)
and Y2 ∈

(
B̄i

t/2

)
such that Y = Y1 ∪ Y2.

A proof of Observation 6 is located in Appendix A.4. The following analog of
Lemma 2 is an immediate corollary to Observation 6.

Corollary 7. Let t and m be even positive integers with t ≤ m and, for each
i = 1, . . . ,m/2 + 1, define Bi = {i, i + 1, . . . , i + m/2 − 1} and B̄i = [m] \ Bi . If
there is an x ≡ logg h mod q with Hamming weight t and bit length at most m,
then there exists some i ∈ [m/2] and (disjoint) subsets Y1 ∈

(
Bi

t/2

)
and Y2 ∈

(
B̄i

t/2

)
such that gval(Y1) = h · g− val(Y2).

Using Corollary 7 to improve on the worst-case complexity of the basic
algorithm is straightforward. The giant-step and baby-step loops (i.e., Lines 3–6
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and 8–14) from Algorithm 3.1 are respectively modified to iterate over only the
subsets Y1 ∈

(
Bi

t/2

)
and Y2 ∈

(
B̄i

t/2

)
for each i = 1, . . .m/2 in turn. In particular,

the algorithm populates a lookup table H in the giant-step loop using only the
Y1 ∈

(
B1
t/2

)
, and then it searches for a collision within H in the baby-step loop using

only the Y2 ∈
(
B̄1
t/2

)
; if the baby-step loop for i = 1 generates no collisions, then

the algorithm clears the lookup table and repeats the process for i = 2, and so on
up to i = m/2. Observation 6 guarantees that the algorithm finds a collision and
halts at some point prior to completing the baby-step loop for i = m/2, provided a
DL with the specified Hamming weight and bit length exists. Pseudocode for the
above-described algorithm is included as Algorithm B.2 in Appendix B.

The next theorem follows easily from Corollary 7 and inspection of Algo-
rithm B.2 (or the preceding description thereof). For completeness, we include
a sketch of its proof in Appendix A.5.

Theorem 8. Algorithm B.2 is correct; moreover, its storage cost scales as
Θ
((m/2

t/2

))
group elements and its (worst-case) computation cost as O

(
m
(
m/2
t/2

))
group exponentiations.4

Remark. The average-case complexity of Algorithm B.2 requires a delicate anal-
ysis, owing to the fact that there may be several indices i for which |Y ∩ Bi | =

|Y ∩ B̄i | = t/2 and the algorithm will always halt upon encountering the first such
index. Interested readers can find a detailed analysis of the average-case com-
plexity in Stinson’s paper [30; §3]. Stinson’s paper also proposes a generalization
of Coppersmith’s deterministic algorithm utilizing a family of combinatorial set
systems called splitting systems [30; §2.1] (of which the Coppersmith–Seroussi
set system defined in Observation 6 and Corollary 7 is an example). A discus-
sion of splitting systems and Stinson’s improvements to the above algorithm is
located in Appendix C.

3.4 Improved complexity via Pascal’s Lemma
A methodical analysis of the Coppersmith–Seroussi set system suggests an opti-
mization to Coppersmith’s deterministic algorithm that yields an asymptotically
lower computation complexity than that indicated by Theorem 8. Indeed, the
resulting optimized algorithm has a worst-case computation complexity of just
Θ
(
t
(
m/2
t/2

))
group operation, which is asymptotically lower than that of any low-

Hamming-weight DL algorithm in the literature. Moreover, the hidden constant
in the optimized algorithm (i.e., 1+ o(1)) seems to be about as low as one could

4 Stinson states [30; §2.1] that the storage cost is
(
m
t/2

)
group elements; however, this is clearly not possible,

as the computation cost is not large enough to even produce, let alone necessitate storing, so many group
elements. Given that

(
m
t/2

)
group elements is the correct storage cost for the basic algorithm, and that

(
m
t/2

)
differs from

(
m/2
t/2

)
in just two characters, we attribute the discrepancy to a simple copy-paste error or typo.
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realistically hope for. Our improvements follow from Observation 9, an immedi-
ate consequence of Pascal’s Lemma for binomial coefficients, which states that(
m/2
t/2

)
=
(
m/2 − 1
t/2 − 1

)
+
(
m/2 − 1

t/2

)
.

Observation 9. Let {B1, . . . , Bm/2} be the Coppersmith–Seroussi set system, as
defined in Observation 6 and Corollary 7. For each i = 1, . . . ,m/2 − 1, we have
that ���

(
Bi

t/2

)
∩
(
Bi+1
t/2

)��� = (m/2 − 1
t/2

)
.

A simple corollary to Observation 9 is that the baby-step and giant-step loops
for i = 2, . . . ,m/2 in a naïve implementation of Algorithm B.2 each recompute(
m/2 − 1

t/2

)
values that were also computed in the immediately preceding invocation,

or, equivalently, that these loops each produce just
(
m/2
t/2

)
−
(
m/2 − 1

t/2

)
=
(
m/2 − 1
t/2 − 1

)
new

values. Carefully avoiding these redundant computations can therefore reduce
the per-iteration computation cost of all but the first iteration of the outer loop to
2
(
m/2 − 1
t/2 − 1

)
group operations. The first (i.e., i = 1) iteration of the outer loop must,

of course, still produce 2
(
m/2
t/2

)
values; thus, in the worst case, the algorithm must

produce 2
((

m/2
t/2

)
+ ( m

2 − 1)
(
m/2 − 1
t/2 − 1

))
distinct group elements. Note that in order

to avoid all redundant computations in subsequent iterations, it is necessary to
provide both the giant-step and baby-step loops with access to the (y1,Y1) and
(y2,Y2) pairs, respectively, that arose in the immediately preceding invocation.
Coppersmith’s deterministic algorithm already stores each (y1,Y1) pair arising
in the giant-step loop, but it does not store the (y2,Y2) pairs arising in the baby-
step loop; hence, fully exploiting Observation 9 doubles the storage cost of
the algorithm (in a similar vein to interleaving the loops). The upshot of this
increased storage cost is a notable asymptotic improvement to the worst-case
computation cost, which we characterize in Lemma 10 and Corollary 11. A
proof of Lemma 10 is located in Appendix A.6.

