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Abstract. In the present paper, we analyze the security of SIMON-like
ciphers against linear cryptanalysis. First, an upper bound is derived
on the squared correlation of SIMON-like round function. It is shown
that the upper bound on the squared correlation of SIMON-like round
function decreases with the Hamming weight of output mask increasing.
Based on this, we derive an upper bound on the squared correlation of lin-
ear trails for SIMON and SIMECK, which is 2−2R+2 for any R-round lin-
ear trail. We also extend this upper bound to SIMON-like ciphers. Mean-
while, an automatic search algorithm is proposed, which can find the op-
timal linear trails in SIMON-like ciphers under the Markov assumption.
With the proposed algorithm, we find the provably optimal linear trails
for 12, 16, 19, 28 and 37 rounds of SIMON32/48/64/96/128. To the best
of our knowledge, it is the first time that the provably optimal linear
trails for SIMON64, SIMON96 and SIMON128 are reported. The prov-
ably optimal linear trails for 13, 19 and 25 rounds of SIMECK32/48/64
are also found respectively. Besides the optimal linear trails, we also find
the 23, 31 and 41-round linear hulls for SIMON64/96/128, and 13, 21
and 27-round linear hulls for SIMECK32/48/64. As far as we know, these
are the best linear hull distinguishers for SIMON and SIMECK so far.
Compared with the approach based on SAT/SMT solvers in [25], our
search algorithm is more efficient and practical to evaluate the security
against linear cryptanalysis in the design of SIMON-like ciphers.
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1 Introduction

With the increasingly ubiquitous use of smart devices such as RFID tags, smart
cards and mobile phones, lightweight ciphers will gain more and more wide ap-
plication. During the last decade, many lightweight ciphers have been proposed,
including but not limited to mCrypton [27], SEA [35], HIGHT [22], PRESENT
[13], CLEFIA [34], MIBS [23], KATAN and KTANTAN [15], KLEIN [20], LED
[21], Piccolo [33], LBlock [39], PRINCE [14], TWINE [36], PRIDE [3], Midori
[7], RECTANGLE [41], SKINNY [10], SPARX [19].



In 2013, the NSA published two novel families of lightweight block cipher
called SIMON and SPECK [8]. In comparison to their predecessors, these families
have a more competitive performance in both hardware and software platforms.
Afterwards, Yang et al. proposed the SIMECK family of lightweight block ciphers
at CHES 2015 [40], which is a more compact and efficient cipher in hardware.
SIMON and SIMECK both have a Feistel structure and use the same round
function but with different rotational constants (rotational constants (1, 8, 2)
for SIMON and (0, 5, 1) for SIMECK). The SIMON design can be generalized
to SIMON-like ciphers, which use the same structure and round function but
different rotational constants.

The lack of design rationale and security evaluation for SIMON and SPECK
inspired the cryptanalysts’ curiosity, and they took a lot of investigations for
a deeper understanding of these ciphers. Since the publication of SIMON and
SPECK, there have been a large variety of papers evaluating the security of
SIMON [2,4,5,6,11,16,17,18,37,38]. And among these cryptanalytic results, linear
and differential cryptanalysis are the most promising attacks.

Linear cryptanalysis is one of the most important and powerful techniques in
the cryptanalysis of symmetric-key cryptographic primitives. For the design of
block ciphers, security against linear cryptanalysis is a major security criterion.
As for S-box based ciphers, Matsui’s branch-and-bound algorithm was widely
used to evaluate the security against linear cryptanalysis [29]. Because S-box
based ciphers usually use S-boxes operated on 8 or 4-bit words, it is easy to
construct their linear approximation tables (LAT). However, the nonlinear com-
ponent used in SIMON-like ciphers is the AND operation, and it requires 22n

bytes of memory to construct a LAT for SIMON-like round function with n-bit
input, which is infeasible for a typical word size of 32 bits.

At CRYPTO 2015, Kölbl et al. derived an explicit formula for the squared
correlation of SIMON-like round function [25]. Based on this, they applied an
approach based on SAT/SMT solvers to find the optimal linear trails for SIMON,
and reported the provably optimal linear trails for SIMON32, SIMON48, and
a 16-round optimal linear trail with squared correlation 2−54 for SIMON64.
Because SIMON and SIMECK use the same structure and round function except
different rotational constants, the SAT/SMT solver approach can also be used
to find the optimal linear trails for SIMECK. In [26], Kölbl et al. also reported
the provably optimal linear trails for SIMECK.

However, Kölbl et al. didn’t report the provably optimal linear trails for
SIMON with block size 64, 96 and 128 bits. Also, it takes much time for the
SAT/SMT solver to find the optimal linear trails in SIMON-like ciphers, which
may limit its application to SIMON-like ciphers with large block sizes, such as
96 and 128 bits.

Recently, Liu et al. proposed an automatic search algorithm for the opti-
mal differential trails in SIMON-like ciphers at FSE 2017, and they found the
provably optimal differential trails for all versions of SIMON and SIMECK [28].
However, the optimal linear trails is absent in that paper. To fill this gap, we
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investigate the security of SIMON-like ciphers against linear cryptanalysis in the
present paper.

Our Contributions. Our main contributions are summarized as follows.

1. Based on the theorems given by Kölbl et al. [25], we derive an upper bound
on the squared correlation of SIMON-like round function. It is shown that
the upper bound on the squared correlation of SIMON-like round function
decreases as the Hamming weight of output mask increases.

2. We derive an upper bound on the squared correlation of linear trails for
SIMON and SIMECK, which can be extended to SIMON-like ciphers. It
is shown that the squared correlation is upper bounded by 2−2R+2 for any
R-round linear trail.

3. An efficient automatic search algorithm, which is an extension of Matsui’s
algorithm, is proposed for the optimal linear trails in SIMON-like cipher-
s. Because the upper bound on the squared correlation of round function
decreases with the Hamming weight of output mask increasing, it can al-
ways search for linear trails by traversing output masks from low Hamming
weight. Once some output mask whose squared correlation does not satis-
fy the search condition is found, it can break the unnecessary branches as
soon as possible, that is, it needn’t traverse the output masks with higher
Hamming weight.

4. With the proposed algorithm, it is able to find the provably optimal lin-
ear trails for SIMON and SIMECK. For SIMON with block size 32, 48, 64,
96 and 128 bits, we find the optimal linear trails on 12, 16, 19, 28 and 37
rounds with squared correlation 2−34, 2−50, 2−64, 2−96 and 2−128 respec-
tively. Meanwhile we report the provably optimal linear trails for SIMON64,
SIMON96 and SIMON128 for the first time. As for SIMECK with block size
32, 48 and 64 bits, we find the provably optimal linear trails on 13, 19 and
25 rounds respectively. Besides, we find the 23, 31 and 41-round linear hulls
for SIMON64/96/128, with potential 2−62.84, 2−93.8 and 2−123.15 respective-
ly. The 13, 21 and 27-round linear hulls with potential 2−29.43, 2−46.3 and
2−61.14 are also found for SIMECK32/48/64. Compared with the approach
based on SAT/SMT solvers in [25], our search algorithm is more efficient.

