
5 Vector Autoregression (VAR) Models
Recall:

1) Intervention models:
How a deterministic intervention zt affects an economic time series yt?

yt = a0 + a1yt−1 + c0zt + εt, |a1| < 1,

where zt =

(
0, t < T0

1, t ≥ T0
is the intervention (or dummy) variable and εt is white-noise.

Here c0 represents the initial or impact effect and T0 is the date from which the policy

was introduced. The significance of c0 can be tested using a standard t-test. The pulse

response function is

yT0+t =
a0

1− a1
+ c0

∞X
i=0

ai1zT0+t−i +
∞X
i=0

ai1εT0+t−i.

The impact of the intervention on yT0 is c0; the impact of the intervention on yT0+1 is

a1c0 + c0. The long-run effect of the intervention (j →∞) is
c0

1− a1
=
c0 + a0
1− a1

− a0
1− a1

(the new long-run mean− the old long-run mean).

Some extensions of the intervention model:

1. yt = a0 +A(L)yt−1 + c0zt +B(L)εt (ARMA(p,q) intervention model)

2. zt =

(
1, t = T0

0, otherwise
(Pulse function)

3. zt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t ≤ T0 − 1
1/4, t = T0,

1/2, t = T0 + 1

3/4, t = T0 + 2

1, t ≥ T0 + 3

(Gradually changing function)

4. zt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ T0 − 1
1, t = T0,

3/4, t = T0 + 1

1/2, t = T0 + 2

1/4, t = T0 + 3

0, t ≥ T0 + 4

(Prolonged impulse function)
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5. yt = a0 +A(L)yt−1 + c0zt−d +B(L)εt (The intervention has a delayed effect)

Estimation: First, estimate the most appropriate models for both the pre- and
post-intervention periods to check if the coefficients in the model are invariant to the

intervention. If no, estimate the various models over the entire sample period and

perform diagnostic checks of the estimated model to ensure that: (1) All coefficients

should be significant and the AR coefficients imply that the series is stationary; (2) The

residuals should approximate white noise; (3) The selected model outperforms other

alternatives: using the AIC, SBC. Three steps for the estimation: P244-246.

Note: The effects of the intervention will change if {yt} has a unit root. In this
case, a pulse intervention will have a permanet effect on the level of {yt}; a pure jump
intervention will act as a drift term in the process. An intervention will have a temporary

effect on a unit root process if all values of {zt} sum to zero.

2) Transfer function models:
How a movement in a stochastic exogenous variable zt affects the time path of

the endogenous variable yt?

yt = a0 +A(L)yt−1 + C(L)zt +B(L)εt

where C(L) is called the transfer function, and coefficients in C(L) are called trans-

fer function weights; E(ztεt−s) = 0 for all s and t; {zt} are independent. The cross-
correlation function (CCF) between yt and the various zt−i is

ρyz(i) =
Cov(yt, zt−i)

σyσz
.

The cross-covariance function (CCVF) between yt and the various zt−i is

γyz(i) =
Cov(yt, zt−i)

σ2z
.

Some examples–—

1. yt = a1yt−1 + cdzt−d + εt, where zt is i.i.d. with Ezt = 0 and V ar(zt) = σ2z. Since

yt = cdzt−d/(1− a1L) + εt/(1− a1L)

= cd

∞X
i=0

ai1zt−d−i + εt/(1− a1L),
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we have

Eytzt = 0, Eytzt−1 = 0, · · · , Eytzt−d+1 = 0
Eytzt−d = cdσ

2
z

Eytzt−d−1 = cda1σ
2
z

Eytzt−d−2 = cda
2
1σ
2
z

...

i.e.

ρxz(i) = 0, i ≤ d− 1,
= cda

i−d
1 σz/σy, i ≥ d.

and

γxz(i) = 0, i ≤ d− 1,
= cda

i−d
1 , i ≥ d.