Lemma 10. Let {B1, . . . , Bm/2} be the Coppersmith–Seroussi set system, as de-
fined in Observation 6 and Corollary 7. We have

��
⋃m/2

i=1 Bi
��∑m/2

i=1
��Bi

��
=

t
m + o

(
1
)
.

To realize the speedup promised by Lemma 10, the optimized algorithm must
do some additional bookkeeping; specifically, in each iteration i = 2, . . . ,m/2, it
must have an efficient way to determine which of the Y1 ∈

(
Bi

t/2

)
and Y2 ∈

(
B̄i

t/2

)
—as

well as the associated y1 = gval(Y1) and y2 = h · g− val(Y2) —arose in the (i − 1) th
iteration, and which of them arise will for the first time in the i th iteration. To
this end, the algorithm keeps two sequences of hash tables, say H1, . . . , Hm and
I1, . . . , Im , one for the giant-step pairs and another for the baby-step pairs. Into
which hash table a given (Y1, y1) pair gets stored is determined by the smallest
integer in Y1: a (Y1, y1) pair that arose in the (i − 1) th iteration of the outer loop
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will also arise in the i th iteration if and only if the smallest element in Y1 is
not i − 1; thus, all values from the (i − 1) th iteration not in the hash table Hi−1
can be reused in the next iteration. Moreover, each (Y1, y1) pair that will arise
for the first time in the i th iteration has a corresponding (Y ′1 , y

′
1) pair that is

guaranteed to reside in Hi−1 at the end of the (i − 1) th iteration. Indeed, one
can efficiently “update” each such (Y ′1 , y

′
1) in Hi−1 to a required (Y1, y1) pair by

setting Y1 =
(
Y ′1 \ {i − 1}

)
∪ {i + m/2} and y1 = y′1 · g

−(i−1)
· gi+m/2. Note that

because Y1 no longer contains i − 1, the hash table in which the updated (Y1, y1)
pair should be stored changes from Hi−1 to H j for some j ≥ i. An analogous
method is used for keeping track of and “updating” the (Y2, y2) pairs arising in
the baby-step loop. Pseudocode for the above-described algorithm is included
as Algorithm B.3 in Appendix B. The following corollary is an immediate
consequence of Lemma 10.

Corollary 11. Algorithm B.3 is correct; moreover, its storage cost scales as
Θ
((m/2

t/2

))
group elements and its worst-case computation cost as O

(
t
(
m/2
t/2

))
group

exponentiations.

Note that the worst-case complexity obtained in Corollary 11 improves on a
naïve implementation of Coppersmith’s algorithm by a factor m

t (and it improves
on the previously best-known lower bound, due to Stinson [30; Theorem 4.1], by
a factor

√
t lg m). As with the basic algorithm, one can leverage pre-computation

and a minimal-change ordering to replace all but two of the exponentiations
counted by Corollary 11 with a single group operation each; hence, the worst-
case computation complexity is in fact just Θ

(
t
(
m/2
t/2

))
group operations.

4 From low Hamming weight to low radix-b weight

In this section, we introduce and analyze a simple transformation that allows us
to generalize each of the low-Hamming-weight DL algorithms from the preced-
ing section to a low-radix-b-weight DL algorithm, where the radix b > 1 can be
arbitrary. The transformation is deceptively simple: essentially, it entails modi-
fying the low-Hamming-weight algorithm to iterate over all possible inputs to a
valb function, rather than over all possible inputs to an “unqualified” val function
(or, equivalently, to a val2 function). Algorithm 4.1 provides pseudocode for the
simplest possible form of our radix-b algorithm; that is, for the transformation
applied to Algorithm 3.1. We illustrate the transformation as it applies to this
most basic form of the low-Hamming-weight DL algorithm purely for ease of
exposition; indeed, we do not recommend implementing this particular variant in
practice—rather, we recommend applying the transformation to Algorithm B.3
or to the randomized algorithm from Appendix D, as outlined below.
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Algorithm 4.1 LowRadixDL(m, t, b; g, h) // Attempts to compute x = logg h mod q
(assumes lenb(x) <= m, wtb(x) = t, and t is even)

1: Initialize a hash table H
2: /* "Giant step": Populate lookup table */

3: for each
(
Y1 ∈

(
[m]
t/2

))
do // outer loop runs (m choose t/2) times

4: for each
(
X1 ∈ [b − 1]t/2) do // inner loop runs (b − 1)t/2 times

5: y1 ← gvalb (X1,Y1 )

6: H.put
(
y1, (X1,Y1)

)
// y1 = g

valb(X1,Y1) is key; (X1, Y1) is value

7: end for
8: end for
9: /* "Baby step": Search for a collision */

10: for each
(
Y2 ∈

(
[m]
t/2

))
do // outer loop runs <= (m choose t/2) times

11: for each
(
X2 ∈ [b − 1]t/2) do // inner loop runs <= (b − 1)t/2 times

12: y2 ← h · (g−1)valb (X2,Y2 ) // cf. Lemma 2

13: if
(
H.containsKey(y2)

)
then

14: (X1,Y1) ← H.get(y2)
15: x ←

(
valb(X1,Y1)+valb(X2,Y2)

)
mod q

16: return x // cf. Lemma 1

17: end if
18: end for
19: end for
20: return ⊥ // logg h = undefined, lenb(logg h) > m,

or wtb(logg h) , t

Theorem 12. Algorithm 4.1 is correct: If there exists an integer x with radix-b
length m and radix-b weight t such that gx = h, then the algorithm returns a DL
of h to the base g.

