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ABSTRACT:

Generation of a template containing spatial-frequency features of iris is an important stage of identification. The template is obtained
by a wavelet transform in an image region specified by iris borders. One of the main characteristics of the identification system is the
value of recognition error, equal error rate (EER) is used as criterion here. The optimal values (in sense of minimizing the EER) of
wavelet transform parameters depend on many factors: image quality, sharpness, size of characteristic objects, etc. It is hard to isolate
these factors and their influences. The work presents an attempt to study an influence of following factors to EER: iris segmentation
precision, defocus level, noise level. Several public domain iris image databases were involved in experiments. The images were
subjected to modelled distortions of said types. The dependencies of wavelet parameter and EER values from the distortion levels were
build. It is observed that the increase of the segmentation error and image noise leads to the increase of the optimal wavelength of the
wavelets, whereas the increase of defocus level leads to decreasing of this value.

1. INTRODUCTION

Commonly adopted work-flow of identification of human by the
iris image contains several steps: obtaining eye image, segmen-
tation of the iris region, building the iris feature set, and finally
matching two such sets by a distance function. These steps were
described in the very early works on iris identification (Daugman,
1993, Wildes, 1997). Therein methods of detecting stable and in-
formative iris features were proposed also. The clue idea of iris
feature extraction is convolving normalized iris image with a fil-
ter, which is local both in spatial and frequency domains. Most
popular type of the filter is so called Gabor wavelet (Daugman,
1993). Its simplified 1D representations in spatial and frequency
domains are
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whereσ andλ determine the spread of the wavelet in spatial do-
main and the wavelength of modulation. Using inverted values
S = 1/σ andW = 1/λ one can obtain simpler notation in fre-
quency domain:
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The modification of this is Log-Gabor function (Field, 1987), rep-
resented in frequency domain as:
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which is same as (2) except every quantity is replaced by its log-
arithm value. SinceS′ = S/W = λ/σ it represents a ratio of
wavelength to spread and is used frequently instead of spread it-
self. Log-Gabor wavelet is also used widely: (Kumar and Passi,
2010, Masek, 2003, Peters, 2009, Al-Saqqa et al., 2013). Most
likely, Log-Gabor function class is close to optimal for the given
task.

Filters (1), (3) depend on two parameters,σ and λ. Figure 1
illustrates that their variations yield extraction of different spatio-
frequency features of iris image. So the choice of parameters is
an important question. For the identification system, the principal
task is minimizing the recognition error probability. Here it is
estimated as the equal error rate (EER).

The problem of choosingλ andS′ minimizing the EER in each
given system was studied by many researchers. In (Masek, 2003)
optimal values ofS′ = 0.5 andλ varies from 12 to 18 pixels.
In (Peters, 2009) best performance was achieved withλ = 12
S′ = 0.5. In (Kumar and Passi, 2010) Log-Gabor filter is used,
optimal parameters are determined for two databases for CASIA-
1 (Institute of Automation, Chinese Academy of Sciences, 2010)
λ = 18, S′ = 0.55, for CASIA-3 λ = 22, S′ = 0.55. In
(Al-Saqqa et al., 2013) optimalS′ for different image types is
found in range[0.45, 0.6] and wavelength is fixedλ = 12. Filters
of variable scale are applied for template creation in (Nabti and
Bouridane, 2008). It should be noted that these works use var-
ious public and private databases, collected by various iris reg-
istration devices. Also the segmentation precision is unknown.
In the work (Sagbakken, 2007) dependency of EER upon noise,
defocusing and non-linear brightness modifications was studied.
The influence of segmentation to error level was thoroughly in-
vestigated in (Hofbauer et al., 2016) for three databases.

However the influence of these factors to optimal shape of feature
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Figure 1. (a) sample of source data, (b) normalized image, (c)
normalized occlusion mask, (d) binarized Log-GaborGσλ(u)

with S′ = 0.2, λ = 5 and (e) binarized Log-GaborGσλ(u) with
S′ = 0.65, λ = 25.

detection filter was not studied so far. In this work the attempt is
made to study how segmentation precision, degree of defocusing,
noise level affects EER,λ andS′ optimal values. Results for
Log-Gabor filter are presented, Gabor filter behaves similarly.

2. EXPERIMENT SETUP

Consider a test database containing a set of eye images, like the
one in Figure 1(a). Images are labelled with the persons’ names
in order to verify the correctness of identification. There is more
than one person in the database and more than one image per
person.

Each imageI(x, y) is processed in the following way. Iris seg-
mentation method (Gankin et al., 2014) is applied and outputs
the coordinates of pupil contour, iris contour and occlusion mask.
The pupil contour is the circle represented via its center and ra-
dius (xP , yP , rP ), which is the best approximation of pupil-iris
boundary. The iris contour is the circle(xI , yI , rI), approximat-
ing iris-sclera boundary. The occlusion maskM(x, y) is an im-
age of same size as source with zero pixels in place where iris is
covered by obstacles like eyelids, eyelashes, flashes.