Therefore ρxz(i) satisfy the homogeneous difference equation

ρxz(i) = a1ρxz(i− 1), i ≥ d+ 1 (decay at the rate a1)

2. yt = a1yt−1 + cdzt−d + cd+1zt−d−1 + εt, where Ezt = 0 and V ar(zt) = σ2z. Since

yt = (cdzt−d + cd+1zt−d−1) /(1− a1L) + εt/(1− a1L)

= cd

∞X
i=0

ai1zt−d−i + cd+1

∞X
i=0

ai1zt−d−1−i + εt/(1− a1L)

= cdzt−d + (cda1 + cd+1)
∞X
i=1

ai−11 zt−d−i + εt/(1− a1L)

we have

Eytzt = 0, · · · , Eytzt−d+1 = 0
Eytzt−d = cdσ

2
z

Eytzt−d−1 = (cda1 + cd+1)σ
2
z

Eytzt−d−2 = (cda1 + cd+1)a1σ
2
z

...

Eytzt−i = (cda1 + cd+1)a
i−d−1
1 σ2z, i ≥ i+ 2
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i.e.

ρxz(i) = 0, i ≤ d− 1,
= cdσz/σy, i = d,

= (cda1 + cd+1)σz/σy, i = d+ 1,

= (cda1 + cd+1)a
i−d−1
1 σz/σy, i ≥ d+ 2.

and

γxz(i) = 0, i ≤ d− 1,
= cd, i = d,

= cda1 + cd+1, i = d+ 1,

= (cda1 + cd+1)a
i−d−1
1 , i ≥ d+ 2.

Therefore

ρxz(i) = a1ρxz(i− 1), i ≥ d+ 2 (decay at the rate a1)

3. yt = a0 +A(L)yt−1 + C(L)zt +B(L)εt.

γyz(i) = 0, until the first nonzero element of C(L)

B(L) is immaterial to CCVF

A spike in the CCV F indicates a nonzero element of C(L)

All spikes have a decay pattern.

4. yt = a1yt−1 + a2yt−2 + cdzt−d + εt. The CCVF satisfies

γyz(i) = 0, i ≤ d− 1,
= cd, i = d,

= a1γyz(i− 1) + a2γyz(i− 2), i ≥ d+ 1.

–––an initial spike at lag d, then the decay pattern.

5. Extend {zt} to a stationary ARMA process:

yt = a0 +A(L)yt−1 + C(L)zt +B(L)εt

D(L)zt = E(L)εzt

where εzt is a white noise. The exogeneity of zt implies that shocks to {yt} can
not influence {zt}: Eεztεt = 0. Here there are two separate impulse responses: one
is the effect of εt shocks on {yt}, given by B(L)εt/(1−A(L)L), holding all values
of zt constant; the other is the effect of εzt shocks on {yt}, transfered from {zt},
given by C(L)E(L)/[D(L)(1−A(L)L)].
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Estimation: First estimate the ARMA process D(L)zt = E(L)εzt and obtain the
residuals {ε̂zt} as the filtered values of the {zt} series. Second, estimate the autoregres-
sive distributed lag (ADL) model

yt = a0 +

pX
i=1

aiyt−i +
nX
i=0

cizt−i + εt.

Try large p and n. F-test, t-test can be used. Use AIC, SBC to find the lag lengths. The

estimated residuals should be white noise. Or estimate

yt = a0 +A(L)yt−1 + C(L)zt +B(L)εt. (1)

Filter {yt} by multiplying the model (1) by the previously estimated D(L)/E(L) :

yft = D(L)a0/E(L) +A(L)yft−1 + C(L)εzt +B(L)D(L)εt/E(L),

where yft = D(L)yt/E(L), yft−1 = D(L)yt−1/E(L), εzt = D(L)zt/E(L). From CCVF

between yt and εzt, determine the spikes and the decay pattern. Test ρyz(i) and Q-

statistic about the CCF of {yt} and {ε̂zt} to determine the numbers of the non-zero
coefficients in A(L) and C(L).Note that the covariances between yft and εzt have the

same pattern as those between yt and zt.Third, from ACF of the residuals {et} from the
above estimation (1), determine the form of B(L). Use {et} to estimate the various forms
of B(L) and select the best model for the B(L)et. Finally, estimate the full equation
(estimate A(L), B(L) and C(L) simultaneously). Ensure: the coefficients are of high

quality, the model is parsimonious, the residuals conform to a white-noise preocess, and

the forecast errors are small.

Restriction: 1) Restrict the form of the transfer function. 2) No feedback from

{yt} to {zt}. For the coefficients of C(L) to be unbiased estimates of the impact effects
of {zt} on {yt}, zt must be uncorrelated with the error term {εt} at all leads and lags.

