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ABSTRACT: 

In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for 

testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 

338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep 

Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images 

using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward 

detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared 

to algorithms based on conventional image analysis methods.

1. INTRODUCTION

1.1 Conventional approaches 

An automatic highlighting of lung tuberculosis (TB) lesions in 

CT images is one of important problems in corresponding CAD 

systems, PACS environment and thematic web-portals. 

Automatic detection of lung lesions is a complicated problem 

due to a large variety of lesion types. Lung lesions could be 

very different in size (e.g., nodules and lung masses). They may 

have different location and different internal structure. For 

instance, the internal structure of lung cancer tumors looks like 

a solid neoplasm whereas lesions of miliary tuberculosis are 

spread with rather textural appearance. Also, lesions may have 

some specific shape and intensity features characteristic for 

certain diseases. Thus, automatic lesion detection algorithms 

require large amount of training data. 

Recently several methods are suggested for this problem. The 

most popular of them are based on the approach suggested in 

(van Ginneken, B., 2003) which considers local histograms of a 

collection of filtered versions of the image. Some trials were 

made using the concept of image superpixels (Liauchuk, V., 

2016). A number of conventional image analysis methods were 

compared on the task of classification of 3D CT images into one 

of five different types of tuberculosis (Kovalev, V., 2016a) 

using a dataset of 500 CT scans. Most of the methods 

demonstrated moderate classification performance. 

1.2 Emergence of Deep Learning 

Recently, a novel concept of so called Deep Learning which 

utilizes Deep Convolutional Networks has been emerged 

drastically. Currently, Deep Learning is used for a great variety 

of computer science tasks such as image classification, semantic 

segmentation, object detection and localization, etc. A number 

of studies has proven the efficiency of utilizing Deep 

Convolutional Networks in biomedical image analysis tasks 

(Ravi, D., 2017; Zhou, S., 2017; Litjens, G., 2017.). Several 

studies accomplished by authors on the use of Convolutional 

Neural Networks for histology image classification in breast 

cancer diagnosis (Kovalev, V., 2016b), lung segmentation 

(Kalinovsky, A. 2016) and lung lesion detection in computed 

tomography images of tuberculosis patients confirms the 

applicability and power of Deep Learning methods in medical 

imaging domain. 

The purpose of this study is to examine the abilities of Deep 

Convolutional Networks to automatically detect different types 

of tuberculosis lesions and to compare them to conventional 

methods on a dataset of manually labeled 3D CT scans. 

2. MATERIALS

2.1 Original CT scans 

For this study, a total number of 500 3D CT images of 

tuberculosis patients (one image per patient) were used. Each 

3D CT image consisted of 50–400 2D slices of 512×512 pixels 

in size. Slice thickness varied from 1.25 to 5 mm, though for 

most images it was 2.5 mm. The variety of lesions was 

represented by five different types of tuberculosis: infiltrative, 

focal, tuberculoma, miliary, and fibro-cavernous. On each CT 

image, tuberculosis lesions were manually segmented under 

supervision of a qualified radiologist (see Figure 1). 
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Figure 1. Example slices of manual 3D CT lesion labeling 

Also, 3D masks of segmented lungs were available for each 

image for better identification of regions of interest. The masks 

were generated automatically using a method based on 3D 

image registration. 

 

Further, this dataset of 500 CT scans was sub-sampled, divided 

into groups and processed differently for different techniques of 

lesion detection as described below. 

 

2.2 Dataset for sliding-window technique 

From the total amount of 500 CT scans, 338 CT images 

corresponding to unique patients were selected for automatic 

extraction of 2D CT-slice regions of interest (ROIs) of size 

128×128 pixels. The square ROIs corresponded to two classes: 

(1) regions without any visible TB lesions (controls); (2) 

regions with TB lesions. The automated extraction procedure 

followed by manual selection of appropriate ROIs of "TB" class 

resulted in a total number of 149,273 ROIs including 37,262 

ROIs containing lung lesions (any type) and 112,011 control 

ROIs. Finally, all ROIs were resized to 256×256 pixels to fit the 

requirements of the Deep Convolutional Network utilized. 

Examples are presented in Figure 2. 

 

 
 

Figure. 2. Examples of lung lesions and control CT image 

regions 

 

2.3 Dataset for 2D slice-wise segmentation technique 

As it was in the previous case, 338 CT images of unique 

patients were selected for this task. A total number of 39 000 

2D slices were sampled from original 3D CT scans. For each 

slice two neighboring slices were used to compose a single 

RGB image in order to use spatial information along Z-axis of 

original CT images. Finally, each 512×512 pixel slice was split 

into four quadrants of size 256×256 to better fit the architecture 

of the Deep Convolutional Network used with this study. Thus, 

from 270 training CT images a total number of 123 788 2D 

slice quadrants were extracted. Validation set consisted of 

32 212 slice quadrants extracted from the remaining 68 CT 

scans. 