Remark. When the radix is b = 2, the inner giant-step and baby-step loops (i.e.,
Lines 4–7 and 11–18) execute only once and Algorithm 4.1 reduces to Algo-
rithm 3.1, an observation which bares out in the following theorem. If the radix
is b > 2 yet all digits are bounded above by some c < b, then the inner loops
need only iterate over the (c − 1)t/2 tuples in [c − 1]t/2, thus reducing the cost by
a factor

( c−1
b−1
) t/2.

Theorem 13. The storage cost and (both average- and worst-case) computation
cost of the above algorithm, counted respectively in group elements and group
exponentiations, each scale as Θ

(
(b − 1)t/2

(
m
t/2

))
.

Remark 14. As with the low-Hamming-weight algorithms, it is possible to re-
duce each of the exponentiations counted by Theorem 13 to a single group
operation, in this case by using a minimal-change ordering for the outer loop and
a Gray code [19; §2.2.2] for the inner loop.

More efficient radix-b variants. Every one of the algorithm variants we
described in Section 3 generalizes similarly to an algorithm for radix b, by simply
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including an inner loop over each X ∈ [b − 1]t/2 within the giant-step and baby-
step loops. In each case, the expressions for storage and worst-case computation
complexity pick up an additional factor (b − 1)t/2; however, the reader should
bear in mind that this newfound exponential factor is at least partially offset by
a corresponding decrease in the radix-b length and (presumably) weight that
appear in the binomial term. In particular, an exponent x ≡ logg h mod q with
bit length m2 has a radix-b length of mb ≈ m2/log2 b. Specifically, applying
the transformation to Algorithm B.3 yields a radix-b algorithm with worst-case
running time of

(
t + o(1)

) (m/2
t/2

)
(b − 1)t/2, where m and t respectively denote the

radix-b length and radix-b weight of the DL sought.
In Theorem 15, we (partially) characterize one condition under which it

is beneficial to switch from a baby-step giant-step algorithm for radix b to
the corresponding baby-step giant-step algorithm for some larger radix. In this
theorem, the radix-b density of x refers to the ratio of its radix-b weight to its
radix-b length. For example, if m and t respectively denote the radix-b length of
x and the radix-b weight of x, then its radix-b density is t/m ∈ [0, 1].

Theorem 15. Fix a radix b > 1 and an exponent x with radix-b density d. There
exists a constant k0 ∈ R (with k0 > 1) such that, for all k > k0, if the radix-bk

density of x is less than or equal to d, then a radix-bk algorithm has lower cost
than the corresponding radix-b algorithm.

Theorem 15 implies that, for a fixed algorithm variant, switching to using a
higher radix is beneficial (essentially) whenever the change to the radix does not
increase the density of the DL being computed. We emphasize that the exponent k
in the theorem need not be an integer;5 thus, the theorem addresses cases like that
of switching from a radix-2 representation to a radix-3 representation (k = lg 3)
or from a radix-4 representation to a radix-8 representation (k = 3/2). For
example, the (decimal) number 20871 has radix-4 representation 11012013 and
density 0.75, whereas it has radix-8 representation 50607 and density 0.6.

A proof sketch for Theorem 15 is included in Appendix A.7. We only sketch
the main idea behind the proof, and only for the “basic” radix-b algorithm (i.e.,
for Algorithm 4.1). The reason for this is twofold: first, the details of the relevant
calculations are both unenlightening and rather messy (owing to the fact that
(b− 1)t/2 < (bk

− 1)t/2k , which can make our relevant inequalities go the wrong
way for small values of k); and, second, nearly identical calculations illustrate
why the theorem holds for the more efficient algorithm variants.

5 Indeed, if k > 1 is an integer, then the radix-bk density of x cannot be lower—and is usually higher—than
the radix-b density of x.
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5 Related work
The problem of solving “constrained” variants of the DL problem has received
considerable attention in the cryptographic literature, with the most well-known
and widely studied such variant being that of computing DLs that are “small” [33]
or known to reside in a “short” interval [23, 32, 34]. Existing algorithms can
compute such DLs using an expected O

(√
B − A

)
group operations when the

exponent is known to reside in the interval [A . .B].
In addition to the basic Heiman–Odlyzko [9] and Coppersmith–Stinson [30]

low-Hamming-weight algorithms discussed earlier, a handful of papers have con-
sidered the problem of computing DLs that have low Hamming weight [20, 24]
or those expressible as a product whose multiplicands each have low Hamming
weight [3,16,17]. Efficient algorithms for these computations have applications
in attacking encryption schemes that leverage such low-weight [1, 18, 22] and
product-of-low-weight-multiplicand [8, 10] exponents as a means to reduce the
cost of public-key operations. They have also been adapted to attack so-called se-
cure human identification protocols [11], which leverage low-Hamming-weight
secrets to improve memorability for unassisted humans.

Specifically, Cheon and Kim [3] proposed a baby-step giant-step algorithm
to compute DLs expressible as a product of three low-Hamming-weight multipli-
cands in groups with known order. The use of such “product-of-three” exponents
was proposed by Hoffstein and Silverman [10] to allow for low-cost exponen-
tiations in groups that permit fast endomorphism squaring (which includes the
Galois fields GF(2n) and the so-called “Koblitz” elliptic curves) while seeking
to resist meet-in-the-middle attacks. Subsequently, Kim and Cheon [16, 17]6
improved on those results using a “parametrized” variant of splitting systems,
while Coron, Lefranc, and Poupard [6] proposed a related algorithm that works
in groups with unknown composite order (e.g., in the multiplicative group of
units modulo n = pq, where p and q are large primes and the factorization of n
into p and q is not provided to the algorithm).

Meanwhile, Muir and Stinson [24] studied generalizations of Coppersmith’s
deterministic algorithm to compute DLs known to have a non-adjacent form
(NAF) representation with low weight. (In the latter context, “low weight” means
a small numbers of ±1 digits in the NAF representation.) More recently, May
and Ozerov [20] revisited the low-Hamming-weight DL problem in groups of
composite order (where a factorization of the order is known), proposing an
algorithm that combines aspects of the Silver–Pohlig–Hellman [27] algorithm
with any of the basic low Hamming weight algorithms to obtain lower complexity
than either approach in isolation.