3) Vector White Noise Process: {εt} satisfying: (i) Eεt = 0; (ii) E(εtε0t) = Ω is

a definite matrix; (iii) E(εtε0s) = 0, t 6= s.
Note: Let yt = (y1t, · · · , ynt)0. The mean of yt is

Eyt = (Ey1t, · · · , Eynt)0 = (μ1t, · · · ,μnt)0 ≡ μ0t.

The autocovariance matrix (or function) is

Γ(t, 0) = E [(yt − μt)(yt − μt)
0]

=

⎛⎜⎜⎜⎜⎝
var(y1t) cov(y1t, y2t) · · · cov(y1t, ynt)

cov(y2t, y1t) var(y2t) · · · cov(y2t, ynt)
...

...
...

...

cov(ynt, y1t) cov(ynt, y1t) · · · var(ynt)

⎞⎟⎟⎟⎟⎠
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Γ(t, h) = E
£
(yt − μt)(yt−h − μt−h)

0¤

=

⎛⎜⎜⎜⎜⎝
cov(y1t, y1,t−h) cov(y1t, y2,t−h) · · · cov(y1t, yn,t−h)

cov(y2t, y1,t−h) cov(y1t, y2,t−h) · · · cov(y2t, yn,t−h)
...

...
...

...

cov(ynt, y1,t−h) cov(ynt, y2,t−h) · · · cov(ynt, yn,t−h)

⎞⎟⎟⎟⎟⎠
where h = 0, 1, 2, · · · . {yt} is stationary if the second moment is finite and Eyt = μ

and Γ(t, h) is related with h, but not with t.

Example: Let

(Ã
e1t

e2t

!)
is a vector white process with var-covariance matrixÃ

1 0

0 1

!
. Show

(Ã
ε1t

ε2t

!)
is also a vector white process, where ε1t = e1t + 2e2t,

ε2t = e2t.

Vector Autoregression (VAR) Analysis:

–—Both {yt} and {zt} are endogenous. yt and zt are allowed to affect each other
(feedback effect).

Consider the simple bivariate system (two-variable first-order vector autoregression
model):

the structural V AR :

(
yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt

zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt

where {yt} and {zt} are stationary, εyt and εzt are white-noise with variances σ2y and σ2z,

respectively, and εyt and εzt are uncorrelated. Write the structural model asÃ
1 b12

b21 1

!Ã
yt

zt

!
=

Ã
b10

b20

!
+

Ã
γ11 γ12
γ21 γ22

!Ã
yt−1

zt−1

!
+

Ã
εyt

εzt

!
,

denoted as

xt = A0 +A1xt−1 + et,
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where

A0 =

Ã
a10

a20

!
=

Ã
1 b12

b21 1

!−1Ã
b10

b20

!
, xt =

Ã
yt

zt

!

A1 =

Ã
a11 a12

a21 a22

!
=

Ã
1 b12

b21 1

!−1Ã
γ11 γ12
γ21 γ22

!

et =

Ã
e1t

e2t

!
=

Ã
1 b12

b21 1

!−1Ã
εyt

εzt

!
=

Ã
(εyt − b12εzt) /(1− b12b21)
(εzt − b21εyt) /(1− b12b21)

!
.

Hence we obtain the VAR in the reduced form:

VAR in standard form:

(
yt = a10 + a11yt−1 + a12zt−1 + e1t

zt = a20 + a21yt−1 + a22zt−1 + e2t

Note that

εt = Bet

with

B =

Ã
1 b12

b21 1

!
.

The variance-covariance matrix of et is

Σ ≡
Ã

σ21 σ12

σ21 σ22

!
= Eete

0
t = B

−1Eεtε
0
tB

0−1

=
1

(1− b12b21)2

Ã
σ2y + b

2
12σ

2
z −

¡
b21σ

2
y + b12σ

2
z

¢
−
¡
b21σ

2
y + b12σ

2
z

¢
σ2z + b

2
21σ

2
y

!
.