Then theiris normalisation is performed. It is a transformation
of a ring, enclosed between iris and pupil circles to a rectangu-
lar region. The normalized image coordinate system is rectilin-
earOφρ, where horizontal axisOφ corresponds to angle mea-
sured along the pupil and iris circles in source image, and vertical
axisOρ corresponds to radial shift from pupil circle to iris circle.
This transformation is reduced to a well-knownpolar transform

in case if pupil and iris centres coincide,(xP , yP ) = (xI , yI).
Both source imageI(x, y) and maskM(x, y) are subjected to the
transformation, which yields their normalized versionsI(φ, ρ)
andM(φ, ρ). Figure 1(b) depicts a sample of normalized image
obtained from image in Figure 1(a) and Figure 1(c) shows occlu-
sion mask thereof.

There several possible models of this transformation, here the
most popular called “rubber-sheet model” (Daugman, 2002) is
used. The origin(x, y) for the point of normalised image(φ, ρ)
is expressed as:

x(ρ, φ) = (1− ρ)x1(φ) + ρx2(φ) ,
x1(φ) = xP + rP cos(φ) ,
x2(φ) = xI + rI cos(φ) ,

(4)

Coordinatey is computed accordingly. Dimensions of normal-
ized image are in ranges:ρ ∈ [0; 1], φ ∈ [0; 2π). Brightness of
the normalized image is obtained with the bilinear interpolation:

N(ρ, φ) =

(1− {x}) (1− {y})I (⌊x⌋, ⌊y⌋)+

{x} (1− {y})I (⌊x⌋+ 1, ⌊y⌋)+

(1− {x}) {y}I (⌊x⌋, ⌊y⌋+ 1)+

{x} {y}I (⌊x⌋+ 1, ⌊y⌋+ 1) ,

(5)

where⌊a⌋ and{a} are integer and fractional parts ofa respec-
tively.

Iris featuresV (φ, ρ) are calculated as convolution of normalized
image (5) with filters (2), (3):

V (φ, ρ) =N(φ, ρ) ∗ gσλ(φ) =

=F−1 {F {N(φ, ρ)}F {gσλ(φ)}} =

=F−1 {F {N(φ, ρ)}GSW (u)} .

(6)

HereF is the Fourier transform. Finally, the features used for
matching are obtained as binarization of real and imaginary parts
of convolved array (6):

TRe(φ, ρ) =

{

1, ℜ (V (φ, ρ)) > 0 ,
0, otherwise ,

TIm(φ, ρ) =

{

1, ℑ (V (φ, ρ)) > 0 ,
0, otherwise ,

(7)

Two components of (7) are joined together to form a template.
So, each eye imageI is converted to a templateT (I) and accom-
panying maskM(I).

Let set of images, ordatabase B = {I1, · · · , IM} containL
images, belonging toP persons. Each personp, p ∈ [1;P ]
is represented by several images, composing subset:Bp =
{

Ip,1, · · · , Ip,Lp

}

⊂ B, so as
∑

Lp = L. Biometric template
T (I) is generated from each image. Any two templates can be
matched with Hamming distance:

d0(T1, T2) =
1

|Ω|
|{T1(φ, ρ) 6= T2(φ, ρ), (φ, ρ) ∈ Ω}| , (8)

whereΩ = M1 ∩M2 is the intersection of non-occluded areas
of two matching templates. In fact, more complex distance func-
tion is used, which counts on possible uncertainty of iris angle
due to image rotation. The rotation of source eye image turns to
cyclic shift alongφ coordinate in normalized image. One of the
templates (together with mask) is rotated and matched, minimum
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distance is found:

d(T1, T2) = min
ψ
dψ(T1, T2) ,

dψ(T1, T2) =
1

Ω(ψ)

∣
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∣

{
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(φ, ρ) ∈ Ω(ψ)

}∣

∣

∣

∣

Ω(ψ) =M1(φ+ ψ) ∩M2(φ) ,

(9)

The distance is normalized to the range[0; 1]. Without limitation
of generality one can speak about matching images themselves:
d(Ii, Ij) = d (T (Ii), T (Ij)). Matchingd (Ip,i, Iq,j) is called
genuine if p = q, i.e. images belong to one person, andimpostor
otherwise. All database images are pairwisely matched against
each other forming totallyL2 distances. Total number of genuine
matches is:

Ngenuine = |{(Ip,i, Iq,j) : p = q}| =
P
∑

p=1

L2

p , (10)

and total number of impostor matches is:

Nimpostor = L2 −Ngenuine . (11)

Using distance as a classifier and taking thresholdΘ ∈ [0; 1]
one can determine the number of classification errors of the first
kind (false reject) as the number of genuine matches with distance
above or equal toΘ:

NFR(Θ) = |{(Ip,i, Iq,j) : p = q , d(Ip,i, Iq,j) > Θ}| . (12)

Number of impostor matches with distance less or equal thanΘ
is a count of errors of the second kind (false accept):

NFA(Θ) = |{(Ip,i, Iq,j) : p 6= q , d(Ip,i, Iq,j) 6 Θ}| . (13)

Relative errors are:

EFR(Θ) =
NFR(Θ)

Ngenuine
, EFA(Θ) =

NFA(Θ)

Nimpostor
. (14)

Call Detection Error Tradeoff, DET-curve a polyline passing
through points(EFR(Θ), EFA(Θ)). By construction

EFR(0) = 1, EFR(1) = 0, EFA(0) = 0, EFA(1) = 1,

hence there exists a threshold where lines do intersect:

ΘEER : EFR(ΘEER) = EFA(ΘEER) , (15)

and values of relative errors of first an second kind equate. The
value of error at the intersection is called equal error rate (EER).