Outline. The paper is organized as follows. In Section 2, we give a brief
description of the block ciphers SIMON and SIMECK. In Section 3, an upper
bound is given on the squared correlation of SIMON-like round function. In
Section 4, we derive an upper bound on the squared correlation of linear trails
for SIMON and SIMECK. In Section 5, a generic and efficient automatic search
algorithm is proposed for the optimal linear trails in SIMON-like ciphers. Section
6 gives the optimal linear trails and linear hulls found for block ciphers SIMON
and SIMECK. A short conclusion is given in Section 7.

Notations used in the present paper are defined in Table 1.
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Table 1. Notation

Notation Description

x bitwise NOT of x
x⊕ y bitwise exclusive OR (XOR) of x and y
x ∧ y bitwise AND of x and y
x ∨ y bitwise OR of x and y
x� r shift of x to the left by r positions
x� r shift of x to the right by r positions
x≪ r rotation of x to the left by r positions
x≫ r rotation of x to the right by r positions
x‖y concatenation of bit strings x and y
wt(x) the hamming weight of x

x · y dot product of x and y : x · y =
⊕n−1

i=0 xiyi
xi the i-th bit of the n-bit word x
0 an n-bit vector with all entries equal 0

2 Description of SIMON and SIMECK

SIMON is a family of lightweight block ciphers published by the NSA in 2013. It
is based on Feistel construction and operates on 2n-bit state for n = 16, 24, 32, 48
and 64. The key size is composed of m n-bit words, where m = 2, 3 and 4
depending on the block size. SIMON with block size 2n bits and key size mn
bits is referred to as SIMON2n/mn.

The round function of SIMON consists of only three bitwise operations: AND
(∧) , XOR (⊕) and rotation (≪), and it is defined as

f(x) = ((x≪ 1) ∧ (x≪ 8))⊕ (x≪ 2).

Let (Li, Ri) be the input of i-th round, and (Li+1, Ri+1) be the output of i-th
round, then (Li+1, Ri+1) is computed as follows:

Li+1 = f(Li)⊕Ri ⊕Ki, Ri+1 = Li.

The SIMECK family of lightweight block ciphers was proposed by Yang et
al. at CHES 2015 [40]. Its design combines the good components of SIMON
and SPECK in order to get a more efficient hardware implementation. More
specifically, SIMECK uses a slightly modified version of SIMON’s round func-
tion, and reuses the round function to update the keys in the key schedule just
as SPECK does. The SIMECK family includes three variants: SIMECK32/64,
SIMECK48/96 and SIMECK64/128. The round function of SIMECK is defined
as

f(x) = (x ∧ (x≪ 5))⊕ (x≪ 1).

The subkeys are derived from a master key by key scheduling. As the key
schedule is irrelevant to the search algorithm, we omit its description and refer
the reader to [8] and [40] for the detail description of SIMON and SIMECK.

The round functions of SIMON and SIMECK are shown in Fig 1.
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Fig. 1. The round functions of SIMON and SIMECK

3 Upper Bound on the Squared Correlation of
SIMON-like Round Function

In this section, we derive an upper bound on the squared correlation of SIMON-
like round function, which is based on the theorems given by Kölbl et al. [25].

Definition 1 (SIMON-like Round Function[25]). Let x ∈ Fn2 , a, b, c ∈ N ,
and a, b, c ≥ 0. Then the SIMON-like function is defined as:

f(x) = ((x≪ a) ∧ (x≪ b))⊕ (x≪ c),

where a, b, c are the rotational constants.

In the context, a SIMON-like cipher is defined as an iterated cipher us-
ing the SIMON-like round function in a Feistel construction. The block ciphers
SIMON and SIMECK, whose rotational constants are (1, 8, 2) and (0, 5, 1) re-
spectively, are two particular cases of SIMON-like cipher.

In [9], Beierle gave a more generic definition of SIMON-like round function,
which uses a quadratic, rotational invariant function as the non-linear component
and an F2-linear function as the linear component. In this paper, we only focus
on the SIMON-like cipher with f(x) = ((x ≪ a) ∧ (x ≪ b))⊕ (x ≪ c) as the
round function.

Kölbl et al. derived a closed expression for the squared correlation of SIMON-
like round function, and their results are as follows.

Theorem 1 (Squared Correlation of SIMON-like round function [25]).
Let f(x) = x∧(x≪ (a−b)), where x ∈ Fn2 , n is even, a > b and gcd(n, a−b) = 1.
Let α and β be an input and an output mask, Uβ is defined as

Uβ = {x | (β ∧ (x≪ (a− b)))⊕ ((β ∧ x) ≫ (a− b)) = 0}
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and d = dim Uβ. Then the squared correlation that α goes to β can be calculated
as

C2(α, β) =


2−n+2 if β = 2n − 1 and α ∈ U⊥β

2−n+d if β 6= 2n − 1 and α ∈ U⊥β

0 else.

Note that f(x) is the only nonlinear component of SIMON-like round func-
tion, so C2(α, β) is the squared correlation of SIMON-like round function. From
Theorem 1, the squared correlation C2(α, β) is the same for all possible input
masks α ∈ U⊥β , and we use C2

β instead of C2(α, β). In the following, we derive
an upper bound on the squared correlation of SIMON-like round function.

Theorem 2. Let f(x) = ((x ≪ a) ∧ (x ≪ b)) ⊕ (x ≪ c), where x ∈ Fn2 , n is
even, a > b and gcd(n, a − b) = 1. Let β be an output mask of f(x). Then for
the squared correlation, it holds that

(1) If β 6= 2n − 1 and wt(β) mod 2 = 0, then C2
β ≤ 2−wt(β);

(2) If β 6= 2n − 1 and wt(β) mod 2 = 1, then C2
β ≤ 2−wt(β)−1;

(3) If β = 2n − 1, then C2
β ≤ 2−n+2.

Proof. Appendix A.

4 Upper bound on the Squared Correlation of Linear
Trails for SIMON and SIMECK

In [9], Beierle gave an upper bound on the probability of differential trails for SI-
MON and SIMECK. Inspired by this, we derive the upper bound on the squared
correlation of linear trails.

In this section, xi represents the i-th bit of an n-bit vector x = (xn−1, . . . , x1, x0)
∈ Fn2 . For a vectorial function f : Fn2 → Fn2 and k ∈ Fn2 , the Feistel round function
is defined as

Fk : Fn2 × Fn2 → Fn2 × Fn2
(x, y) 7→ (f(x)⊕ y ⊕ k, x).

Within a Feistel cipher, the input mask of one round is denoted as (γ, δ), where
γ and δ represent the left and right halves respectively.