6 Incidentally, the Cheon who authored [3] and [16, 17] is one and the same, but the Kim who authored [3]
is not the Kim who authored [16, 17].
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The algorithms we have presented in this work (i) offer improved complexity
relative to existing low-Hamming-weight algorithms, and (ii) generalized to
the low-radix-b-weight case for arbitrary b ≥ 2. This is a (mathematically)
natural generalization of the low-Hamming-weight DL problem that has not been
explicitly considered in prior work. We suspect that our modifications will “play
nice” with some or all of the above-mentioned low-weight DL algorithm variants,
and we slate a formal investigation of this interplay for future work.

6 Cryptanalytic applications

We now turn our attention to the cryptanalytic applications of our new al-
gorithms. Specifically, we demonstrate how to use a low-radix-b-weight DL
algorithm to attack any one of several verifier-based password-authenticated
key exchange (VPAKE) protocols from the cryptographic literature. Briefly, a
password-authenticated key exchange (PAKE) protocol is an interactive protocol
enabling a client to simultaneously authenticate itself to, and establish a shared
cryptographic key with, a remote server by demonstrating knowledge of a pass-
word. The security definitions for PAKE require that the interaction between
the client and server reveals at-most a negligible quantity of information about
the client’s password (and the shared key): a man-in-the-middle who observes
(and possibly interferes with) any polynomial number of PAKE sessions be-
tween a given client and server should gain at most a negligible advantage in
either hijacking an authenticating session or impersonating the client (e.g., by
guessing her password). VPAKE protocols extend PAKE with additional protec-
tions against the server, ensuring that an attacker who compromises the server
cannot leverage its privileged position to infer the client’s password using less
work than would be required to launch a brute-force attack against the password
database (even after engaging in any polynomial number of PAKE sessions with
the client).

In recent work [12], Kiefer and Manulis proposed a VPAKE protocol with
the novel property of allowing the client to register its password without ever
revealing that password to the server. Their idea, at a high level, is to have the
client compute a “fingerprint” of the password and then prove in zero-knowledge
that the fingerprint was computed correctly; subsequent authentications involve
a proof of knowledge of the password encoded in a given fingerprint. To make
the zero-knowledge proofs practical, the password fingerprints are computed
using a structure-preserving map. Benhamouda and Pointcheval [2; §1.2] note
that the Kiefer–Manulis VPAKE construction, as originally presented, falls eas-
ily to a short-interval variant Pollard’s Kangaroo algorithm [23]. In response to
this observation, Kiefer and Manulis released an updated version of their pa-
per (as a technical report [13]) that attempts to thwart the sort of short-interval
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attacks pointed out by Benhamouda and Pointcheval. A handful of subsequent
papers [14, 15, 35] have built on their algorithm, sharing the same basic frame-
work (and, hence, similarly susceptible to the attack described below).

The Kiefer–Manulis Protocol
Before presenting our attack, we briefly summarize the relevant portions of Kiefer
and Manulis’ VPAKE construction. Passwords in their construction consist of any
number of printable ASCII characters (of which there are 94 distinct possibilities
that are each assigned a label in [0 . .93]) up to some maximum length, which we
will denote by m; thus, there is a natural mapping between valid passwords and
the set of radix-94 integers with length at most m. This yields

∑m

i=1 94i possible
passwords (although the authors incorrectly give the number as just 94m).

The client maps her password pw toZ via the structure-preserving map

PWDtoINT(b; pw) B
∑ |pw|

i=1 bi−1pwi,

where pwi ∈ [0 . .93] is the numeric label assigned to the i th character in pw.
Here b ≥ 94 is an integer parameter, which the authors refer to as the “shift
base”.

The client computes a fingerprint of her password pw by selecting two
random values, g̃ ∈R G and s ∈R Z

∗
q (the so-called “pre-hash” and “post-hash”

salts) and using them to produce a Pedersen-like commitment7

C B g̃PWDtoINT(b; pw) hs

and then outputting the tuple (s, g̃,C). As the post-hash salt s in this construction
is output as part of the fingerprint, it does not serve a clear purpose; indeed, any
party (including the attacker) can trivially compute g̃PWDtoINT(b; pw) = C · h−s .
Thus, recovering the client’s password PWDtoINT(b; pw) (at least, modulo q)
from a fingerprint is equivalent to solving for x ≡ logg̃ C · h−s mod q.

The Benhamouda–Pointcheval attack. The original protocol used b = 94,
which yields PWDtoINT(b; pw) ≤ 94m

−1; hence, as noted by Benhamouda and
Pointcheval [2; §1.2], an attacker can recover PWDtoINT(b; pw) mod q from
(s, g̃,C) in around

√
94m ≲ 10m steps using the Kangaroo algorithm. (Note that

m here is a password length, and not a cryptographic security parameter.) This is
a mere square root of the time required to launch a brute-force attack, which falls
far short of satisfying the no-better-than-brute-force requirement for a VPAKE
protocol.

