
6 Cointegration

• 1 Introduction

Consider the following bivariate system

y1t = γy2t + u1t

y2t = y2,t−1 + u2t

with u1t and u2t uncorrelated white noice processes. Both y1t and y2t are I(1) processes:

∆y1t = γu2t + u1t − u1,t−1
∆y2t = u2t,

but the linear combination (y1t − γy2t) is stationary. We say yt ≡ (y1t, y2t)0 is cointe-
grated with a vector (1,−γ)0 . See Figure 1 in Ch6-ex1: y1t = γy2t+u1t, y2t = y2,t−1+u2t,

with u1t and u2t independent N(0,1) variables, γ = 1, 2,−1.
Note: 1) If the vector yt is cointegrated, it is not correct to fit a VAR to the

differenced data. Denote ε1t = γu2t + u1t, ε2t = u2t. Then

∆yt ≡
Ã

∆y1t

∆y2t

!
=

Ã
ε1t − ε1,t−1 + γε2,t−1

ε2t

!

=

Ã
1− L γL

0 1

!Ã
ε1t

ε2t

!
≡ Ψ(L)εt.

The matrix moving average operator has a unit root and is noninvertible, hence no

finite-order VAR could describe ∆yt.

2) Error-correction:Ã
∆y1t

∆y2t

!
=

Ã
−1 γ

0 0

!Ã
y1,t−1

y2,t−1

!
+

Ã
u1t

u2t

!
,

or

∆yt =

Ã
−1 γ

0 0

!
yt−1 + ut

=

Ã
−1
0

!
(y1,t−1 − γy2,t−1) + ut

=

Ã
−1
0

!
(1,−γ) yt−1 + ut ≡ αβ0yt−1 + ut.
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Some examples:
1) Consumptiuon and income are I(1) processes, but over a long run consumptiuon

ct tend to be a roughly constant proportion of income yt, so that (log ct − log yt) appears
to be stationary. That is (log ct, log yt)

0 is cointegrated with (1,−1)0.
2) PPP: Pt = StP ∗t or taking log, pt = st + p

∗
t . Each of the three variables pt, st, and

p∗t is I(1). A weak version of the hypothesis is that the variable zt ≡ (pt − st − p∗t ) is
stationary, i.e. (pt, st, p∗t )

0 is cointegrated with (1,−1,−1)0.
3) Money demand: Money demand is proportional to the price level; as income

increases, indviduals will want to hold increased money balances; money demand is

negatively related to the interest rate. Hence in equilibrium: money demand = money

supply,

mt = β0 + β1pt + β2yt + β3rt + et

wheremt is the the money supply, et is stationary. Here β1 = 1, β2 > 0 and β3 < 0 by the

behavioral assumptions. When all the variables are I(1), (mt, pt, yt, rt)
0 is cointegrated

with (1,−1,−β2,−β3)0. Also, suppose that the monetary authorities followed a feedback
rule such that they decreased the money supply when nominal GDP was high and

increased the money supply when nominal GDP was low. Then

mt = γ0 − γ1 (pt + yt) + e1t

= γ0 − γ1pt − γ1yt + 0 · rt + e1t

where e1t is stationary. Then (mt, pt, yt, rt)
0 is also cointegrated with (1, γ1, γ1, 0)

0.

• 2 Cointegration

Long-run equilibrium: β1x1t + β2x2t + · · · + βnxnt = 0 or β0xt = 0, where β =

(β1,β2, · · · ,βn)0 , xt = (x1t, x2t, · · · , xnt)0 .
Equilibrium error–—the deviation from the long-run equilibrium: β0xt = et, where

{et} is stationary.
Cointegration: If zt ∼ I(d) and yt ∼ I(d), it is generally true that zt− ayt ∼ I(d).