Lemma 1. For r ≥ 1 and for all non-zero masks α and β, let the squared
correlation of any r-round linear trail starting with (α,0) and ending with (β,0)
be upper bounded by p(r). Let further p(0) = 1 and q = maxβ 6=0,α C

2(α, β). Then
for any non-trivial R-round linear trail Ω, it holds that

C2(Ω) ≤ max
k≤R

p(k)qR−k−1.
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Proof. For an R-round linear trail Ω = (γ0, δ0) → · · · → (γR, δR), it holds that

C2(Ω) =
∏R−1
i=0 C2(δi, δi+1), where C2(δi, δi+1) represents the squared correla-

tion of the (i+ 1)-th round. Next we spilt the proof into two cases.

(1) Assume there exist distinct i and j such that δi = δj = 0. Without loss of
generality, let δi = δj = 0 and δk 6= 0 for all k < i and all k > j. Then,
according to the definition,

C2((γi, δi)→ · · · → (γj , δj)) ≤ p(j − i).

Since δi = δj = 0 and δk 6= 0 for k < i and k > j, then

C2(Ω) ≤ p(j − i)
i−1∏
k=0

C2(δk, δk+1)

R−1∏
k=j+1

C2(δk, δk+1)

≤ p(j − i)qiqR−(j+1) = p(j − i)qR−(j−i)−1.

(2) If δi = 0 for at most one i, then∏
k<R

C2(δk, δk+1) ≤
∏
k 6=i

C2(δk, δk+1) ≤ qR−1 = p(0)qR−1.

ut

Lemma 1 is a general statement for all Feistel ciphers. According to it, we
can bound the squared correlation of any linear trail, from upper bounds on the
squared correlation of all linear trails starting with (α,0) and ending with (β,0).
As for SIMON-like ciphers, we have the following results.

Corollary 1. For r ≥ 1 and for all non-zero masks α and β, let the squared
correlation of any r-round linear trail starting with (α,0) and ending with (β,0)
be upper bounded by 2−2r. Let further C2

β ≤ 2−2. Then for any non-trivial R-
round linear trail Ω, it holds that

C2(Ω) ≤ 2−2R+2.

Proof. With the notations in Lemma 1, we have p(r) = 2−2r and q = 2−2.
Therefore,

C2(Ω) ≤ max
k≤R

p(k)qR−k−1 = max
k≤R

2−2k2−2R+2k+2 = 2−2R+2.

ut

According to Corollary 1, in order to prove the upper bound 2−2R+2 on the
squared correlation of linear trails, we only need to focus on r-round linear trails
of the form (α,0)→ · · · → (β,0), and prove the upper bound is 2−2r. For an r-
round linear trail of the form (α,0)→ · · · → (β,0), we implicitly assume δi 6= 0
for all intermediate δi, because it is easy to concatenate the short trails to longer
ones if δi = 0 for some δi.

In the following, we derive the upper bound on the squared correlation of
linear trails for SIMON and SIMECK.
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Theorem 3 (Upper Bounds for SIMON). Let n ∈ {16, 24, 32, 48, 64}, x ∈
Fn2 and f(x) = ((x≪ 1)∧ (x≪ 8))⊕ (x≪ 2). The squared correlation of any
R-round linear trail is upper bounded by 2−2R+2.

Proof. Fix an r-round linear trail of the form

(µ,0)→ (0, δ1 = µ)→ (γ2, δ2)→ · · · → (γr−1, δr−1)→ (ν,0)

with δi 6= 0 for all i ∈ {1, . . . , r − 1}. According to Corollary 1, we only need to
prove that C2

δi
≤ 2−4 for at least one i. The proof is split into two cases, and

the symbol ∗ indicates an unknown bit.

(1) wt(µ) = 1
Considering the rotational equivalence, let w.l.o.g. µ = (1, 0, . . . , 0). Then
we have

δ2 = (0, ∗1, 1, 0, 0, 0, 0, 0, ∗2, 0, 0, 0, 0, 0, 0, 0, . . .).

If at least one of ∗1 and ∗2 equal to one, then C2
δ2
≤ 2−4. Because according

to Theorem 1, when wt(β) = 2, C2
β = 2−2 if and only if β satisfies βi = 1

and βi−7 mod n = 1.
Next, we consider the case that both ∗1 and ∗2 equal to zero, then

δ2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

and
δ3 = (1, 0, 0, ∗1, 1, 0, 0, 0, 0, 0, ∗2, 0, 0, 0, 0, 0, . . .).

It is obviously that C2
δ3
≤ 2−4.

(2) wt(µ) = 2
Considering the rotational equivalence, let w.l.o.g.

µ = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . .).

Then we have

δ2 = (0, ∗1, 1, 0, 0, 0, 0, 0, ∗2, 1, 0, 0, 0, 0, 0, ∗1, . . .).

If at least one of ∗1 and ∗2 equal to one, then C2
δ2
≤ 2−4 according to

Theorem 1. Next, we consider the case that both ∗1 and ∗2 equal to zero,
then

δ2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, . . .)

and

δ3 = (1, 0, 0, ∗1, 1, 0, 0, 1, 0, 0, ∗2, 1, 0, 0, 0, 0, 0, ∗1, 0, 0, . . .).

It is obviously that C2
δ3
≤ 2−4.

ut
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With a similar argument, we can obtain the upper bound on the squared
correlation of linear trails for SIMECK. Our results are list as follows.

Theorem 4 (Upper Bounds for SIMECK). Let n ∈ {16, 24, 32}, x ∈ Fn2
and f(x) = (x ∧ (x ≪ 5)) ⊕ (x ≪ 1). The squared correlation of any R-round
linear trail is upper bounded by 2−2R+2.

The upper bounds for SIMON and SIMECK can be extended to a more
generic SIMON-like design, which can be proven in a similar way. With the
SIMON-like cipher defined in this paper, we have the following upper bounds on
the squared correlation of linear trails.

Theorem 5 (Upper Bounds for SIMON-like Ciphers). Let a, b, c ∈ N ,
a > b, c 6= a and c 6= b. Let f(x) = ((x ≪ a) ∧ (x ≪ b)) ⊕ (x ≪ c), where
x ∈ Fn2 , n is even and gcd(n, a− b) = 1. The squared correlation of any R-round
linear trail is upper bounded by 2−2R+2.

These upper bounds give a rough estimation of the security of SIMON-like
ciphers against linear cryptanalysis. As for SIMON and SIMECK, it turns out
that they are sufficient in order to bound the squared correlation of linear trails
below 2−2n, where 2n is the block size. We give a comparison of the rounds
needed for bounding the squared correlation and the security margin for every
instance of SIMON and SIMECK in Table 2.

Table 2. Number of rounds needed for bounding the squared correlation of linear trails
by 2−2n for SIMON and SIMECK.

ciphers block size key size rounds rounds needed security margin

SIMON

32 64 32 17 15

48
72 36 25 11
96 36 25 11

64
96 42 33 9
128 44 33 11

96
96 52 49 3
144 54 49 5

128

128 68 65 3
192 69 65 4
256 72 65 7

SIMECK

32 64 32 17 15
48 96 36 25 11
64 128 44 33 11

From Table 2, the security margin of SIMECK and SIMON with block size
less than or equal to 64 bits is reasonable. However, as for SIMON with block
size 96 and 128 bits, the security margin is too small, and it may not guarantee
the security against linear cryptanalysis with these upper bounds.
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In the following, we give an automatic search algorithm, which can find the
provably optimal linear trails in SIMON-like ciphers under the Markov assump-
tion. The results found by the search algorithm show that SIMON and SIMECK
can be considered resistant against linear cryptanalysis.