7 A Pedersen commitment [26] to x is a value C = gxhr where r is uniform random and logg h is secret;
it is perfectly hiding because for every possible x there exists a unique r that would make the resulting
commitment look like C and it is computationally binding because finding two distinct (x, r ), (x′, r ′)
pairs that yield the same commitment is equivalent to computing logg h.
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Kiefer and Manulis’ defense. To protect against Kangaroo attacks, Kiefer
and Manulis suggested to increase the shift base. Specifically, as exponents
PWDtoINT(b; pw) in their scheme have the form

∑ |pw |
i=1 bi−1pwi with each pwi ∈

[0 . .93], they solve for the smallest choice of b that causes the “largest" possible
password of length |pw | to induce an exponent that satisfies the inequality
942m < 93

∑m
i=1 bi−1. Doing so means that exponents are distributed throughout

the range [0 . .942m], which is (ignoring constants) necessary and sufficient to
ensure that a straightforward application of Pollard’s Kangaroo algorithm will
fail to solve the DL in fewer steps than are required to brute-force the password,
on average. If one supposes that the Kangaroo algorithm is the best possible
DL-based attack possible, the defense seems reasonable. Kiefer and Manulis
suggest b = 105, which they state “should be a safe choice”.
Revised attack from the deterministic low-radix-105-weight DL algorithm.
Using our optimized form of Coppersmith’s algorithm (together with the remarks
following Theorem 12), one can solve for any password up to, say m = 12
characters long, using fewer than∑12

t=0 t
(
m/2
t/2

)
93t/2 ≈ 238.2

group operations, as compared with∑12
m=0 94m

≈ 278.7

guesses for a brute-force attack, thus rendering Kiefer and Manulis’ defense
completely ineffective.

7 Conclusion
The DL problem is a cornerstone of modern cryptography. Several prior works
have studied “constrained” variants of the DL problem in which the desired
exponent is known either to have low Hamming weight or to be expressible as a
product whose multiplicands each have low Hamming weight. In this work, we
have focused on the related problem of computing DLs that have low radix-b
weight for arbitrary b ≥ 2. This is a (mathematically) natural generalization of
the low-Hamming-weight DL problem that has not been explicitly considered
in prior work. We emphasize that a significant part of our contribution was to
minimize the hidden constants in the low-Hamming-weight algorithms (improv-
ing the best-known complexity for the radix-2 case) and, by extension, in their
radix-b generalizations. We expect that our modifications will “play nice” with
prior efforts to solve other low-Hamming-weight and product-of-low-weight-
multiplicand DL problem variants, and we slate a formal investigation of this
interplay for future work. To showcase the cryptanalytic applications of our
new algorithms, we demonstrated an attack against several Verifier-Based Pass-
word Authenticated Key Exchange (VPAKE) protocols from the cryptographic
literature.
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A Proofs of basic results

This appendix presents proofs (and proof sketches) for some basic results that
appear in the main body of the paper.

A.1 Proof of Lemma 1
This subappendix presents a proof of Lemma 1, which was stated on Page 3 in
Section 2.

Lemma 1 (Restatement). Fix a radix b > 1, let m be a positive integer, and let t
be an even integer in [m]. If gvalb (X1,Y1) = h ·

(
gvalb (X2,Y2))−1 for X1, X2 ∈ [b− 1]t/2

and Y1,Y2 ∈
(
[m]
t/2

)
, then logg h ≡

(
valb (X1,Y1) + valb (X2,Y2)

)
mod q.

Proof. Taking logarithms, the statement of the lemma becomes valb (X1,Y1) ≡
logg h − valb (X2,Y2) mod q. Solving for logg h gives the desired result. ⊓⊔

A.2 Proof of Lemma 2
This subappendix presents a proof of Lemma 2, which was stated on Page 3 in
Section 2.

Lemma 2 (Restatement). Fix a radix b > 1, let m be an arbitrary positive
integer, and let t be an even integer in [m]. If there is an x ≡ logg h mod q
with radix-b weight t and radix-b length at most m, then there exist two disjoint
subsets Y1,Y2 ∈

(
[m]
t/2

)
and corresponding X1, X2 ∈ [b−1]t/2 such that gvalb (X1,Y1) =

h ·
(
gvalb (X2,Y2))−1.

Proof. Write x ≡
∑m

i=1 xi · bi−1 mod q as per Equation (1). Since the radix-b
weight of x is t, there exists some subset Y ∈

(
[m]
t

)
such that xi = 0 for each

i ∈ [m] \ Y ; thus, we can write x ≡
∑

i∈Y xi · b
i−1 mod q. Partitioning Y into

any pair of size-(t/2) subsets Y1,Y2 yields x ≡
(∑

i∈Y1
xi · bi−1) + (∑i∈Y2

xi ·

bi−1) mod q so that
∑

i∈Y1
xi · b

i−1
≡ x −

(∑
i∈Y2

xi · b
i−1) mod q. Now, setting

X1 = (xY1[t/2], . . . , xY1[1]) and X2 = (xY2[t/2], . . . , xY2[1]),8 we have valb (X1,Y1) ≡
x − valb (X2,Y2) mod q and, hence, gvalb (X1,Y1) = h ·

(
gvalb (X2,Y2))−1. ⊓⊔

A.3 Proof (sketch) of Theorem 4
This subappendix presents a proof sketch for Theorem 4, which was stated on
Page 5 in Section 3.1.

Theorem 4 (Restatement). The storage cost and (both average- and worst-
case) computation cost of Algorithm 3.1, counted respectively in group elements
and group exponentiations, each scale as Θ

(( m
t/2

))
.

8 Here, as earlier, we use the notation Yi [ j] to denote the j th smallest integer in the set Yi .
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Proof (sketch). By inspection, the giant-step (respectively, baby-step) loop runs
exactly (respectively, at most)

(
m
t/2

)
times and performs one exponentiation per

iteration (no group operations, save for a single inversion, occur outside of these
two loops), whence the claimed computation cost. The giant-step loop stores
each of the resulting

(
m
t/2

)
group elements in a lookup table (nothing else is

stored), whence the claimed storage cost. ⊓⊔

A.4 Proof of Observation 6
This subappendix presents a proof of Observation 6, which was stated on Page 7
in Section 3.3.

Observation 6 (Restatement). Let t and m be even positive integers with t ≤ m
and, for each i = 1, . . . ,m/2 + 1, define Bi = {i, i + 1, . . . , i + m/2 − 1} and
B̄i = [m] \ Bi . For any Y ∈

(
[m]
t

)
, there exists some i ∈ [m/2] and (disjoint)

subsets Y1 ∈
(
Bi

t/2

)
and Y2 ∈

(
B̄i

t/2

)
such that Y = Y1 ∪ Y2.