1. Stability of yt and zt : By xt = A0 +A1xt−1 + et, we have

xt = (I +A1 + · · ·+An1)A0 +
nX
i=0

Ai1et−i +A
n+1
1 xt−n−1

From the reduced VAR,(
(1− a11L)yt = a10 + a12Lzt + e1t
(1− a22L)zt = a20 + a21Lyt + e2t

and further

yt =
a10(1− a22) + a12a20 + (1− a22L)e1t + a12e2t−1

(1− a11L)(1− a22L)− a12a21L2

zt =
a20(1− a11) + a21a10 + (1− a11L)e2t + a21e1t−1

(1− a11L)(1− a22L)− a12a21L2
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which show that: 1) {yt} and {zt} have the same characteristic equation, and
hence {yt} and {zt} exhibit similar time paths; 2) The stability condition for
{yt} and {zt} requires that the roots of the polynomial equation (1 − a11L)(1 −
a22L) − a12a21L2 = 0 lie outside the unit circle, or, equivalently, the roots (the

characteristic roots of the matrix A1) of the following characteristic equation of

A1 : ¯̄̄̄
¯ λ− a11 −a12
−a21 λ− a22

¯̄̄̄
¯ = 0

lie inside the unit circle. Under the stationarity,

xt = A0 +A1xt−1 + et

= (I +A1 + · · ·+An1)A0 +
nX
i=0

Ai1et−i +A
n+1
1 xt−n−1

= μ+
∞X
i=0

Ai1et−i (here An+11 → 0 as n→∞),

where μ = (I −A1)−1A0. Hence, the variance-covariance matrix of xt is

E(xt − μ)(xt − μ)0 =
∞X
i,j=0

Ai1Eet−ie
0
t−j
¡
Aj1
¢0

=
∞X
i=0

Ai1Eet−ie
0
t−i
¡
Ai1
¢0

=
∞X
i=0

Ai1Σ
¡
Ai1
¢0
.

Study the following examples and point out the co-movement pattern of the two

series yt and zt (refer to Figure 5.6 on P269) and explain the reasons:

1).

(
yt = 0.7yt−1 + 0.2zt−1 + e1t

zt = 0.2yt−1 + 0.7zt−1 + e2t

2).

(
yt = 0.5yt−1 − 0.2zt−1 + e1t
zt = −0.2yt−1 + 0.5zt−1 + e2t

3).

(
yt = 0.5yt−1 + 0.5zt−1 + e1t

zt = 0.5yt−1 + 0.5zt−1 + e2t

4).

(
yt = 0.5 + 0.5yt−1 + 0.5zt−1 + e1t

zt = 0.5yt−1 + 0.5zt−1 + e2t
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2. Identification and estimation: estimating the structural VAR model is in-

appropriate because of the endogeneity of zt in the first equation of the model

and the endogeneity of yt in the second equation of the model. However, there

is no such problem in estimating the reduced-form VAR model (Overall, we can

obtain nine estimates for the parameters in the reduced-form model: two ele-

ments in A0, four elements in A1 and the three elements σ21,σ
2
2, and σ12 in the

variance-covariance matrix Σ of et). Can we recover the parameters in the original

structural VAR model from those estimates in the reduced-form VAR model? No!

(In the original structural VAR model, there are overall ten parameters to be
determined, but in the structural VAR model we only have gotten 9 estimated

parameters→Underidentification). We have to restrict the original parameters to
ensure that the original parameters can be solved out from the relationship between

the parameters in the two forms of the model → Identification problem.

(a) One solution: (Choleski decomposition: Let the coefficient matrix of yt
and zt be triangular). Impose a restriction on the primitive system:

b21 = 0

which means that yt does not have a contemporaneous effect on zt. From(
yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt

zt = b20 + γ21yt−1 + γ22zt−1 + εzt

we have (
yt = a10 + a11yt−1 + a12zt−1 + e1t

zt = a20 + a21yt−1 + a22zt−1 + e2t

where

et =

Ã
e1t

e2t

!
=

Ã
1 b12

0 1

!−1Ã
εyt

εzt

!
=

Ã
εyt − b12εzt

εzt

!
(both εyt and εzt shocks affect the contemporaneous value of yt,

but only εzt shock affects the contemporaneous value of zt,

εyt does not affect e2t. zt is “causally prior” to yt)

or εt = Bet, i.e.Ã
εyt

εzt

!
==

Ã
1 b12

0 1

!Ã
e1t

e2t

!
=

Ã
e1t − b12e2t

e2t

!
.
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The coefficient relationship between the structural model and the reduced-

form model:

A0 =

Ã
a10

a20

!
=

Ã
1 b12

0 1

!−1Ã
b10

b20

!
=

Ã
1 −b12
0 1

!Ã
b10

b20

!