5 Automatic Search Algorithm for Optimal Linear Trails

At EUROCRYPT’ 94, Matsui proposed a practical automatic search algorithm
for the optimal linear trail of DES [29]. The algorithm performs a recursive
search for linear trails over a given number of rounds n (n ≥ 1). It derives the
best n-round squared correlation Bn from the knowledge of the best i-round
squared correlation Bi (1 ≤ i ≤ n− 1) and the initial estimate Bn for Bn.

However, Matsui’s algorithm can’t be applicable to SIMON-like ciphers, s-
ince it is infeasible to construct the linear approximation table of SIMON-like
round function. Although Biryukov et al. adapted Matsui’s algorithm for finding
differential trails for SIMON with pDDT (partial difference distribution table)
[12], their algorithm may not obtain the optimal differential trail since it uses
heuristics so as to find high probability trails. Meanwhile, they didn’t report the
linear trails for SIMON. Even if partial linear approximation table of SIMON’s
round function is constructed and used in the search algorithm, it can’t make
sure to find the optimal linear trail.

In this section, we propose an automatic search algorithm for the optimal
linear trails in SIMON-like ciphers, which is also based on Matsui’s algorithm.
Because our algorithm doesn’t introduce any heuristics, it can find the optimal
linear trail. The propagation of linear masks in SIMON-like round function is
depicted in Fig 2.

<<<  a

<<<  b

&

<<<  c
iK

iX*1iX �*

1iX �*iX*

Fig. 2. Propagation of linear masks in SIMON-like round function. The sign “•” de-
notes “three-forked branch” and acts as XOR on the linear masks.
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From the theorem given by Kölbl et al., the squared correlation of SIMON-
like round function C2(α, β) is only related to the output mask β and rotational
constants a and b, if α 7→ β isn’t zero correlation. So in the search algorithm,
we can firstly compute the squared correlation of one round. If the squared
correlation satisfies the search condition, then we continue finding all possible
input masks and searching the next round.

As for searching for input masks, we don’t traverse every input mask α and
check whether it satisfies the condition α ∈ U⊥β . On the contrary, we give an

algorithm which can find all possible input masks α ∈ U⊥β . Then we use it
to obtain all the possible input masks in the search algorithm directly. The
algorithm is based on the algorithm given by Kölbl et al. [25], and the pseudo-
code is listed in Algorithm 1.

Algorithm 1 Squared correlation of SIMON-like round function

1: //f(x) = x ∧ (x≪ d);
2: //Uβ = {x | (β ∧ (x≪ d))⊕ ((β ∧ x) ≫ d) = 0};
3: tmp = β;
4: abits = β;
5: while tmp ! = 0 do
6: tmp = β ∧ (tmp≫ d);
7: abits = abits⊕ tmp;
8: end while
9: µ = abits≫ 2d;

10: ν = β ≫ d;
11: ω = µ ∧ ν;
12: γ = abits⊕ (abits≫ d);

13: //x[i] and y[i] are n-bit vectors for i = 1, · · · , n
14: for i = 1 to n do
15: x[i] = γ ∧ (1� i);
16: y[i] = x[i]⊕ (ω ∧ (1� (i− 2d)));
17: end for
18: C2

β = 2−2∗wt(abits);

19: Nonzero vectors of y[i] (i = 1, · · · , n) construct the bases of U⊥β

Note: The arithmetic of bit indices is always done modulo the word size n.

Besides, we apply Theorem 2, which can be used to break the unnecessary
branches as soon as possible, to improve the efficiency of the search algorithm.
More specifically, we traverse output masks from low Hamming weight for the
first and second round, because the upper bound on the squared correlation of
SIMON-like round function decreases as the Hamming weight of output mask
increases. Once we find some output mask whose maximum squared correlation
doesn’t satisfy the search condition, that is C2

maxBn−1 < Bn, we break the
branch and needn’t traverse the output masks with higher Hamming weight.
The pseudo-code of our algorithm is listed in Algorithm 2.
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Algorithm 2 Search for optimal linear trails in SIMON-like ciphers

1: Procedure Main:
2: Begin the program
3: Let Bn = 2×Bn−1, and Bn = 1.
4: Do
5: Let Bn = 2−1 ×Bn;
6: Call Procedure Round-1;
7: while Bn 6= Bn.
8: Exit the program

9: Procedure Round-1:
10: For each candidate for ΓX1 with wt(ΓX1) from 0 to n, do the following:
11: If C2

max×Bn−1 < Bn, then //C2
max is precomputed according to Theorem 2.

12: Return to the upper procedure;
13: Else
14: Let β = ΓX1 and C2

β is computed according to Theorem 1;

15: If C2
β ×Bn−1 ≥ Bn, then

16: Let c21 = C2
β ;

17: For each candidate of α ∈ U⊥β //U⊥β is computed with Algorithm 1.
18: Let f(β) = (α≫ b)⊕ (β ≫ c), and Call Procedure Round-2;
19: Return to the upper procedure;

20: Procedure Round-2:
21: For each candidate for ΓX2 with wt(ΓX2) from 0 to n, do the following:
22: If c21 × C2

max ×Bn−2 < Bn, then
23: Return to the upper procedure;
24: Else
25: Let β = ΓX2, and C2

β is computed according to Theorem 1;

26: If c21 × C2
β ×Bn−2 ≥ Bn, then

27: Let c22 = C2
β ;

28: For each candidate of α ∈ U⊥β
29: Let f(β) = (α≫ b)⊕ (β ≫ c), and Call Procedure Round-3;
30: Return to the upper procedure;

31: Procedure Round-i (3 ≤ i ≤ n− 1):
32: Let ΓXi = ΓXi−2 ⊕ f(ΓXi−1);
33: Let β = ΓXi, and C2

β is computed according to Theorem 1;

34: If c21 × · · · × c2i−1 × C2
β ×Bn−i ≥ Bn, then

35: Let c2i = C2
β ;

36: For each candidate of α ∈ U⊥β
37: Let f(β) = (α≫ b)⊕ (β ≫ c), and Call Procedure Round-(i+ 1);
38: Return to the upper procedure;

39: Procedure Round-n:
40: Let ΓXn = ΓXn−2 ⊕ f(ΓXn−1);
41: Let β = ΓXn, and C2

β is computed according to Theorem 1;

42: If c21 × · · · × c2n−1 × C2
β = Bn, then Bn = Bn;

43: Return to the upper procedure;

12



In the following, we give a rough estimation of the complexity of the search
algorithm. Let m1 be the number of masks α1 and β1 in the first round, for
which the maximum squared correlation C2

max(α1, β1) is greater than or equal
to Bn/Bn−1 : m1 = #{(α1, β1) | C2

max(α1, β1) ≥ Bn/Bn−1}. Analogously, let
m2 be the number of masks α2 and β2 in the second round, for which the maxi-
mum squared correlation C2

max(α2, β2) is greater than or equal to Bn/(c
2
1Bn−2)

: m2 = #{(α2, β2) | C2
max(α2, β2) ≥ Bn/(c

2
1Bn−2)}. As the complexity of the

search is dominated by the number of candidates in the first two rounds, the com-
plexity of Algorithm 2 has the form O(m1m2). Because the maximum squared
correlation C2

max decreases with the Hamming weight of output masks increas-
ing, it only searches a very small fraction of all the possible plaintext masks,
which makes O(m1m2) be significantly lower than the complexity of full search
22n. However, it is difficult to get the precise values of m1 and m2, since they
change dynamically in the search.