Proof. Define ν(i) =
(
|Bi ∩ Y | − |B̄i ∩ Y |

)
/2 and observe that ν(i) = 0 if and

only if |Bi ∩ Y | = |B̄i ∩ Y | = t/2, in which case Y1 = Bi ∩ Y and Y2 = B̄i ∩ Y
are the desired subsets. If ν(1) = 0, then Y1 = B1 ∩ Y and Y2 = B̄1 ∩ Y and there
is nothing more to prove. Otherwise, the desired result follows from a discrete
analog of the intermediate value theorem: by construction, ν(1) = −ν(m/2 + 1)
and ν(i + 1) − ν(i) ∈ {−1, 0, 1} for each i = 1, . . . ,m/2; hence, ν(i) ranges, in
increments of ±1, between |ν(1) | > 0 and −|ν(1) | < 0 as i ranges between 1
and m/2 + 1 and so there must exist some i ∈ [2,m/2] for which ν(i) = 0. ⊓⊔

A.5 Proof (sketch) of Theorem 8
This subappendix presents a proof sketch for Theorem 8, which was stated on
Page 8 in Section 3.3.

Theorem 8 (Restatement). Algorithm B.2 is correct; moreover, its storage cost
scales as Θ

((m/2
t/2

))
group elements and its (worst-case) computation cost as

O
(
m
(
m/2
t/2

))
group exponentiations.

Proof (sketch). Correctness is an immediate consequence of Lemma 1 and Cor-
ollary 7. The claimed worst-case costs follow easily by inspection. Specifically,
for each Bi , the giant-step (respectively, baby-step) loop runs exactly (respec-
tively, at most) ��

(
Bi

t/2

)�� = (m/2
t/2

)
times and performs one exponentiation per iteration

(no group operations, save for a single inversion, occur outside of these two
loops). In the worst case, |Bi ∩ Y | , t/2 for each i = 1, . . . ,m/2 − 1 so that no
collision arises until the last iteration of the outer loop, wherein the baby-step
inner loop ranges over the Y2 ∈

(
B̄m/2
t/2

)
, whence the claimed computation cost.

Furthermore, for each Bi , the giant-step loop stores
(
m/2
t/2

)
group elements in the

lookup table (nothing else is stored), and this lookup table gets cleared after
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each iteration of the outer loop so that it can never contain more than these
(
m/2
t/2

)
entries at any one time, whence the claimed storage cost. ⊓⊔

A.6 Proof of Lemma 10
This subappendix presents a proof for Lemma 10, which was stated on Page 9
in Section 3.4.

Lemma 10 (Restatement). Let {B1, . . . , Bm/2} be the Coppersmith–Seroussi set
system, as defined in Observation 6 and Corollary 7. We have

��
⋃m/2

i=1 Bi
��∑m/2

i=1
��Bi

��
=

t
m + o

(
1
)
.

Proof. From Observation 9, we are interested in the ratio((
m/2
t/2

)
+ ( m

2 − 1)
(
m/2 − 1
t/2 − 1

))
/
(
m
2

(
m/2
t/2

))
.

Using Pascal’s Lemma to rewrite the numerator, this expression becomes((
m/2 − 1

t/2

)
+

m
2

(
m/2 − 1
t/2 − 1

))
/
(
m
2

(
m/2
t/2

))
.

Simplifying, the first term in this expression becomes(
m/2 − 1

t/2

)
/
(
m
2

(
m/2
t/2

))
=

2(m−t )
m2 ∈ o

(
1
)
,

while the second term becomes(
m
2

(
m/2 − 1
t/2 − 1

))
/
(
m
2

(
m/2
t/2

))
=

t
m .

Hence, it follows that
((

m/2 − 1
t/2

)
+

m
2

(
m/2 − 1
t/2 − 1

))
/
(
m
2

(
m/2
t/2

))
=

t
m +o

(
1
)
, as desired. ⊓⊔

A.7 Proof (sketch) of Theorem 15
This subappendix presents a proof sketch for Theorem 15, which was stated on
Page 12 in Section 4.

Theorem 15 (Restatement). Fix a radix b > 1 and an exponent x with radix-b
density d. There exists a constant k0 ∈ R (with k0 > 1) such that, for all k > k0,
if the radix-bk density of x is less than or equal to d, then a radix-bk algorithm
has lower cost than the corresponding radix-b algorithm.
Proof of Theorem 15 (sketch). Let m = ⌈logb x⌉ and t respectively denote the
radix-b length and radix-b weight of x. Then the radix-bk length of x is
⌈logbk m⌉ ≈ ⌈m/k⌉ and we are interested in cases where the radix-bk weight of
x is (approximately) less than or equal to ⌈t/k⌉. In such cases, the cost of the
basic radix-bk algorithm is about

2
(
⌈m/k ⌉
⌈t/2k ⌉

)
(bk
− 1) ⌈t/2k ⌉ ≈ 2

(
⌈m/k ⌉
⌈t/2k ⌉

)
bt/2,

and this approximation tightens as k grows large. The right-hand side of the
expression is bounded below by 2bt/2, with equality holding if and only if
k ≥ m/2. By contrast, the cost of the radix-b algorithm is about 2

(
m
t/2

)
(b−1)t/2 ≈

2
(
m
t/2

)
bt/2, which is strictly larger than 2bt/2. ⊓⊔
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B Pseudocode
This appendix presents pseudocode for some algorithm variants discussed in the
main body of the paper.

B.1 Basic interleaved algorithm
This subappendix provides pseudocode for our interleaved algorithm, as de-
scribed in Section 3.2.