 

For each slice quadrant a corresponding label image was 

composed using manually labeled lesion data (see Figure 3). In 

total 3 classes of pixels were present on label images: non-

lesion regions (marked with black), lesion regions (marked with 

blue), and so called “don’t-care” regions (marked with grey). 

“Don’t-care” label was assigned to all the pixels which lay 

outside of lung region and to a thin border between lesion and 

non-lesion region. When put into the Deep Neural Network, 

such regions are completely ignored from consideration by the 

algorithm both during training and validation stages which 

allows to better focus the available computational facilities on 

the actual regions of interest. 

 

 
 

Figure. 3. Examples of CT slice quadrants and the 

corresponding class labels for slice-wise semantic segmentation 

 

2.4 Dataset for 3D segmentation technique 

The task of lesions detecting in CT chest images can be divided 

into two almost independent steps: (1) lung boundary 

segmentation in chest area, (2) lesions regions detection 

(preferably segmentation) in the chest area. Both problems can 

be solved by using different image analysis algorithms. With 

this study, both problems were solved using a single approach 

based on Deep Convolutional Neural Networks model for 

semantic segmentation (Badrinarayanan, V., 2015; Farabet, C., 

2013). In our experiments, we used manually labeled 3D CT 

chest images of patients of patients with five types of 

tuberculosis: infiltrative, focal, tuberculoma, miliary, fibro-

cavernous. 

 

The essential difference between the size of the lesions for 

different types of tuberculosis is one of the main difficulties in 

solving the problem. In the case of very small lesions, there 

need to work on high-resolution CT images. For this reason at 

this stage we used only those types of tuberculosis with large 
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areas of lesions: “Infiltrative” and “Fibro-cavernous”. Thus, a 

total number of 200 CT scans were used for training and testing 

of lesion segmentation algorithms. To evaluate the quality of the 

model and to be able to control the learning process, we divided 

data on a 70/30 percent for training and validation respectively. 

 

3. COMPARISON WITH CONVENTIONAL METHODS 

This preliminary study is aimed at assessing the capability of 

Deep Neural Networks to distinguish CT image regions with 

lesions from control regions and its comparison with 

conventional image analysis methods. For this purpose the 

dataset described in section 2.2 was used within a 5-fold cross 

validation procedure. 

 

3.1 Conventional methods 

Conventional methods of image classification were based on a 

typical procedure which includes calculation of image 

descriptors, reducing feature space by Principal Component 

Analysis method and supplying the relevant principal 

components into a Linear model and Random Forest classifier. 

The commonly known histograms of Local Binary Patterns 

(Pietikäinen, M., 2011) as well as 2D version of extended co-

occurrence matrices (Kovalev, V., 1996; Kovalev, V., 2001) 

which fuse the intensity, gradient magnitude, and anisotropy 

image properties were used as image descriptors. In addition, 

we calculated also the commonly known Histograms of 

Oriented Gradients and Banks of Filters. 

 

3.2 Deep Learning method 

The GoogLeNet Convolutional Neural Network was trained in 

classification mode using Nvidia Deep Learning GPU Training 

System (DIGITS) interface. DIGITS integrates the popular 

Caffe deep learning framework which supports GPU 

acceleration using cuDNN to massively reduce training time. 

The training was performed on a personal computer equipped 

with Intel i7-6700K CPU and dedicated GPU of Nvidia TITAN 

X type with 3072 CUDA Cores and 12 GB of GDDR5 onboard 

memory. The network training parameters were set to the 

following values: Number of epochs=120, Activation 

function=ReLu, Batch size (minimum size to place network in 

GPU memory)=64, Number of iterations=220,000, Solver 

type=SGD Caffe solver. No image data augmentation 

procedures applied to extend the training set. 

 

3.3 Results and comparison 

The performance of methods was assessed using area under 

ROC-curve (AUC). Conventional methods provide relatively 

low classification performance with AUC values of 0.811 for 

Histograms of Oriented Gradients, 0.834 for Filter Banks, 0.849 

for LBP features, and finally 0.874 for extended co-occurrence 

matrices. Combining all above image descriptors into one table, 

entering it into PCA and performing classification using the 

relevant output principal components provides even better 

classification quality with AUC=0.895. Nevertheless, the Deep 

Learning approach employing GoogLeNet provides 

substantially better results with AUC value as high as 0.969. 

 

4. LESION DETECTION 

4.1 Lesion detection using sliding-window technique 

At this stage GoogLeNet was trained on the training set 118 409 

2D ROIs (89 476 control ROIs and 28 933 ROIs with lesions) 

which were extracted from 270 training CT images as it is 

described in section 3.2. On the validation set of 30 864 ROIs 

(22 535 control ROIs and 8 329 ROIs with lesions) extracted 

from the remaining 68 CT images the network demonstrated 

93.2% of classification accuracy. 