Further, when zt − ayt ∼ I(b) (b < d), we say that zt and yt are cointegrated. More

formally, the components of vector xt are said to be Cointegrated of order d, b,
denoted xt ∼ CI(d, b), if
1) all components of xt are I(d);

2) ∃ a vector β = (β1,β2, · · · , βn)0 6= 0 such that the linear combination β0xt =

β1x1t + β2x2t + · · ·+ βnxnt ∼ I(d− b) where b > 0.
The vector β is called the cointegrating vector, which represents the long-run

equilibrium relationship among variables.
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Remarks: (1) Cointegration refers to a linear combination of nonstationary vari-
ables. (2) The cointegrating vector is not unique: the set of cointegrating vectors con-

stitutes a vector subspace satisfying β1x1t + β2x2t + · · ·+ βnxnt ∼ I(d− b); that is,

{β = (β1,β2, · · · , βn)0 ∈ Rn\{0} : β0xt ∼ I(d− b)}

When β is a cointegrating vector, λβ is also a cointegrating vector for all λ 6= 0. A nor-
malized integrating vector is β/β1 = (1, β2/β1, · · · ,βn/β1)0 if β1 6= 0. There may be
at most n− 1 linearly independent cointegrating vectors. The number of linearly inde-
pendent cointegrating vectors is called the cointegrating rank of xt. (3) Convention:
Here assume that xt ∼ CI(1, 1) s.t. β0xt ∼ I(0).

• Cointegration and Trend: The parameters of the cointegration vector purge
the trend from the linear combination of the cointegrated variables while any other

linear combination up to normalization can not achieve this. Three examples:

1) Suppose εyt, εzt, εt are i.i.d. white noise processes, and

yt = μt + εyt, zt = μt + εzt

μt = μt−1 + εt.

Then yt − zt = εyt − εzt ∼ I(0), i.e. (1,−1)
Ã
yt

zt

!
∼ I(0).

Ã
yt

zt

!
is integrated with

(1,−1)0 . Here the stochastic trend in the cointegration is purged. And β3yt + β4zt ∼
I(0)⇐⇒ β3/β4 = −1. See Figure 2 in Ch6-ex2.
2) Suppose εyt, εzt, εwt, εt are i.i.d. white noise processes, and

yt = μyt + εyt, zt = μzt + εzt, wt = μwt + εwt,

μyt = μy,t−1 + εt, μzt = μz,t−1 + εt, μwt = μyt + μzt.

Then yt + zt− wt = εyt + εzt− εwt ∼ I(0), i.e. (1, 1,−1) (yt, zt, wt)0 ∼ I(0). (yt, zt, wt)0 is
integrated with (1, 1,−1)0 . Here the stochastic trend in the cointegration is also purged.
3) Consider the vector representation:

xt = μt + et

where xt = (x1t, · · · , xnt)0, μt = (μ1t, · · · ,μnt)0 is the vector of stochastic trends, and et
is an n × 1 vector of stationary components. If one trend can be expressed as a linear
combination of the other trends in the system, i.e. there exists a vector β = (β1, · · · ,βn)0

such that β0μt = 0, then β0xt = β0et ∼ I(0). That is, xt is integrated with (β1, · · · ,βn)0.
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• Cointegration and Error correction: The vector xt has an error-correction
representation if it can be expressed in the form

∆xt = π0 + πxt−1 + π1∆xt−1 + π2∆xt−2 + · · ·+ πp∆xt−p + εt

where π0 = (πi0)n×1, π = (πjk)n×n 6= 0, πi = (πjk(i))n×n, i = 1, 2, · · · , p. The
components in the error term vector εt = (εit)n×1 may be correlated with each

other, but are stationary.

Remarks:
(i) Suppose that xt ∼ I(1). Since

πxt−1 = ∆xt − π0 − π1∆xt−1 − π2∆xt−2 − · · ·− πp∆xt−p − εt,

πxt−1 is stationary. Each row of π is a cointegrating vector of xt.

If π = 0, the model is a VAR in first difference of xt. There is no error correction term,

implying that ∆xt does not respond to the previous period’s deviation from long-run

equilibrium (or disequilibrium error).

If π 6= 0, ∆xt responds to the previous period’s deviation from long-run equilibrium

and estimating xt as a VAR in the first difference by omitting the error correction term

πxt−1 is inappropriate.

Example: Case 1. two-variable case VAR(1):(
yt = a11yt−1 + a12zt−1 + εyt

zt = a21yt−1 + a22zt−1 + εzt

where εyt and εzt are white-noise which may be correlated with each other. Write(
(1− a11L)yt − a12Lzt = εyt

−a21Lyt + (1− a22L)zt = εzt

and further

yt =
(1− a22L)εyt + a12Lεzt

(1− a11L)(1− a22L)− a12a21L2

zt =
a21Lεyt + (1− a11L)εzt

(1− a11L)(1− a22L)− a12a21L2
.