Algorithm B.1 LowHammingDLint(m, t; g, h)// Attempts to compute x = logg h mod q
(assumes len2(x) <= m, wt2(x) = t, and t is even)

1: Initialize hash tables H1, H2

2: /* Populate lookup tables _and_ search for collisions */

3: for each
(
Y1,Y2 ∈

(
[m]
t/2

))
do // loop runs <= (m choose t/2) times

4: /* "Giant step": iterate Y1 in ’forward’ direction */

5: y1 ← gval(Y1 )

6: if
(
H2.containsKey(y1)

)
then

7: Y2 ← H2.get(y1)
8: return

(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

9: else
10: H1.put(y1,Y1) // y1 = g

val(Y1) is key; Y1 is value

11: end if
12: /* "Baby step": iterate Y2 in ’reverse’ direction */

13: y2 ← h · (g−1)val(Y2 ) // cf. Lemma 2

14: if
(
H1.containsKey(y2)

)
then

15:

16: Y1 ← H1.get(y2)
17: return

(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

18: else
19: H2.put(y2,Y2) // y2 = h ∗ g

−val(Y2) is key; Y2 is value

20: end if
21: end for
22: return ⊥ // logg h = undefined, len2(logg h) > m,

or wt2(logg h) , t
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B.2 Coppersmith’s deterministic algorithm
This subappendix provides pseudocode for Coppersmith’s deterministic algo-
rithm, as described in Section 3.3.

Algorithm B.2 LowHammingDLsplit(m, t; g, h)// Attempts to compute x = logg h mod q
(assumes len2(x) <= m, wt2(x) = t, and m, t are even)

1: Initialize a hash table H
2: for

(
i = 1 to m/2 − 1

)
do

3: Bi ←
{
i, i + 1, . . . , i + m/2 − 1

}
// cf. Observation 6

4: /* "Giant step": Populate lookup table */

5: for each
(
Y1 ∈

(
Bi

t/2

))
do // loop runs (m/2 choose t/2) times

6: y1 ← gval(Y1 )

7: H.put(y1,Y1) // y1 = g
val(Y1) is key; Y1 is value

8: end for
9: /* "Baby step": Search for a collision */

10: for each
(
Y2 ∈

([m] \ Bi

t/2

))
do // loop runs <= (m/2 choose t/2) times

11: y2 ← h · (g−1)val(Y2 ) // cf. Corollary 7

12: if
(
H.containsKey(y2)

)
then

13: Y1 ← H.get(y2)
14: return

(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

15: end if
16: end for
17: H .clear() // no collision in Bi; clear H; try Bi+1

18: end for
19: return ⊥ // logg h = undefined, len2(logg h) > m,

or wt2(logg h) , t
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B.3 Optimized Coppersmith algorithm
This subappendix provides pseudocode for our optimized variant of Copper-
smith’s deterministic algorithm, as described in Section 3.4.

Algorithm B.3 LowHammingDLPascal(m, t; g, h)// Attempts to compute x = logg h mod q
(assumes len2(x) <= m, wt2(x) = t, and m, t are even)

1: Initialize hash tables H1, I1, . . . , Hm, Im // two tables per exponent bit

2: /* Initial "giant step" */

3: for each
(
Y1 ∈

(
[m/2]
t/2

))
do // runs (m/2 choose t/2) times

4: y1 ← gval(Y1 )

5: j ← Y1[1] // j is smallest integer in Y1
6: H j .put(y1,Y1) // y1 = g

val(Y1) is key; Y1 is value

7: end for
8: /* Initial "baby step" */

9: for each
(
Y2 ∈

(
[m] \ [m/2]

t/2

))
do // runs <= (m/2 choose t/2) times

10: y2 ← h · g− val(Y2 ) // cf. Corollary 7

11: for
(
i = 1 to m/2

)
do // search for collision in each Hi

12: if
(
Hi .contains(y2)

)
then

13: Y1 ← Hi .get(y2)
14: return

(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

15: end if
16: end for
17: j ← Y2[1] // j is smallest integer in Y2
18: I j .put(y2,Y2) // y2 = g

val(Y2) is key; Y2 is value

19: end for
20: /* Interleaved "Pascal steps" */

21: for
(
i = 1 to m/2 − 2

)
do // runs <= (m/2 − 1) times

22: for each
(
(y1,Y1) ∈ Hi

)
do // runs <= (m/2− 1 choose t/2− 1) times

23: Y ′1 ←
(
Y1 \ {i}

)
∪ {m/2 + i} // "update" Y1

24: y′1 ← y1 · g
−2i
· g2m/2+i

// "update" y1; y
′
1 = = g

val(Y1 )

25: for
(
j = m/2 + i to m + i

)
do // search for collision in each Ij

26: j′ ← j (mod m)
27: if

(
I j′ .contains(y′1)

)
then

28: Y2 ← I j′ .get(y′1)
29: return

(
val(Y ′1 ) + val(Y2)

)
mod q // cf. Lemma 1

30: end if
31: end for
32: j ← Y ′1 [1] // j is smallest integer in Y′1
33: H j .put(y′1,Y ′1 ) // y′1 = g

val(Y′1 ) is key; Y′1 is value
34: end for
35: Hi .clear()
36: for each

(
(y2,Y2) ∈ Im/2+i

)
do // runs <= (m/2− 1 choose t/2− 1) times

37: Y ′2 ←
(
Y2 \ {m/2 + i}

)
∪ {i} // "update" Y2

38: y′2 ← y2 · g
−2i
· g2m/2+i

// "update" y2; y
′
2 = = h ∗ g

−val(Y2 )

39: for
(
j = i to m/2 + i

)
do // search for collision in each Hj

40: if
(
H j .contains(y′2)

)
then

41: Y1 ← H j .get(y′2)
42: return

(
val(Y1) + val(Y ′2 )

)
mod q // cf. Lemma 1

43: end if
44: end for
45: j ← Y ′2 [1] // j is smallest integer in Y′2
46: I j .put(y′2,Y ′2 ) // y′2 = h ∗ g

−val(Y′2 ) is key; Y′2 is value
47: end for
48: Hi .clear()
49: end for
50: return ⊥ // logg h = undefined, len2(logg h) > m,

or wt2(logg h) , t
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C Stinson’s splitting systems
Stinson proposed a variant Coppersmith’s deterministic algorithm (i.e., Algo-
rithm B.2) that replaces the Coppersmith–Seroussi set system B1, . . . , Bm/2 de-
scribed in Observation 6 and Corollary 7 with a more general combinatorial
structure called a “splitting system”.