 

The trained neural network was then applied to validation CT 

images using 2D sliding window of size 128×128 pixels with 

32-pixel step for each slice. Before inputting into the trained 

neural network image regions were resized to 256×256 pixels to 

fit the network architecture. Finally, the lesion probabilities 

provided by neural network were averaged and the resultant 3D 

lesion-probability maps were composed. Examples are shown in 

Figure 4. 

 

 
 

Figure 4. Examples of lesion-probability maps obtained via 

sliding-window technique 

 

4.2 Lesion detection using slice-wise segmentation  

At this stage the dataset described in section 2.3 was used with 

exactly the same CT scans used for both training and validation 

as it was in the case of sliding window technique. For 

segmentation of lesions in 2D slices a Fully Convolutional 

Network Alexnet (Long, J., 2015) was used. In order to increase 

convergence rate and overall accuracy, a publically available 

ILSVRC2012-trained model was used to initialize the 

network’s weights. 

 

The training was performed using NVIDIA DIGITS interface 

and Caffee framework. The network training parameters were 

set to the following values: Number of epochs=120, Activation 

function=ReLu, Batch size=64, Solver type=SGD Caffe solver. 

Learning Rate was set to 0.001 for the first 20 epochs, 0.0001 

for the next 20 and 0.00001 for the last 20 ones. Finally, the 

trained network demonstrated 88.7% of segmentation accuracy 

on the validation set. 

 

The resultant 2D probability maps of slice quadrants were used 

to compose final 3D lesion probability maps. Examples are 

shown in Figure 5. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W4, 2017 
2nd International ISPRS Workshop on PSBB, 15–17 May 2017, Moscow, Russia

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W4-13-2017

 
15



 

 
 

Figure 5. Examples of lesion-probability maps obtained via 

slice-wise segmentation technique 

 

4.3 Lesion detection using 3D semantic segmentation 

At this stage the general scheme of neural network type 

Convolutional Encoder-Decoder was used as a deep learning 

model (Figure 6). 

 
 

Figure 6. A general scheme of the deep neural network used for 

segmentation and detection of the lesion of the lung 

 

This model is suitable for solving the problem of semantic 

segmentation for both 2D and 3D images. In the case of 3D 

images, we simply use the 3D convolution, and input-output 

shape of data structures is increased by one dimension. To 

obtain high accuracy in the segmentation task it is necessary to 

use high-resolution source images chest area. However, this 

approach is difficult to implement since high-resolution Deep 

Neural Network 3D model requires large amount of memory on 

the stage of training and validation. Therefore, we used an 

intermediate approach for chest lung segmentation problem. As 

an input to the neural network we applied several layers (1-5) of 

CT 3D image. The output of the network matched to the 2D 

mask of central layer. Several experiments were carried out with 

different numbers of CT-layers. In addition, we compared two 

methods for Decoding part of network: simple and interpolated. 

Model with three layers and interpolation allows obtaining the 

best result. Using this approach, we have increased the quality 

of lung segmentation of from 0.89 (128x128x64 with 3D 

convolution) to 0.95 (2D convolution with multiple slices) of 

IoU (intersection of union) score.  

 

For the task of lesion detection we used a 3D model of the 

input-output data for low-resolution (128x128x64) CT images. 

The example results are shown in Figure 7. 

 

 
 

Figure 7. Examples of lesion-probability maps obtained via  

3D semantic segmentation technique 

 

5. CONCLUSIONS 

The three mentioned methods of lesion detection in 3D CT 

images were assessed and compared using Receiver Operating 

Characteristic (ROC) curves. Such approach allows working 

directly with lesion probabilities of voxels without setting up 

any thresholds, optimal values of which can be different for 

different lesion detection methods. 

 

The assessment was performed with use of CT images from 

validation dataset in a rather straightforward voxel-wise manner 

without any post-processing of the obtained probability maps. 

The resultant ROC-curves can be seen in Figure 8. 

 

 
 

Figure 8. ROC-curves for voxel-wise lesion detection for the 

three techniques considered. 

 

In the result, 2D sliding-window and 2D slice-wise techniques 

demonstrated comparable results with areas under ROC-curve 

being equal to 0.784 and 0.785 respectively. Lesion detection 

technique based on 3D convolution however demonstrated a bit 

poorer results with area under curve equal to 0.775. This may 

explained by significant reduction of image size during the 

training stage of 3D-based algorithm which caused some loss of 

information. Moreover, the manual lesion segmentation which 

is used both for training and testing with this study needs to be 

more precise in order to achieve more meaningful comparison 
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of the methods performance. Further investigations on the 

influence of training image size and post-processing of lesion 

probability maps on the final quality are required. 

Methods based on Deep Learning proved to be a promising tool 

for detection of lesion in 3D CT images and many other 

biomedical image analysis tasks.  
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