The two series {yt} and {zt} have the same characteristic equation:

λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0.
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We can also write the model as(
∆yt = (a11 − 1)yt−1 + a12zt−1 + εyt

∆zt = a21yt−1 + (a22 − 1)zt−1 + εzt.
(1)

Denote the two characteristic roots be λ1 and λ2. We are interested in the case that yt,

zt ∼ CI(1, 1).
If λ1 and λ2 lie inside the unit circle, {yt} and {zt} cannot be integrated of order

(1, 1).

If either of λ1 and λ2 lies outside the unit circle, the solution is explosive. Neither

variable is difference stationary and cannot be CI(1, 1).

If both λ1 and λ2 are unity, {yt} and {zt} cannot be integrated of order (1, 1). Note
that a12 = a21 = 0 will make λ1 = λ2 = 1.Hence if yt, zt ∼ CI(1, 1), then a12 · a21 6= 0.
For {yt} and {zt} to be CI(1, 1), it is necessary that λ1 = 1, |λ2| < 1. Then

a11 = 1−
a12a21
1− a22

. (2)

From (1) and (2), for yt, zt ∼ CI(1, 1),⎧⎨⎩ ∆yt = −a12a211−a22 yt−1 + a12zt−1 + εyt = −a12a211−a22

³
yt−1 − 1−a22

a21
zt−1

´
+ εyt

∆zt = a21yt−1 + (a22 − 1)zt−1 + εzt = a21

³
yt−1 − 1−a22

a21
zt−1

´
+ εzt

or

∆xt = πxt−1 + εt

where

xt =

Ã
yt

zt

!
, εt =

Ã
εyt

εzt

!
,

π =

Ã
a11 − 1 a12

a21 a22 − 1

!
=

Ã
−a12a21
1−a22 a12

a21 a22 − 1

!
= αβ0,

where α =
³
−a12a21
1−a22 , a21

´0
, β = (1,−1−a22

a21
)0 with rank(β) = 1.

Remarks: 1) {yt−1 − 1−a22
a21

zt−1} is stationary and yt − 1−a22
a21

zt = 0 is the long-run

equilibrium. We can see that yt and zt change in response to the previous period’s devi-

ation yt−1− 1−a22
a21

zt−1 from the long-run equilibrium. Here the normalized cointegrating

vector is (1,−1−a22
a21

)0.

2) Granger representation theorem–error correction and cointegration are equivalent

representation: CI(1, 1) guarantees the existence of an error-correction model and an

error-correction model for I(1) variables implies cointegration.
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3) A cointegrated system can be viewed as a restricted form of a general VAR model.

It is inappropriate to estimate a VAR of cointegrated variables using only first differences

by ignoring the error-correction portion of the model.

4) If rank(π) = 0, we have a12 = a21 = 0, a11 = a22 = 1, and ∆xt = εt or xt ¿
CI(1, 1). If the variables are cointegrated, the rows of π must be linearly dependent,

and hence det(π) = 0 or the rank of π is 1, since if rank(π) = 2, there is no unit root

for yt and zt, hence xt ¿ CI(1, 1).

Example: Case 2. n-variable case VAR(1):

xt = A1xt−1 + εt

where xt = (x1t, x2t, · · · , xnt)0, εt = (ε1t, ε2t, · · · , εnt)0, i.i.d.(0,Ω), A1 is an n× n matrix
of parameters.

∆xt = (A1 − I)xt−1 + εt

= πxt−1 + εt.

The rank of π determine the number of cointegration vectors. For example,

1) rank(π) = 0 : π = 0 and ∆xt = εt. All the sequences {xit} are unit root processes
and there is no linear combination of the variables that is stationary. Hence xt ¿
CI(1, 1).

2) rank(π) = n : det(π) 6= 0 (there is no unit root) and each row of πxt−1 = 0 is an
independent restriction on the long-run solution of the variables. Each of the n variables

in xt must be stationary with the corresponding long-run value constrain in πxt−1 = 0.

Hence xt ¿ CI(1, 1).
3) rank(π) = 1 : there is a single cointegrating vector given by any row of π, e.g. for

∆x1t = π11(x1t−1 + β12x2t−1 + · · ·+ β1nxnt−1) + ε1t,

the normalized cointegrating vector is (1, β12, · · · ,β1n), where βij = πij/π11.

4) 0 < rank(π) = r < n : there are r cointegrating vectors and n − r stochastic
trends in the system.