Definition 23 (Stinson [30; §2.1]). An (N ; m, t)-splitting system is a size-N set
system B ⊆

(
[m]
m/2

)
that satisfies the following property: For every Y ∈

(
[m]
t

)
, there

exists some B ∈ B such that |B ∩ Y | = t/2.

It is easy to see that the first m/2 sets B1, . . . , Bm/2 in the Coppersmith–
Seroussi set system, as defined in Observation 6 and Corollary 7, indeed con-
stitute an (m/2; m, t)-splitting system. Stinson observed that one can generalize
Coppersmith’s deterministic algorithm by replacing the Coppersmith–Seroussi
splitting system with any (N ; m, t)-splitting system. This modification does not
affect the proof of correctness or storage complexity of the resulting algorithm;
it does, however, affect the computation complexity, with the worst-case com-
putation complexity changing from O

(
m
(
m/2
t/2

))
to O
(
N
(
m/2
t/2

))
—an improvement

whenever N ∈ o
(
m
)
. Using the probabilistic method, Stinson also gave a non-

constructive existence proof for a family of (N ; m, t)-splitting systems in which
N ∈ O

(
t3/2 lg m

)
, thus establishing the existence of a (non-uniform) determin-

istic algorithm whose computation complexity scales as O
(
t3/2 lg m

(
m/2
t/2

))
[30;

§4.1]. Prior to the optimizations we propose in Section 3.4, Stinson’s existence
result gave the best known bound for the worst-case complexity of computing
low-Hamming-weight DLs. Our optimizations improve on Stinson’s existence
result by a factor

√
t lg m.
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D Coppersmith’s randomized algorithm
The second variant of Algorithm 3.1 proposed by Coppersmith is a randomized
(Las Vegas) algorithm. It is based on the observation that, if x ≡ logg h mod q
is distributed uniformly among the set of all m-bit exponents with Hamming
weight t, then with a “reasonably high” probability (specifically, with proba-
bility p1 ≥

√
π/4t ), Coppersmith’s deterministic algorithm halts during its first

iteration of the outer loop. Note that this observation relies crucially on the uni-
formity of x; the randomized algorithm converts this initially high success prob-
ability for uniform x into low average-case computation complexity—namely,
O
( 1
p1

(
m/2
t/2

))
= O
(√

t
(
m/2
t/2

))
—for arbitrary distributions on x.

Conceptually, one could simulate such “uniform behavior” for the first itera-
tion by selecting the first subset B1 uniformly from

(
[m]
m/2

)
. From here it would be

trivial to construct an (m/2; m, t)-splitting system analogous to the Coppersmith–
Seroussi splitting system, thereby yielding an algorithm that has a “reasonably
high” probability of succeeding within about the first 2

(
m/2
t/2

)
group operations,

regardless of the distribution on x ≡ logg h mod q;9 thus, so randomizing the
splitting system yields a small average-case speedup for certain “adversarially
chosen” distributions on x without affecting the worst-case cost.

However, the above-described modification falls short of the stated goal
of O

(√
t
(
m/2
t/2

))
average-case computation complexity, because the conditional

probability that |B2 ∩ Y | = t/2 given that |B1 ∩ Y | , t/2 is strictly smaller than
the a priori probability that |B2 ∩ Y | = t/2 (thus, the probability p2 that the
above algorithm produces a collision in its second invocation of the baby-step
and giant-step loops is strictly less than p1, and so on). Coppersmith’s algorithm
obtains a strictly lower average-case computation complexity by selecting each
subset B1, B2, . . . independently and uniformly from

(
[m]
m/2

)
, thus ensuring that

each invocation of the inner loops yields a collision with the same “reasonably
high” probability as the initial one. A simple counting argument shows that this
per-invocation collision probability is equal to

p =
( t
t/2
) ( m − t

(m − t)/2
)
/
( m
m/2
)
.

Using the inequality 2n/
√

2n ≤
(

n
n/2

)
≤ 2n/

√
πn/2, an easy corollary to Lemma 7

on page 309 of MacWilliams and Sloane’s classic text [7], we obtain

p ≥
√
πm/8t(m − t) ,

9 Concretely, the construction of an (m/2; m, t )-splitting system from an initial random choice of B1
works as follows: For i = 2, . . . , m/2 + 1, obtain Bi from Bi−1 by removing an arbitrary element of
B1 ∩ Bi−1 and replacing it with an arbitrary element of B̄1 ∩ B̄i−1. Note that this construction guarantees
that |B1 ∩ Bi | = m/2 − i + 1 for each i = 1, . . . , m/2 so that Bm/2+1 = B̄1. From here, it is easy
to verify that the proof of Observation 6 applies, without modification, to show that B1, . . . , Bm/2 is
an (m/2; m, t )-splitting system. This construction is essentially equivalent to randomly permuting the
elements of [m] prior to constructing the Coppersmith–Seroussi splitting system.
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which takes on its minimum value when t = m/2; hence, it follows for all choices
of m and t that p ≥

√
π/4t so that 1/p ∈ O(

√
t ). Note that it is, of course, still

possible to use a minimum-change ordering to ensure that each iteration of the
outer loop evaluates the group operations just Θ

((m/2
t/2

))
times. We have thus

proved the following theorem.

Theorem 8 (Stinson [30; §2.2]). Coppersmith’s randomized algorithm, as just
described, is correct; moreover, its storage cost scales asΘ

((m/2
t/2

))
group elements

and its average-case computation cost scales as O
(√

t
(
m/2
t/2

))
group operations.

Its worst-case computation cost is unbounded.
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