Note that in Theorem 1 and Theorem 2, n and a−b must satisfy the condition
gcd(n, a− b) = 1. It is implicitly assumed to be satisfied in SIMON-like ciphers,
and therefore Theorem 1 and Theorem 2 can be applied in the search algorithm
to find the optimal linear trails efficiently. Our algorithm can also be applied
to other SIMON-like designs with f(x) = x ∧ (x ≪ a) as the only nonlinear
component, because the squared correlation is computed according to Theorem
1 in our search algorithm.

6 Linear Trails and Linear Hulls for SIMON and
SIMECK

In this section, Algorithm 2 is applied to search for the optimal linear trails for
block ciphers SIMON and SIMECK 1. The linear trails found are the provably
optimal under the Markov assumption. Besides the optimal linear trails, we also
find the linear hulls for SIMON and SIMECK with Algorithm 2.

6.1 Linear Trails for SIMON and SIMECK

For SIMON with block size 32, 48, 64, 96 and 128 bits, the optimal linear trails
found cover 12, 16, 19, 28 and 37 rounds with squared correlation 2−34, 2−50,
2−64, 2−96 and 2−128 respectively. The provably optimal linear trails are reported
for the first time for SIMON64, SIMON96 and SIMON128. As for SIMON32 and
SIMON48, our results are the same as those of Kölbl et al. [25]. The squared
correlations of the optimal linear trails for SIMON are shown in Table 3. And
the optimal linear trails found for SIMON are shown in Table 7 and Table 8 in
Appendix B.

For SIMECK with block size 32, 48 and 64 bits, we find the provably optimal
linear trails for up to 13, 19 and 25 rounds with squared correlation 2−32, 2−48

1 All experiments are performed on a PC with a single core (Intelr CoreTM i7− 6700
CPU 3.4GHz).
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Table 3. Squared correlation of the optimal linear trails for SIMON. The squared
correlation are given as log2c

2. The column “times” provides the time needed to find
a single optimal linear trail in seconds or hours (“s” and “h” for short).

SIMON32 SIMON48 SIMON64 SIMON96 SIMON128

R log2c
2 times log2c

2 times log2c
2 times log2c

2 times log2c
2 times

1 −0 0.00s −0 0.00s −0 0.00s −0 0.00s −0 0.00s
2 −2 0.00s −2 0.00s −2 0.00s −2 0.00s −2 0.00s
3 −4 0.01s −4 0.00s −4 0.00s −4 0.00s −4 0.00s
4 −6 0.02s −6 0.01s −6 0.02s −6 0.05s −6 0.14s
5 −8 0.02s −8 0.01s −8 0.02s −8 0.03s −8 0.09s
6 −12 0.13s −12 0.23s −12 0.70s −12 2.98s −12 11.97s
7 −14 0.13s −14 0.21s −14 0.47s −14 2.89s −14 11.98s
8 −18 0.39s −18 0.43s −18 1.09s −18 3.46s −18 12.49s
9 −20 0.16s −20 0.23s −20 0.75s −20 2.92s −20 11.84s
10 −26 13.03s −26 16.62s −26 32.52s −26 195.55s −26 0.27h
11 −30 31.60s −30 169.74s −30 0.17h −30 2.40h −30 15.47h
12 −34 72.31s −36 0.48h −36 0.76h −36 4.78h −36 22.22h
13 −38 27.46s −38 35.15s −38 197.67s −38 0.30h
14 −44 1.27h −44 1.04h −44 1.89h −44 2.55h
15 −46 93.11s −48 1.41h −48 4.46h −48 18.48h
16 −50 0.32h −54 84.16h −54 136.43h −54 165.34h
17 −56 0.32h −56 0.72h −56 0.95h
18 −62 126.76h −62 343.88h −62 367.37h
19 −64 33.27s −64 90.05s −64 104.12s
20 −66 63.07s −66 63.52s
21 −68 3.74s −68 3.73s
22 −72 242.79s −72 264.31s
23 −74 3.52s −74 14.02s
24 −78 12.42s −78 23.20s
25 −80 3.54s −80 13.86s
26 −86 349.58s −86 0.36h
27 −90 2.76h −90 17.56h
28 −96 5.54h −96 24.85h
29 −98 0.31h
30 −104 2.82h
31 −108 21.12h
32 −114 194.86h
33 −116 2.96h
34 −122 375.46h
35 −124 112.37s
36 −126 66.27s
37 −128 4.37s
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and 2−64 respectively. The squared correlations of the optimal linear trails for
SIMECK are shown in Table 4. And the optimal linear trails found for SIMECK
are shown in Table 9 in Appendix C.

Table 4. Squared correlation of the optimal linear trails for SIMECK. The squared
correlation are given as log2c

2. The column “times” provides the time needed to find
a single optimal linear trail in seconds (“s” for short).

SIMECK32 SIMECK48 SIMECK64

R log2c
2 times log2c

2 times log2c
2 times

1 −0 0.00s −0 0.00s −0 0.00s
2 −2 0.00s −2 0.00s −2 0.00s
3 −4 0.00s −4 0.00s −4 0.00s
4 −6 0.00s −6 0.01s −6 0.01s
5 −8 0.00s −8 0.01s −8 0.02s
6 −12 0.03s −12 0.18s −12 0.50s
7 −14 0.02s −14 0.16s −14 0.35s
8 −18 0.08s −18 0.32s −18 0.54s
9 −20 0.03s −20 0.18s −20 0.38s
10 −24 0.12s −24 0.37s −24 0.32s
11 −26 0.01s −26 0.03s −26 0.04s
12 −30 0.24s −30 0.58s −30 0.60s
13 −32 0.02s −32 0.04s −32 0.04s
14 −36 1.04s −36 1.28s
15 −38 0.24s −38 0.46s
16 −44 27.59s −44 30.73s
17 −44 0.00s −44 0.00s
18 −46 0.00s −46 0.00s
19 −48 0.00s −48 0.00s
20 −50 0.01s
21 −52 0.01s
22 −56 0.37s
23 −58 0.35s
24 −62 0.57s
25 −64 0.37s