• 3 Test for Cointegration–—Engle-Granger Method: based on residuals

Consider the linear regression model

yt = z
0
tβ + et
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where the k×1 vector zt ∼ I(1) and elements of zt are not cointegrated. Further, assume

et = a1et−1 + vt

where vt ∼ I(0). Testing the null
H0 : a1 = 1

amounts to testing the null of non-cointegration of yt and zt.

Four steps to test for the cointegration of yt and zt : (take k = 1 as an example):
1) pretest each variable to determine its integration order (Augmented Dickey-Fuller

test infers the number of unit roots);

2) Estimate the long-run equilibrium relationship. If the above test indicates that

both yt and zt are I(1), estimate the long-run equilibrium relationship:

yt = β0 + β1zt + et. (3)

Conduct D-F test for the AR(1) model of the above residuals êt :

∆êt = a1êt−1 + εt, H0 : a1 = 0

or, if the the residuals εt from the above regression exhibits serial correlation,

∆êt = a1êt−1 +

pX
i=1

ai+1∆êt−i + εt, H0 : a1 = 0 (no cointegration)

The OLS estimator a1 and its test τ -statistic forH0 : a1 = 0 have no standard asymptotic

distributions. The asymptotic distribution can be derived by the similar argument to

that in Chapter 4. The critical value for the test should be obtained by simulation. If

rejecting the null H0, we conclude that the variables are cointegrated. Here the critical

values for the test are provided in Table C at the end of the text (for the Engle-Granger
cointegration test).

3) Estimate the error correction model. Use the residuals from the equilibrium

regression (3) as the deviation from the long-run equilibrium in the error correction

model

∆yt = α1 + αyêt−1 +
X
i=1

α11(i)∆yt−i +
X
i=1

α12(i)∆zt−i + εyt

∆zt = α2 + αz êt−1 +
X
i=1

α21(i)∆yt−i +
X
i=1

α22(i)∆zt−i + εzt

which constitutes VAR in first difference and can be estimated using the conventional

method for a VAR model.
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4) Assess model adequacy. Estimate the error correction model by adjusting the lag

lengths such that the errors are serially uncorrelated.

Example: see Ch6-ex3. Test the cointegration of yt, zt and wt, where the data are
generated from

yt = μyt + δyt, μyt = μy,t−1 + εyt, δyt = 0.5δy,t−1 + ηyt

zt = μzt + δzt + 0.5δyt, μzt = μt,t−1 + εzt, δzt = 0.5δz,t−1 + ηzt

wt = μwt + δwt + 0.5δyt ++0.5δzt, μwt = μyt + μzt, δwt = 0.5δw,t−1 + ηwt

where εyt, ηyt, εzt, ηzt and ηwt are all white noise processes. The true relationship is that

(yt, zt, wt)
0 is cointegrated with (1, 1,−1).

Remark: The Engle-Granger method has the following shortcomings: (i) In Step 2
above, the long-run equilibrium relationship (3) can also be set as

zt = β0 + β1yt + et.

As the sample size T →∞, the two settings give equivalent results in testing for a unit
root of the residuals. However, in practice, it is possible to find that one regression

indicates that the variables are cointegrated, whereas reversing the order indicates no

cointegration. The test for more than two variables becomes more troubled. (ii) Also in

Step 2, the residuals from (3) are used to estimate â1 in the regression. Any error intro-

duced from the regression (3) is carried into the estimation of a1 and the no-cointegration

test. Hence the following Johansen-Stock-Watson Method.

• 4 Test for Cointegration–—Johansen-Stock-Watson Method

Some forms of the models:
1) The model without a drift is

Model 1 : xt = A1xt−1 + εt or ∆xt = πxt−1 + εt,

where π = A1− I. The rank of π equals the number of cointegrating vectors (also called
the cointegration rank, denoted as r ≡ rank(π)). If r = 0, all the {xit}, i = 1, 2, · · · , n,
are unit root processes. There is no linear combination of {xit} that is stationary, and

hence xt is not cointegrated. If r = n, there is no unit root in each xit, and hence

xit /∈ CI(1, 1). If 1 ≤ r < n, there are r cointegrating vectors and n−r stochastic trends
in the system.

