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ABSTRACT:

Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods
based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing
of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for
a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition
in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training
of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also
capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of
style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image
datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing
large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural

networks.

1. INTRODUCTION

Thermal cameras provide a robust solution for object detection
and scene understanding. As the thermal vision is robust against
degraded visual environments such as fog, dust or night time it
is widely used for driver support systems such as an enhanced
vision system. Thermal imaging is also widely exploited in the
field of autonomous driving, where it helps to improve object de-
tection rates significantly. However the appearance of objects in
thermal images could change greatly for different weather condi-
tions. Thus a powerful object detection algorithm is required to
detect and recognise objects in thermal images.

Deep convolutional neural networks (CNN) have significantly cha-
nged the landscape of the modern computer vision. Nowadays

methods based on deep neural networks show the best perfor-
mance among image recognition and object detection algorithms.
CNN also provide flexible solution for object detection in multi-
spectral images. For a successful learning of a CNN a large train-
ing dataset with thousands of images is required. An intensive

scholar attention to the field of CNN stimulated the development

of extremely large image datasets with ground truth labelling of
tens million of images (Deng et al., 2009, Lin et al., 2014, Ev-
eringham et al., 2015). Most of datasets that are available on-
line include only images captured in visible spectrum and could

not be used for training of multispectral CNN. Existing multispec-
tral datasets are either not available in public domain(Weber and

Penn, 2005) or have imperfect geometrical alignment (Hwang et

al., 2015) (figure 1).

The key step in the development of the new generation of mul-
tispectral object detection algorithms using CNN is the genera-
tion of large multispectral datasets. The direct creation of such
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Figure 1. An example of imperfect geometrical alignment in
‘Multispectral Pedestrian Dataset’. Note the position of the
manhole on the infrared frame (left) and the visible frame (right)

datasets using experiments is time consuming and hardly could
guarantee the required variety of images and object classes. 3D
modelling provide a flexible solution for synthetic thermal image
generation (Kniaz et al., 2016). The main drawback of this tech-
nique is a highly time consuming 3D model generation step that is
done manualy. Also noise and distortion of real sensors is absent
on synthetic images (figure 2).

This paper is focused on the development of a CNN for transfor-
mation of visible range images into infrared images. The devel-
oped CNN is based on the SqweezeNet CNN. (Forrest N. Iandola,
2016). The CNN was trained using NVIDIA DIGITS. (NVIDIA,
2016)

2. RELATED WORK

The first mention of the use of deep convolutional neural net-
works for image generation appeared in 2013. (Zeiler and Fergus,
2013). In this article, the authors proposed a method for visual-
ising a trained network based on the selection of an image that
gives the maximum response of a given filter. It is commonly
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Figure 2. An example of synthetic thermal image generated
using 3D modelling

known, that CNN is most often used for image recognition. How-
ever (Zhang et al., 2016) showed that they can also be used to
colorise monochrome images (figure 3).

——

Figure 3. Creating a color image from a monochrome using
CNN

Recently a network has been developed capable of simulating var-
ious artistic styles (Zhang et al., 2016, Gatys et al., 2015, Desh-
pande et al., 2015) An image containing the reference style, and

Figure 4. Imitation of different artistic styles

the source image is given as an input for the network. After that,
the image is generated using the stochastic gradient descent (fig-
ure 4). The style is taken from outputs of the filters for a given
reference image, and the content is taken from outputs of filters
for the original image. By varying network parameters, you can
adjust the predominance of either the style or the content in the
new image.

The question arises: is it possible to use a CNN to transform im-
ages from one spectral to another? In (Limmer and Lensch, 2016),
a method is proposed for converting near-infrared images to visi-

ble images (figure 5). This paper presents the deep CNN for trans-
formation of visible images to infrared images.

Figure 5. Converting an infrared image to a visible range image

3. APPROACH

The proposed method of image transformation is based on the
use of a CNN for semantic image segmentation. A great num-
ber of CNN architectures were developed for image classifica-
tion. Semantic image segmentation requires significant changes
in CNN architectures. Such architectures are commonly known
as ‘fully convolutional’ networks (Long et al., 2015) with no fully-
connected layers (Long et al., 2016). In addition, the deconvolu-
tion layers (Hyeonwoo et al., 2015) are widely used to solve the
problem of semantic segmentation.

3.1 Objective function

Given an input color image X € RE*W>3 our objective is to

learn a mapping Y = F(X) to thermal emission Y € RF*W,
where H, W are image dimentions. We use multinomial cross
entropy loss L[, defined as

Led(Y,Y) == v(Ynw) Y Yhuwqlog(Ynuwg) (1)

h,w q

The per-pixel, unnormalised softmax loss provides a good perfor-
mance for segmenting images of various sizes into disjoint classes.
The key idea of the softmax operation is the competition between
classes. The competition promotes the most confident prediction.
Another option is to train the network with the sigmoid cross-
entropy loss. In (Zhang et al., 2016) it was shown that the sigmoid
cross-entropy loss gives similar results, even though it normalises
each class prediction independently.