Compared with the approach based on SAT/SMT solvers in [25], our algo-
rithm is more efficient. For SIMON-like ciphers with block size less than or equal
to 64 bits, our algorithm is able to find the optimal linear trails efficiently. As for
SIMON-like ciphers with large block size such as 96 and 128 bits, it can also find
the optimal linear trails. To the best of our knowledge, it is the first algorithm
that finds the provably optimal linear trails for SIMON96 and SIMON128 in
the public literature. Besides evaluating the security of SIMON and SIMECK
against linear cryptanalysis, our algorithm has a more practical use in the design
of SIMON-like ciphers.
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Remark 1. In [26], there is something wrong with the squared correlation of the
best linear trails for SIMON48. For example, the squared correlations of 19 and
20-round optimal linear trails are not 2−62 and 2−66, and we find the optimal
linear trails with squared correlation 2−60 and 2−64. We list the 19 and 20-round
optimal linear trails for SIMON48 in Table 10 in Appendix D. Analysing the code
of CryptoSMT given by Kölbl [24], we find it is a little different from the python
code in [25] for the computation of squared correlation (page 21, line 5, “beta”
is replaced by “sbits” in the code of CryptoSMT), and we confirm that it is right
for the code in [25].

6.2 Linear Hulls for SIMON and SIMECK

The linear hull, which was proposed by Nyberg [30], is a set of linear ap-
proximations with the same input mask and output mask. For a block cipher
C = F (P,K), the potential of a linear hull with input mask α and output mask
β is defined as:

ALH(α, β) =
∑
γ

(Pr(α · P ⊕ β · C ⊕ γ ·K = 0)− 1/2)2.

The effect of linear hull is that the bias of linear approximation is much higher
than that of an individual linear trail. With linear hull, the linear cryptanalysis
requires less known plaintexts.

Table 5. The linear hulls of SIMON.

Block Size Round Input active bits Output active bits Potential Reference

64

22
XL,3, XL,27, XL,31,

YL,3, YR,1, YR,2 2−63.83 [32]
XR,29

23 XL,2, XL,30, XR,0
YL,28, YR,2, YR,26, 2−62.84 this paper

YR,30

96

30
XL,2, XL,34, XL,38, YL,2, YL,42, YL,46, 2−94.2 [1]

XL,42, XR,36 YR,0, YR,40

30
XL,2, XL,6, XL,14, YL,6, YL,10, YL,14, 2−91.22 this paper

XL,46, XR,0 YR,4, YR,12

31
XL,2, XL,6, XL,14, YL,4, YL,12, YR,2, 2−93.8 this paper

XL,46, XR,0 YR,6, YR,14

128

41
XL,2, XL,58, XL,62, YL,60, YR,0, YR,2, 2−126.6 [1]

XR,60 YR,58, YR,62

41
XL,2, XL,6, XL,62, YL,0, YR,2, YR,6, 2−123.15 this paper

XR,0 YR,62
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Besides the optimal linear trails, we also investigate the linear hulls of SIMON
and SIMECK. With the input and output masks of the optimal linear trail,
we extend Algorithm 2 to find the linear hulls of SIMON and SIMECK. More
specifically, after finding the optimal linear trail, we fix the input and output
masks and search for linear trails with the same input and output masks of the
optimal linear trail. We obtain as many linear trails as possible and add their
squared correlations to get the potential.

For SIMON with block size 64, 96 and 128 bits, we find the 23, 31 and 41-
round linear hulls with potential 2−62.84, 2−93.8 and 2−123.15 respectively. As for
SIMECK with block size 32, 48 and 64 bits, the 13, 21 and 27-round linear hulls
are found, with potential 2−29.43, 2−46.3 and 2−61.14 respectively. As far as we
know, these are the best linear hull distinguishers for SIMON and SIMECK so
far. The linear hulls of SIMON and SIMECK are shown in Table 5 and Table
6. In these tables, (XL, XR) and (YL, YR) represent the input mask and output
mask respectively, where XL is the left half of the input mask and XR is the
right half.

Table 6. The linear hulls of SIMECK.

Block Size Round Input active bits Output active bits Potential Reference

32
13 XL,1 YR,1 2−30.91 [31]

13 XL,0, XL,4 YL,1, YR,0, YR,2, YR,4 2−29.43 this paper

48
20 XL,19, XL,21, XR,20 YL,21, YR,20 2−45.66 [31]

21 XL,1, XL,23, XR,0 YL,0, YR,1, YR,23 2−46.3 this paper

64
26 XL,18, XL,22 YL,22, YR,21 2−62.09 [31]

27 XL,0, XL,4 YL,3, YR,2, YR,4 2−61.14 this paper

7 Conclusion

In this paper, we derive an upper bound on the squared correlation of SIMON-
like round function. Based on this, we proved the upper bounds on the squared
correlation of linear trails for SIMON and SIMECK. Meanwhile, we propose
an automatic search algorithm for the optimal linear trails in SIMON-like ci-
phers. The block ciphers SIMON and SIMECK are used as a test platform for
demonstrating the practical application of our algorithm. With the proposed
algorithm, we find the provably optimal linear trails for all versions of block
ciphers SIMON and SIMECK, and report the provably optimal linear trails for
SIMON64, SIMON96 and SIMON128 for the first time. Besides the optimal
linear trails, we also find the best linear hulls for SIMON and SIMECK so far.

The proposed algorithm is not only helpful for evaluating the security of
SIMON-like ciphers against linear cryptanalysis, but also useful in the design of
SIMON-like ciphers.
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and T. Yalçin. PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In Advances in Cryptology - ASIACRYPT 2012
- 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages 208–
225, 2012.

15. C. D. Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN -
A family of small and efficient hardware-oriented block ciphers. In Cryptograph-
ic Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 272–288, 2009.

16. H. Chen and X. Wang. Improved linear hull attack on round-reduced simon with
dynamic key-guessing techniques. In Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, pages 428–449, 2016.

17. Z. Chen, N. Wang, and X. Wang. Impossible differential cryptanalysis of reduced
round SIMON. IACR Cryptology ePrint Archive, 2015:286, 2015.

18. N. Courtois, T. Mourouzis, G. Song, P. Sepehrdad, and P. Susil. Combined algebra-
ic and truncated differential cryptanalysis on reduced-round simon. In SECRYPT
2014 - Proceedings of the 11th International Conference on Security and Cryptog-
raphy, Vienna, Austria, 28-30 August, 2014, pages 399–404, 2014.

19. D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. Biryukov.
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A Proof of Theorem 2

Proof. Let k = a − b, Lβ(x) = β ∧ Sk(x) ⊕ Sn−k(β ∧ x), and U = ker(Lβ(x)),
where Si(x) = (x≪ i) for 0 ≤ i ≤ n− 1. Then as shown in [25], it holds

λ2
f (α, β) = (

∑
x∈Fn2

(−1)β·f(x)⊕α·x)2 ≤ | ker(Lβ(x))|2n.

Let

Mβ =


βn−1 . . . . . . 0

... βn−2

...
...

. . .
...