2) Add a drift term, if the variables exhibit a decided tendency to increase or decrease:

Model 2 : xt = A0 +A1xt−1 + εt or ∆xt = A0 + πxt−1 + εt.
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Here A0 = (a10, a20, · · · , an0)0 allows for the possibility of a linear trend in the data
generating process. rank(π) = the number of cointegrating relationships existing in the

“detrended” data. For the i-th series xit,

∆xit = a0i + (πi1x1,t−1 + · · ·+ πn1xn,t−1) + εit.

In the long run, πi1x1,t−1 + · · · + πn1xn,t−1 = 0, and E∆xit = a0i. Aggregating all such

changes over t yields the deterministic expression a0it.See Figure 6.3 in Text: P350.

3) Include a constant in the cointegrating relationship: e.g. assume that rank(π) = 1

and ai0 = sia10

Model 3 : ∆x1t = (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1 + a10) + ε1t

∆x2t = s2 (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1 + a10) + ε2t

· · ·
∆x1t = sn (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1 + a10) + εnt

or ∆xt = π∗x∗t−1 + εt, where x∗t−1 = (x1t−1, x2t−1, · · · , xnt−1, 1)0 and π∗ = (π, A0).Here

the linear trend is purged from the system.

4) Include an intercept term in the cointegrating vector along with a drift term: e.g.

assume that rank(π) = 1,

Model 4 : ∆x1t = (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1 + b10) + b11 + ε1t

∆x2t = s2 (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1 + b10) + b21 + ε2t

· · ·
∆x1t = sn (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1 + b10) + bn1 + εnt

where sib10 + bi1 = ai0. EViews identifies the portion belonging in the cointegrating

vector as the amount necessary to force the error correction term to have a sample mean

of zero.

5) Higher-order AR process:

Model 5 : xt = A1xt−1 +A2xt−2 + · · ·+Apxt−p + et

or

∆xt = πxt−1 +

p−1X
i=1

πi∆xt−i + et (4)

where π =
Pp

i=1Ai − I , πi = −
Pp

j=i+1Aj, and rank(π) = the number of independent

cointegrating vector (i.e. the cointegration rank). If rank(π) = 0, π = 0 and the model

is the usual VAR model in the first difference. If rank(π) = n, the vector process is
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stationary. If rank(π) = 1, there is a single cointegration vector; if 1 < r ≡ rank(π) < n,
there are r cointegration vectors, and πxt−1 is the error correction term. For 1 ≤ r < n,
π can be decomposed as

π = αβ0

where α and β are two n× r matrix with rank(β) = r. We can say β0xt = 0 is the long

run equilibrium.

Likelihood ratio test of cointegration rank
(A) Log-likelihood function
Consider the VAR(p) model (4), where et ∼ iidN(0,Σ), t = 1, 2, · · · , T, and

X1−p, · · · ,X0 are given constant vectors. The log-likelihood function is derived from
the multivariate normal distribution:

lnL(x1, x2, · · · , xT ;π1,π2, · · · ,πp−1,π,Σ) =
−nT
2

ln(2π)− T
2
ln |Σ|− 1

2

TX
t=1

e0tΣ
−1et.

The following steps will be taken for the likelihood ratio test:

(i) Concentrate lnL with respect to Σ : by Σ̂ = 1
T

PT
t=1 ete

0
t,

lnL∗(x1, x2, · · · , xT ;π1,π2, · · · ,πp−1,π) = C −
T

2
ln

¯̄̄̄
¯
TX
t=1

ete
0
t

¯̄̄̄
¯ .

(ii) Concentrate lnL∗ with respect to π1,π2, · · · ,πp−1. Use the partial-out approach.
Let

qt = (∆xt−1,∆xt−2, · · · ,∆xt−p+1)0 .

Denote

R0t = ∆xt −
p−1X
i=1

π̂i∆xt−i

R1t = xt−1 −
p−1X
i=1

π̃i∆xt−i

where

(π̂1, π̂2, · · · , π̂p−1) =
Ã

TX
t=1

qtq
0
t

!−1Ã TX
t=1

∆xtq
0
t

!

(π̃1, π̃2, · · · , π̃p−1) =
Ã

TX
t=1

qtq
0
t

!−1Ã TX
t=1

xt−1q
0
t

!
.
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Then

lnL∗∗(x1, x2, · · · , xT ;π) = C0 −
T

2
ln

¯̄̄̄
¯
TX
t=1

(R0t − πR1t) (R0t − πR1t)
0

¯̄̄̄
¯

= C00 −
T

2
ln |s00 − πs10 − s01π0 + πs11π

0| ,

where

sij =
1

T

TX
t=1

RitR
0
jt, i, j = 0, 1.