Since EER depends on feature detection parameters, one can
writeEER(λ,S′) and search the optimum:

EER∗ = min
λ,S′

EER(λ,S′) ,

(λ∗, S∗) = argmin
λ,S′

EER(λ,S′) .
(16)

Both small (i.e. near zero) and big (i.e. comparable with normal-
ized image size) values ofλ andS′ yield degenerate features and
high EER values. Thus the problem of minimizing EER is feasi-
ble. The optimum in the performed experiments was located with
exhaustive search. Figure 2 shows a sample result of such search.
Horizontal axis corresponds toλ, vertical axis givesS′, the EER
value is defined by color as shown in scale on the right, and is

Figure 2. Search ofλ∗, S∗ andEER∗.

expressed in percent. Red cross marks the position of optimum
with coordinatesλ∗ = 10, S∗ = 0.345 andEER∗ = 0.22%.

Each of examined degrading factors was modelled by introducing
the controlled distortions into the source data. The strength of the
distortions was set by a parameterKfactor. The dependency of
λ∗, S∗ andEER∗ onKfactor was recorded.

Two publicly available iris image databases were used: CASIA4-
Thousand (Institute of Automation, Chinese Academy of Sci-
ences, 2010), NDIRIS (Phillips et al., 2010). Hamming distance
was used for matching the templates.

3. INFLUENCE OF BLURRING AND NOISE

Image blurring is modelled by convolution of source image with
a unit filter of3 ∗ 3 size, appliedKblur times.

Figure 3 shows dependency of optimal wavelength and spread
values on the blurring strength parameterλ∗(Kblur).

One can see that optimal wavelength of Log-Gabor filter exhibit
substantial decrease with the growth of blurring. This may seem
strange, intuitively one would expect them growing. The expla-
nation is the fact that Log-Gabor filter itself produce image av-
eraging to the extent of itsλ and thus preliminary blurring plays
a role of widening the wavelength, so own filter’sλ should be
shifted to lower values.

Noise is modelled as an additive brightness value normally dis-
tributed with zero average and mean square deviationKnoise.
Figure 4 shows dependency of optimal filter parameter values on
the noise strength parameter. Increasing of the noise predictably
leads to increasing EER and optimal wavelength.

4. INFLUENCE OF SEGMENTATION ERROR

Iris regions were segmented from image automatically by a set
of methods described in (He et al., 2009, Gankin et al., 2014).
Modelled distortions were applied to the images and segmenta-
tion data, then the EER values were calculated for a set ofλ and
S′, and the optimal values of those were detected.

Iris region is described as a ring enclosed between two (possi-
bly non-concentric) circles, which approximate inner and outer
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Figure 3. Dependency of optimal parameters onKblur.

borders of the iris. The circles are defined by their centres and
radii, (xP , yP , rP ) for pupil and(xI , yI , rI) for iris. These six
parameters together compose the six-dimensional vector~b0 =
(xP , yP , rP , xI , yI , rI)

T for each image. Segmentation error is
modelled by summing this vector with a vector~r composed from
independent variates uniformly distributed in a range[−1; 1],
multiplied by the parameterKsegm: ~b = ~b0 + Ksegm~r. The
parameterKsegm determines the level of distortion.

Figure 5 shows dependency of optimal filter parameter values and
EER on the segmentation distortion strength. EER is expressed
in percent. The increase ofKsegm leads to growth of EER as
well as optimal values ofλ andS′. Thus for bigger segmentation
distortions the error of recognition is higher and filters with larger
wavelengths and spreads are required.

5. CONCLUSIONS AND FURTHER WORK

The dependency of optimal filter parameters on three data distor-
tion types was studied.

Optimal parameters of Log-Gabor filter substantially depend
upon precision of segmentation and image noise. With the in-
crease of segmentation distortions and image noise optimal wave-
length is also monotonously increasing, as well as the classifica-
tion error. However, small errors of segmentationKsegm ∈ [0; 2]

Figure 4. Dependency of optimal parameters onKnoise.

do not cause substantial change. Defocusing decreases the opti-
mal wavelength of Log-Gabor filter.

This methodology for determining optimal parameters may be
applied to any type of parametrized filters. In future work we plan
to change resource-consuming exhaustive search to more elabo-
rate optimization procedure.
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