0 . . . . . . β0

 ,MSi =

(
0n−i,i In−i,n−i
Ii,i 0i,n−i

)
.

Then

Lβ(x) = (MβMSk ⊕MSn−kMβ) · xt = Lβ · xt,

where x = (xn−1, . . . , x0) ∈ Fn2 and xt means the transpose of x. Thus we get

C2(α, β) =
λf (α, β)

22n
≤ 2n−rank(Lβ)

2n
= 2−rank(Lβ).

Then we only need to investigate the rank of Lβ = MβMSk ⊕MSn−kMβ .
In the following, for a matrix M and 0 ≤ i, j ≤ n − 1, M [i] means the i-th
row of M , and M [i, j] means the j-th entry in i-th row of M . For example,
Mβ [0] = [βn−1, 0, . . . , 0].

Let L = MβMSk . Then MSn−kMβ = Lt and Lβ = L⊕Lt. For 0 ≤ i, j ≤ n−1,
it is easy to see that

L[i, j] =

{
βn−1−i if j = i+ k mod n
0 else

and

Lt[i, j] =

{
βk−1−i if j = i− k mod n
0 else,
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where k − 1− i is computed in Zn. Therefore

Lβ =



βn−1 βk−1




n− k

. . .
. . .

. . . β0

βn−1
. . .

. . . βk

βk−1
. . .

k
. . .

. . .

β0 βk

,

which means Lβ is a symmetric matrix. Furthermore, there are only two entries
which can be nonzero in the i-th row of Lβ , which are

Lβ [i, i+ k] and Lβ [i, i− k]

respectively for 0 ≤ i ≤ n− 1, and there are also only two entries which can be
nonzero in the i-th column of Lβ , which are

Lβ [i− k, i] and Lβ [i+ k, i]

respectively for 0 ≤ i ≤ n−1. Note that i±k means (i±k) mod n in the proof.
First, we prove that

rank(Lβ) ≥ wt(β).

Let S = {i | Lβ [i, i+ k] = 1, 0 ≤ i ≤ n− 1}. Then |S| = wt(β). We are going to
show that {Lβ [i] | i ∈ S} are linear independent. Suppose there exists S1 ⊆ S
such that ∑

i∈S1

Lβ [i] = 0. (1)

For i ∈ S1 ⊆ S, we have Lβ [i, i + k] = 1. Note that the only two entries in the
(i+k)-th column of Lβ that can be nonzero are Lβ [i, i+k] and Lβ [i+ 2k, i+k].
Then equality (1) means for i ∈ S1, it holds

Lβ [i+ 2k, i+ k] = 1 = Lβ [i+ k, i+ 2k],

from which we get i + 2k ∈ S1 ⊆ S and i + k ∈ S. Choosing i ∈ S1 and using
the above fact recursively, we can get that there exists l, such that

i+ 2lk = i mod n.

Then we have l = n
2 since gcd(k, n) = 1. This means equality (1) holds if and

only if S1 = {i+2jk | 0 ≤ j ≤ n
2 −1} for some 0 ≤ i ≤ n−1, which is equivalent

to that S1 = {1 + 2jk | 0 ≤ j ≤ n
2 − 1} or S1 = {2jk | 0 ≤ j ≤ n

2 − 1}. For
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the two cases, we can get that S = {i | 0 ≤ i ≤ n − 1}, which is equivalent to
wt(β) = n.

Therefore, when wt(β) = n, rank(Lβ) = n − 2 since both the odd rows and
even rows of Lβ are linear dependent. When wt(β) < n,

rank(Lβ) ≥ wt(β)

since
∑
i∈S1

Lβ [i] 6= 0 for any subset S1 ⊆ S. This means {Lβ [i] | i ∈ S} are linear

independent. This has proved the items (1) and (3).
Next, we prove that when wt(β) < n and wt(β) is odd, it holds

rank(Lβ) ≥ wt(β) + 1.

Let S = {i | Lβ [i, i + k] = 1, 0 ≤ i ≤ n − 1}, and S̄ = {i | Lβ [i, i − k] =
1, Lβ [i, i+k] = 0, 0 ≤ i ≤ n−1}. It is easy to see that S∩ S̄ = ∅ and S̄ = {i+k |
i ∈ S, i+ k 6∈ S}. Therefore, S̄ 6= ∅. Otherwise, {i+ k | i ∈ S} = S, which means
there exists 1 ≤ l ≤ n, such that i+ lk = i mod n for i ∈ S. This implies l = n
and hence wt(β) = n, which is a contradiction.

We define the function EL(i, j) as follows:

EL(i, j) =

{
(i− 2k, j) if j = i− k
(i, j − 2k) if j = i+ k,

where 0 ≤ i, j ≤ n− 1, and the computation is in Zn. We also define

ELk(i, j) =

{
(i, j) if k = 0
EL(ELk−1(i, j)) if k ≥ 1.

Note that for i ∈ S̄ it holds Lβ [i, i−k] = 1 and Lβ(i, i+k) = 1. Suppose i0 ∈ S̄.
Then there exists r ≥ 1 such that Lβ(ELr(i0, i0−k)) = 0. Let ri0 be the smallest
number such that Lβ(ELri0 (i0, i0 − k)) = 0. Then Lβ [ELk(i0, i0 − k)] = 1 for
0 ≤ k ≤ ri0−1. We call [ELk(i0, i0−k), 0 ≤ k ≤ ri0−1] be the elimination chain
of (i0, i0 − k) and ri0 is called the length of the elimination chain of (i0, i0 − k).

Note that wt(β) is odd, then there exists i0 ∈ S̄, such that the elimination
chain of (i0, i0 − k) has odd length. Otherwise, assume the elimination chain of
(i, i− k), which is denoted by ri, has even length for all i ∈ S̄. Then

{ELl(i1, i1 − k) | 0 ≤ l ≤ ri1} ∩ {ELl(i2, i2 − k) | 0 ≤ l ≤ ri2} = ∅

for i1 6= i2 ∈ S̄ and ∑
i∈S̄

ri = |S| = wt(β).

This means wt(β) is even, which contradicts with the supposition that wt(β) is
odd.

At last, we prove that {Lβ [i0]} ∪ {Lβ [i] | i ∈ S} is linear independent, where
i0 ∈ S̄ such that the elimination chain of (i0, i0 − k) has odd length. Let r be
the length, and let S2 = {i0 − 2lk | 1 ≤ l ≤ r−1

2 }.
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Note that Lβ [i, i0−k] = 0 for all i ∈ S\S2, and Lβ [i, i1−k] = 0 = Lβ [i, i1+k]
for all i ∈ S\S2 and i1 ∈ S2. Furthermore, since wt(Lβ [i0]) = 1 and wt(Lβ [i]) = 2
for i ∈ S2, then Lβ [i, j] = 0 for all i ∈ S2 ∪ {i0} and j ∈ {k | Lβ [t, k] =
1 for some t ∈ S \ (S2 ∪ {i0}), 0 ≤ k ≤ n− 1}. Thus, it only need to prove that

{Lβ [i0]} ∪ {Lβ [i] | i ∈ S2}

is linear independent. This is easy to prove since for any subset S3 ⊂ S2,
wt(Lβ [i0] +

∑
i∈S3

Lβ [i]) ≥ 1. Therefore, {Lβ [i0]} ∪ {Lβ [i] | i ∈ S} is linear in-

dependent and hence

rank(Lβ) ≥ |S|+ 1 = wt(β) + 1.