(iii) Imposing the restriction π = αβ0, we have

lnL∗∗(x1, x2, · · · , xT ;α, β) = C00 −
T

2
ln |s00 − αβ0s10 − s01βα0 + αβ0s11βα

0| .

By
∂ lnL∗∗(x1, x2, · · · , xT ;α, β)

∂α
= 0 =⇒ α̂ = s01β (β

0s11β)
−1
,

we have, by normalizing β0s11β = I and substititing α with α̂,

lnL∗∗∗(x1, x2, · · · , xT ; β) = lnL∗∗(x1, x2, · · · , xT ; α̂,β)

= C1 −
T

2
ln
¯̄̄
s00 − s01β (β0s11β)−1 β0s10

¯̄̄
= C1 −

T

2
ln
£
|β0s11β|−1|s00|

¯̄
β0
¡
s11 − s10s−100 s01

¢
β
¯̄¤

= C1 −
T

2
ln |s00|−

T

2
ln
¯̄
β0
¡
s11 − s10s−100 s01

¢
β
¯̄
.

Therefore, MLE requires

minimize
¯̄
β0
¡
s11 − s10s−100 s01

¢
β
¯̄

subject to β0s11β = I.

(iv) Suppose rank(π) = r. Order the characteristic roots of π such that λ1 ≥ λ2 ≥
· · · ≥ λr > 0 and λr+1 = · · · = λn = 0. If the variables in xt are not cointegrated,

rank(π) = 0, all λi = 0 and ln(1−λi) = 0. If rank(π) = 1, 0 < λ1 < 1, then ln(1−λ1) < 0
and ln(1−λi) = 0 for i = 2, 3, · · · , n. It is deduced from the theory of matrix charactristic
root that the maximized value of the likelihood function is given by

lnL∗∗∗∗(x1, x2, · · · , xT ; r) = C2 −
T

2
ln
¯̄
β0
¡
s11 − s10s−100 s01

¢
β
¯̄

= K − T
2

rX
i=1

ln(1− λi),
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where K is a constant.

(B) Test two null hypothesis
1) The first statistic tests the null hypothesis that the number of distinct cointegrating

vectors is less than or equal to r against a general alternative. That is, to test

H0 : rank(π) ≤ r (that is, λr+1 = · · · = λn = 0)

against H1 : rank(π) > r (i.e. at least one of λr+1, · · · ,λn is not equal to zero). When
π is unrestricted, the log-likelihood function is

Lu = K −
T

2

nX
i=1

ln(1− λi).

Under H0, λr+1 = · · · = λn = 0, the log likelihood function is

Lr = K −
T

2

rX
i=1

ln(1− λi).

Therefore, the likelihood ratio is

2(Lu − Lr) = −T
nX

i=r+1

ln(1− λi).

This is the trace-statistic λtrace(r) :

λtrace(r) = −T
nX

i=r+1

ln(1− λ̂i).

When all λi = 0, λtrace(r) = 0; The further the estimated characteristic roots are from

zero, the more neagtive is ln(1−λ̂i), and the larger is the trace-statistic λtrace(r). Critical
values of λtrace(r) are obtained by simulation, see Table E in Enders’s textbook.

2) The second statistic tests the null hypothesis that the number of distinct cointe-

grating vectors is r against the alternative of r + 1 cointegrating vectors. That is, to

test

H0 : rank(π) = r

against the alternative hypothesis H1 : rank(π) = r+1. Under H1, λr+2 = · · · = λn = 0,

so the log likelihood function is

Lu = K −
T

2

r+1X
i=1

ln(1− λi).
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Under the restriction H0, λr+1 = · · · = λn = 0, so the likelihood function is

Lr = K −
T

2

rX
i=1

ln(1− λi).

Therefore, the likelihood ratio is

2(Lu − Lr) = −T log(1− λr+1).

This is the maximum-eigenvalue statistic λmax(r, r + 1) :

λmax(r, r + 1) = −T ln(1− λ̂r+1).

When the estimated λ̂r+1 is close to zero, λmax(r, r + 1) will be small. The further the

estimated characteristic root are from zero, the more neagtive is ln(1 − λ̂r+1), and the

larger is λmax(r, r + 1). Critical values of the test are in Table E (the case without any

deterministic regressors: the first cell) at the end of the text.