3.2 Deep CNNs

The SqweezeNet CNN was developed in 2016. According to the
authors, while preserving the accuracy of AlexNet (Krizhevsky et
al., 2012), its a performance is 50 times higher. This became pos-
sible due to the replacement of the convolution with 3 x 3 filters
by the convolution with 1 x 1 filters. Such replacement reduces
the number of parameters by a factor of 9. The input of the remain-
ing 3 x 3 filters is sampled only by a small number of channels.
The size reduction is done as late as possible so that the convo-
lution layers have a large activation area. These three strategies
have led to the creation of the so-called ‘fire module’. The en-
tire network is constructed using this modules. The architecture
of the Thermalnet network (figure 6) has the following contribu-
tions. Firstly, two deconvolution layers were added to restore the
spatial resolution of the input image. Secondly, a global avgpool
layer was removed to reduce the number of parameters.
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Figure 6. The architecture of the Thermalnet neural network

3.3 Framework

CNN training was done using the NVIDIA Digits environment.
It is an open source software designed to perform research on the
design and training of deep neural networks. DIGITS provides
capabilities for training on large data sets locally and from the re-
mote computer. The DIGITS also provides visualisation of neural
networks and manages previously obtained results and models for
comparison with new ones.

3.4 Postprocessing

After the infrared images were generated, the postprocessing was
performed using the algorithm proposed in (Gatys et al., 2015).
For this, a trained VGG-16 (Simonyan and Zisserman, 2014) net-
work was used which was used. The network serves as a measure
of similarity during the iterative generation of the output image
that must match a given reference image. The network was oper-
ated using the Torch7 (Collobert R., 2011) library. The method of
imitating a style using a deep convolutional network is based on
an iterative selection of the required image, in which the network
acts as a measure of the similarity of the ‘style’. The generation
of a new image with the matching style is done using a gradient

descent. The initial image is initialised with a Gaussian white
noise. After that the initial image changes until it produces the
same response in a specific layer of the network as the original
image. The post-processing operation was performed to reduce
the quadratic loss error between the resulting image and the refer-
ence image.

4. DATASET
4.1 Dataset design

The training dataset consists of 1000 pairs of geometrically aligned
pairs of television and thermal imaging images of various objects
(figure 7). The choice of scenes and objects was due to the pres-
ence of a significant thermal contrast between the object of in-
terest and the environment. It is obvious that multiply correct
thermal images could be produced for a given colour image if
the temperature of the object will be changed. However in the
scope of training image dataset augmentation problem any ther-
mal image that could possibly correspond to the given colour im-
age will be the correct solution. Moreover, if there will be more
different (but physically possible) thermal images in the training
dataset the performance of the trained recognition algorithm will
improve. Visible range images were used as inputs to the CNN.
Infrared images served as the ground truth.

(b) IR image

(a) TV image

Figure 7. Example of a pair of images from the training sample

4.2 Dataset generation

To create a training sample, the FLIR One portable thermal imag-
ing camera was used. Its technical specification are presented in
table 1.

Parameter Value
Visible range resolution 640x480
Infrared resolution 160x120
Field of view 35x45
Temperature range -20...120C
The spectral range 8 —14 um
Pixel size 12 pm

Table 1. FLIR One camera parameters

FLIR One is a portable device that has a visible range and ther-
mal imaging camera and connects to a smartphone. The thermal
imager has a built-in battery, which allows it to work up to 45
minutes. The database was both indoors and outdoors under the
same weather and temperature conditions.
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5. EXPERIMENTS

The network was trained using a Titan X PASCAL captured GPU
and was 1000 epochs. In figure 8 the graph of a validation loss is
presented.
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Figure 8. Validation loss for the training dataset

5.1 CNN evaluation

The testing of the trained network was carried out using the test
dataset including 100 image pairs. The degree of similarity be-
tween the synthetic images and the original infrared images was
estimated using the test dataset. The root mean square error (RMS)
metric was used to measure the difference between real infrared
and synthesised images. The RMS is given by

\/Zh w(Yh,w - \A(h,w)Q
Erms = - 5
h-w

@

where Y is brightness of the source infrared image, Y - brightness
of the syntetic infrared image, h, w are image dimensions. The
average RMS for the training dataset is present in table 2. The
network was capable to corrected predict the thermal emission of
the objects. However a significant presence of high frequency
components that were absent on original thermal image. Exam-
ples of generated images are shown in figures 9-10.