Then we complete the proof. ut

B Linear trails for SIMON

Table 7. Linear trails for SIMON32, SIMON48 and SIMON64

SIMON32 SIMON48 SIMON64

R ΓL ΓR log2c
2 ΓL ΓR log2c

2 ΓL ΓR log2c
2

0 447 0 −0 400004 1 −0 1 0 −0
1 0 447 −0 1 4 −2 0 1 −0
2 447 14 −8 4 0 −2 1 40000000 −2
3 14 440 −4 0 4 −0 40000000 10000001 −2
4 440 100 −4 4 40001 −2 10000001 4000000 −4
5 100 400 −2 40001 400404 −4 4000000 11000001 −2
6 400 0 −2 400404 104104 −6 11000001 40400000 −6
7 0 400 −0 104104 400404 −8 40400000 1100001 −4
8 400 100 −2 400404 40001 −6 1100001 1840000 −6
9 100 440 −2 40001 4 −4 1840000 1300001 −6
10 440 10 −4 4 0 −2 1300001 40c00000 −8
11 10 444 −2 0 4 −0 40c00000 11000001 −4
12 4 1 −2 11000001 4000000 −6
13 1 400004 −2 4000000 10000001 −2
14 400004 100000 −4 10000001 40000000 −4
15 100000 440004 −2 40000000 1 −2
16 1 0 −2
17 0 1 −0
18 1 40000000 −2
19 40000000 10000001 −2∑

r log2c
2
r −30 −46 −64
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Table 8. Linear trails for SIMON96 and SIMON128

SIMON96 SIMON128

R ΓL ΓR log2c
2 ΓL ΓR log2c

2

0 400000000044 1 −0 4000000000000004 1 −0
1 1 44 −2 1 4 −2
2 44 10 −4 4 0 −2
3 10 40 −2 0 4 −0
4 40 0 −2 4 1 −2
5 0 40 −0 1 4000000000000004 −2
6 40 10 −2 4000000000000004 1000000000000000 −4
7 10 44 −2 1000000000000000 4400000000000004 −2
8 44 1 −4 4400000000000004 100000000000001 −6
9 1 400000000044 −2 100000000000001 440000000000004 −4
10 400000000044 100000000010 −6 440000000000004 610000000000000 −6
11 100000000010 440000000040 −4 610000000000000 4c0000000000004 −6
12 440000000040 610000000000 −6 4c0000000000004 300000000000001 −8
13 610000000000 4c0000000040 −6 300000000000001 4400000000000004 −4
14 4c0000000040 300000000010 −8 4400000000000004 1000000000000000 −6
15 300000000010 400000000044 −4 1000000000000000 4000000000000004 −2
16 400000000044 1 −6 4000000000000004 1 −4
17 1 44 −2 1 4 −2
18 44 10 −4 4 0 −2
19 10 40 −2 0 4 −0
20 40 0 −2 4 1 −2
21 0 40 −0 1 4000000000000004 −2
22 40 10 −2 4000000000000004 1000000000000000 −4
23 10 44 −2 1000000000000000 4400000000000004 −2
24 44 1 −4 4400000000000004 100000000000001 −6
25 1 400000000044 −2 100000000000001 440000000000004 −4
26 400000000044 100000000010 −6 440000000000004 610000000000000 −6
27 100000000010 440000000040 −4 610000000000000 4c0000000000004 −6
28 440000000040 10000000000 −6 4c0000000000004 300000000000001 −8
29 300000000000001 4400000000000004 −4
30 4400000000000004 1000000000000000 −6
31 1000000000000000 4000000000000004 −2
32 4000000000000004 1 −4
33 1 4 −2
34 4 0 −2
35 0 4 −0
36 4 1 −2
37 1 4000000000000004 −2∑

r log2c
2
r −96 −128
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C Linear trails for SIMECK

Table 9. Linear trails for SIMECK32, SIMECK48 and SIMECK64

SIMECK32 SIMECK48 SIMECK64

R ΓL ΓR log2c
2 ΓL ΓR log2c

2 ΓL ΓR log2c
2

0 11 0 −0 1 0 −0 8000000a 1 −0
1 0 11 −0 0 1 −0 1 a −2
2 11 8 −4 1 800000 −2 a 4 −4
3 8 15 −2 800000 400001 −2 4 8 −2
4 15 2 −6 400001 200000 −4 8 0 −2
5 2 14 −2 200000 500001 −2 0 8 −0
6 14 8 −4 500001 800000 −6 8 4 −2
7 8 10 −2 800000 100001 −2 4 a −2
8 10 0 −2 100001 0 −4 a 1 −4
9 0 10 −0 0 100001 −0 1 8000000a −2
10 10 8 −2 100001 800000 −4 8000000a 4 −6
11 8 14 −2 800000 500001 −2 4 80000008 −2
12 14 2 −4 500001 200000 −6 80000008 0 −4
13 2 15 −2 200000 400001 −2 0 80000008 −0
14 400001 800000 −4 80000008 4 −4
15 800000 1 −2 4 8000000a −2
16 1 0 −2 8000000a 1 −6
17 0 1 −0 1 a −2
18 1 800000 −2 a 4 −4
19 800000 400001 −2 4 8 −2
20 8 0 −2
21 0 8 −0
22 8 4 −2
23 4 a −2
24 a 1 −4
25 1 8000000a −2∑

r log2c
2
r −32 −48 −64
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D The 19 and 20-round optimal linear trails for
SIMON48

Table 10. The 19 and 20-round optimal linear trails for SIMON48

19-round linear trail 20-round linear trail

R ΓL ΓR log2c
2 ΓL ΓR log2c

2

0 400004 1 −0 400044 1 −0
1 1 4 −2 1 44 −2
2 4 0 −2 44 10 −4
3 0 4 −0 10 40 −2
4 4 1 −2 40 0 −2
5 1 400004 −2 0 40 −0
6 400004 100000 −4 40 10 −2
7 100000 440004 −2 10 44 −2
8 440004 50401 −6 44 1 −4
9 50401 44704 −8 1 400044 −2
10 44704 1400 −10 400044 504010 −6
11 1400 44000 −4 504010 447040 −8
12 44000 10000 −4 447040 14000 −10
13 10000 40000 −2 14000 440000 −4
14 40000 0 −2 440000 100000 −4
15 0 40000 −0 100000 400000 −2
16 40000 10000 −2 400000 0 −2
17 10000 44000 −2 0 400000 −0
18 44000 1000 −4 400000 100000 −2
19 1000 44400 −2 100000 440000 −2
20 440000 10000 −4∑

r log2c
2
r −60 −64
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