(C) Extensions of the Johansen test
1) Cointegration test with unrestricted intercept. Consider the VAR model with an

intercept

∆xt = μ+ πxt−1 +

p−1X
i=1

πi∆xt−i + et

where μ is unrestricted. Replacing R0t and R1t, respectively, by

R0t = ∆xt −
p−1X
i=1

π̂i∆xt−i − μ̂

R1t = xt−1 −
p−1X
i=1

π̃i∆xt−i − μ̃,

we proceed in the same manner. The limiting distributions of the trace and maximum-

eigenvalue tests change. Their critical values are listed in Table E (the case with drift:

the second cell) at the end of the text according to the form of the vector A0.

2) Cointegration test with restricted intercept, that is, with a constant in the coin-

tegrating vector. Consider

∆xt = μ+ πxt−1 +

p−1X
i=1

πi∆xt−i + et
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with π = αβ0,where α and β are two n × r matrix with rank(β) = r. The intercept is
restricted: μ = αβ00 for any arbitrary 1× r vector β0. Then

∆xt = α (β00 + β0xt−1) +

p−1X
i=1

πi∆xt−i + et

= α (β00,β
0)

Ã
1

xt−1

!
+

p−1X
i=1

πi∆xt−i + et

≡ π∗x∗t−1 +

p−1X
i=1

πi∆xt−i + et.

Note the presence of intercept in the cointegrating vectors as opposed to the unrestricted

drift in 1) above. Formulate the trace and maximum-eigenvalue tests in the same manner

as before, but replace R1t by

R∗1t = x
∗
t−1 −

p−1X
i=1

π̃i∆xt−i.

Critical values for these tests should change, and are listed in Table E (the case with a

constant in the cointegrating vector: the third cell) at the end of the text.

(D) Hypothesis testing about some restricted forms of cointegrating vec-
tors
Note that if there are r cointegrating vectors, only these r linear combinations of the

variables are stationary. All other linear combinations are nonstationary. Suppose you

re-estimate the model restricting the parameters of π. If the restrictions are not binding,

it should be founded that the number of cointegrating vectors has not diminished. Some

cases:

1) Test H0 : including an intercept in the cointegrating vector as opposed to the

unrestricted drift A0 (i.e. a linear time trend). Estimate the two forms of the model and

obtain the ordered characteristic roots:

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n

(without an intercept in the cointegrating vector, i.e. with unrestricted π)

λ̂
∗
1 ≥ λ̂

∗
2 ≥ · · · ≥ λ̂

∗
n

(with an intercept in the cointegrating vector, i.e. with restricted π).
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Assume that the unrestricted model has r nonzero characteristic roots. Then the likeli-

hood ratio statistic is

2

"Ã
−T
2

rX
i=1

ln(1− λ̂i)

!
−
Ã
−T
2

rX
i=1

ln(1− λ̂
∗
i )

!#

= T
rX
i=1

ln

Ã
1− λ̂

∗
i

1− λ̂i

!
∼ χ2(n− r) asymptotically.

The intuition is that: if the restriction is true, ln(1 − λ̂
∗
i ) and ln(1 − λ̂i) should be

equivalent. Hence, small values for the above statistic imply the restriction (i.e. including

an intercept in the cointegrating vector); large values imply that it is possible to reject

the null of including an intercept in the cointegrating vectors, and that there is a linear

trend in the variables.

2) Test for restrictions on γ or α, where π = αβ0, α (n×r) is the matrix of the speed
of adjustment parameters, and β0 (r × n) is the matrix of cointegrating parameters.
Use MLE to estimate VAR(p) model (4), where et ∼ iidN(0,Σ), t = 1, 2, · · · , T,
and X1−p, · · · ,X0 are given constant vectors, determine the rank of π, use the r most
significant cointegrating vectors to form α, then select γ such that π = αβ0.For example,

if rank(π) = 1, then

∆x1t = (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1) + · · ·+ e1t
∆x2t = s2 (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1) + · · ·+ e2t

· · ·
∆x1t = sn (π11x1t−1 + π12x2t−1 + · · ·+ π1nxnt−1) + · · ·+ ent.