5.2 Postprocessing evaluation

The evaluation of the post processing step was performed using
the same test dataset. For each synthetic thermal image a new
image was generated using the style reconstruction. An original
thermal image was used as the source for the style. A RMS was
computed using equation (2) to evaluate the performance of the
postprocessing. An evaluation have shown that the style recon-
struction failed to imitate the smoothness and distortion present
in original thermal images. The results of evaluation are sum-
marised in table 2.

Method
+ +
Object TN TN+PP | TN+GS
Human 9.1 31.9 7.5
Microwave oven 37.8 60.4 29.2
Computer 16.7 36.5 13.5

Table 2. Average RMS. TN — Thermalnet, TN + PP —

Thermalnet + postprocessing, TN+ GS — Thermalnet + gaussian

smooth 3x3

(a) TV image

(b) IR image

(c) Syntetic IR image

Figure 9. Examples of generated images
6. CONCLUSION

A deep convolutional network for synthetic thermal image gener-
ation was developed. The network is based on the SqueezeNet
deep convolutional network. The original architecture was mod-
ified and supplemented with deconvolution layers. The network
architecture for the NVIDIA DIGITS platform was written. To
train the network a training dataset was collected using the FLIR
ONE thermal camera. The training dataset consists of 1000 pairs
of geometrically aligned pairs of visible spectrum and infrared im-
ages of various objects. The network was trained using the train-
ing dataset. The final loss during the training stage was equal
to 0.5%. The network performance was evaluated using the test
dataset including 100 image pairs. The evaluation have shown
that the network is capable to correctly recover the thermal emis-
sion of the objects that were present in the training dataset.
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(b) IR image

(c) Syntetic IR image

Figure 10. Examples of generated images

00940 mon_a and by Russian Science Foundation (RSF) accord-
ing to the research project Ne 16-11-00082.

REFERENCES

Collobert R., Kavukcuoglu K., F. C.,2011. Torch7: A Matlab-like
Environment for Machine Learning. NIPS Workshop.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L.,
2009. ImageNet: A large-scale hierarchical image database. In:
2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPR Workshops), 1EEE,
pp. 248-255.

Deshpande, A., Rock, J. and Forsyth, D., 2015. Learning Large-
Scale Automatic Image Colorization. In: 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), IEEE, pp. 567—
575.

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C.
K. I, Winn, J. and Zisserman, A., 2015. The pascal visual ob-
ject classes challenge: A retrospective. International Journal of
Computer Vision 111(1), pp. 98-136.

Forrest N. Iandola, Song Han, M. W. M., 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5MB
model size.

Gatys, L. A., Ecker, A. S. and Bethge, M., 2015. A Neural Algo-
rithm of Artistic Style. CoRR.

Hwang, S., Park, J., Kim, N., Choi, Y. and Kweon, I. S., 2015.
Multispectral pedestrian detection - Benchmark dataset and base-
line. CVPR pp. 1037-1045.

Hyeonwoo, N., Seunghoon, H. and Bohyung, H., 2015. Learn-
ing Deconvolution Network for Semantic Segmentation. Depart-
ment of Computer Science and Engineering, POSTECH, Korea
ICCV2015.

Kniaz, V., Gorbatsevich, V. and Mizginov, V., 2016. Generation of
synthetic infrared images and their visual quality estimation using
deep convolutional neural networks. Scientific Visualization 8(4),
pp- 67-79.

Krizhevsky, A., Sutskever, 1. and Hinton, G. E., 2012. Imagenet
classification with deep convolutional neural networks. Advances
in Neural Information Processing Systems.

Infrared Col-
CoRR

Limmer, M. and Lensch, H. P. A., 2016.
orization Using Deep Convolutional Neural Networks.
abs/1501.02565.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R.,
Hays, J., Perona, P., Ramanan, D., Zitnick, C. L. and Dollar, P.,
2014. Microsoft COCO: Common Objects in Context. ArXiv e-
prints.

Long, J., Shelhamer, E. and Darrell, T., 2015. Fully convolutional
networks for semantic segmentation. /EEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Long, J., Shelhamer, E. and Darrell, T., 2016. Fully Convolutional
Models for Semantic Segmentation. CVPR 2015, and PAMI 2016.

NVIDIA, 2016. NVIDIA deep learning gpu training system.
https://developer.nvidia.com/digits. Accessed:
2016-04-01.

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional
networks for large-scale image recognition. CoRR.

Weber, B. A. and Penn, J. A., 2005. Synthetic FLIR Signatures
for Training and Testing Target Identification Classifiers. Sensors
and Electron Devices Directorate,ARL.

Zeiler, M. D. and Fergus, R., 2013. Visualizing and Understand-
ing Convolutional Networks. arXiv.org p. arXiv:1311.2901.

Zhang, R., Isola, P. and Efros, A. A., 2016. Colorful Image Col-
orization. ECCV 9907(Chapter 40), pp. 649-666.

This contribution has been peer-reviewed.
doi:10.5194/isprs-archives-XLII-2-W4-41-2017 45