Define α1 = π11,αi = siπ11,βi = π1i/π11, i = 2, 3, · · · , n. Then the model can be written
as

∆xit = αi (x1t−1 + β2x2t−1 + · · ·+ βnxnt−1) + · · ·+ eit, i = 1, · · · , n
or

∆xt = αβ0xt−1 +

p−1X
i=1

πi∆xt−i + et

where

α = (α1,α2, · · · ,αn)0, β = (1, β2, · · · ,βn)0,

π =

⎛⎜⎜⎜⎜⎝
α1 α1β2 · · · α1βn
α2 α2β2 · · · α2βn
...

...
...

αn αnβn · · · αnβn

⎞⎟⎟⎟⎟⎠ .
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So, we can test various restrictions on α and β by comparing the number of cointegrating

vectors under the null and alternative hypotheses. The test statistic isÃ
−T

nX
i=1

ln(1− λ̂i)

!
−
Ã
−T

nX
i=1

ln(1− λ̂
∗
i )

!

= T
nX
i=1

h
ln(1− λ̂

∗
i )− ln(1− λ̂i)

i
∼ χ2(the number of restrictions), asymptotically.

If αi = 0, the variable xit is weakly exogenous. The practice importance is that a weakly

exogenous variable does not experience the type of feedback, i.e. it does not respond to

the deviation from the long-run equilibrium.

Remark: (i) Note that, in testing for the restriction (about β) onmultiple cointe-
gration vectors, the number of restrictions imposed on the system is not the number

of the equations for the restriction. For eaxmple, if n = 4, r = 2, and we normalize each

cointegration vector with respect to x1t, we can write β
0xt as

Ã
1 −β12 −β13 −β14
1 −β22 −β23 −β24

!⎛⎜⎜⎜⎝
x1t

x2t

x3t

x4t

⎞⎟⎟⎟⎠ =

Ã
0

0

!
.

Since any linear combination of these two cointegrating vectors is also a cointegrating

vector, by Ã
1 0 −β∗13 −β∗14
0 1 −β∗23 −β∗24

!
,

(x1t, x3t, x4t) are cointegrated such that x1t = β∗13x3t + β∗14x4t; (x2t, x3t, x4t) are cointe-

grated such that x2t = β∗23x3t+β
∗
24x4t. More generally, n−r+1 variables are cointegrated.

A testable exclusion restriction entails the exclusion of r or more variables from a coin-

tegrating vector. Hence, excluding r0(≥ r) variables from a cointegrating vector entails

only (r0−r+1) restriction, and the degree freedom for the χ2 statistic is only (r0−r+1)
instead of r0.

(ii) It is possible to test for the restriction on one cointegrating vector conditional on
the values of all other cointegrating vectors. For example, n = 4, r = 2.We want to test

if (1, β22, 0, β24)
0 is a cointegrating vector for the fixed normalized values of β12,β13,and

β14. That is, Ã
1 −β12 −β13 −β14
1 −β22 0 −β24

!
← fixed

← test β23 = 0
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3) Test lag length p in the model: Since all of the ∆xt−i are stationary, we can use

χ2 statistic similar to t or F-test. Let Σr and Σu be the variance-covariance matrices of

the restricted and unrestricted systems, respectively. Use the test statistic

(T − c) (log |Σr|− log |Σu|) ∼ χ2(number of restrictions)

where c is the maximum number of regressors contained in the longest equation. AIC

and SBC can be also applied. An F-test test for the lag lengths in a single equation can

be used, too.

4) Granger causality test is invalid if the variables in the model are cointegrated.

The coefficients π of nonstationary variables are blamed for this failure.

• Four Steps in Johansen-Stock-Watson Method:

1. Pretest all variables to assess their order of integration.

2. Estimate the model and determine the rank of π.

3. Analyze the normalized cointegrating vectors and speed of adjustment coef-

ficients and test the restrictions about each of both.

4. Conduct innovation accounting and causality tests on the error-correction

model to identify a structural model and determine whether the estimated

model appears to be reasonable.

• Difference or Not Difference? VAR or ECM?

If the I(1) variables xt are cointegrated, differencing them and estimating a VAR:

∆xt =

p−1X
i=1

πi∆xt−i + et

will lead to a misspecification error since it excludes the long-run equilibrium relation-

ship among the variables that are included in πxt−1.If the I(1) variables xt are not

cointegrated, it is preferable to estimate the VAR in first differences.

If I(1) xt are not cointegrated =⇒ estimate VAR in first differences

If I(1) xt are cointegrated =⇒ estimate the error-correction model

Hence the importance of testing unit root of each variable and cointegration of the

variables.

• Linear or Nonlinear?

17