=

Ã
b10 − b12b20

b20

!

A1 =

Ã
a11 a12

a21 a22

!
=

Ã
1 b12

0 1

!−1Ã
γ11 γ12
γ21 γ22

!

=

Ã
1 −b12
0 1

!Ã
γ11 γ12
γ21 γ22

!
=

Ã
γ11 − b12γ21 γ12 − b12γ22

γ21 γ22

!

Σ ≡
Ã

σ21 σ12

σ21 σ22

!
≡
Ã

var(e1t) cov(e1t, e2t)

cov(e1t, e2t) var(e2t)

!

=

Ã
σ2y + b

2
12σ

2
z −b12σ2z

−b12σ2z σ2z

!
,

which constitute nine equations with nine unknowns. The parameters in

structural model can be exactly identified and recovered from the estimates

of the reduced model. Here the ordering of yt and zt is important.

(b) Another solution: set b12 = 0 (zt does not have a contemporaneous effect
on yt). The argument is similar. In this case, yt is “causally prior” to zt.

(c) Note: We can restrict the parameters in the way the derivation above works

well, but it is better that we use the restrictions which have some economic

meanings in the structural VAR model.

3. Impulse response function: From the reduced form, trace out the time path of
the shocks εyt and εzt on yt and zt.

xt = A0 +A1xt−1 + et = μ+
∞X
i=0

Ai1et−i

= μ+
1

1− b12b21

∞X
i=0

Ã
a11 a12

a21 a22

!iÃ
1 −b12
−b21 1

!Ã
εyt−i

εzt−i

!

≡ μ+
∞X
i=0

Ã
φ11(i) φ12(i)

φ21(i) φ22(i)

!
εt−i ≡ μ+

∞X
i=0

φiεt−i.
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Here φi = A
i
1φ0, i.e.Ã

φ11(i) φ12(i)

φ21(i) φ22(i)

!
=

1

1− b12b21

Ã
a11 a12

a21 a22

!iÃ
1 −b12
−b21 1

!
(2)

are called impulse response function, which, in practice, are constructed from
the estimated coefficients in the reduced model. For example, φ12(1) is the one-

period response of a one-unit change in εzt on yt;
Pn

i=1 φ12(i) is the cumulated sum

of the effects of εzt on the {yt} sequence after n periods.

4. Forecast and forecast error variance decomposition: By using the re-
duced model xt = A0+A1xt−1+ et, the one-step-ahead forecast and the forecast
error:

Etxt+1 = A0 +A1xt

xt+1 − Etxt+1 = et+1.

The two-step-ahead forecast and the forecast error:

Etxt+2 = Et (A0 +A1(A0 +A1xt + et+1) + et+2) = (I +A1)A0 +A
2
1xt

xt+2 −Etxt+2 = et+2 +A1et+1

The n-step-ahead forecast and the forecast error:

Etxt+n =
¡
I +A1 + · · ·+An−11

¢
A0 +A

n
1xt

xt+n − Etxt+n = et+n +A1et+n−1 + · · ·+An−11 et+1.

By using the impulse response function xt = μ+
P∞

i=0 φiεt−i and using

et = φ0εt = B
−1εt,

the one-step-ahead forecast and the forecast error:

Etxt+1 = μ+
∞X
i=0

φiEtεt+1−i = μ+
∞X
i=1

φiεt+1−i

xt+1 −Etxt+1 = φ0εt+1.

The two-step-ahead forecast and the forecast error:

Etxt+2 = μ+
∞X
i=0

φiEtεt+2−i = μ+
∞X
i=2

φiεt+2−i

xt+1 −Etxt+1 = φ0εt+2 + φ1εt+1.
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The n-step-ahead forecast and the forecast error:

Etxt+n = μ+
∞X
i=0

φiEtεt+n−i = μ+
∞X
i=n

φiεt+n−i

xt+1 − Etxt+1 =
n−1X
i=0

φiεt+n−i.

Therefore, the n-step-ahead forecast error of yt+n is

yt+1 −Etyt+1 =
n−1X
i=0

(φ11(i)εyt+n−i + φ12(i)εzt+n−i)

and the n-step-ahead forecast error variance of yt+n is

σ2y(n) =
n−1X
i=0

¡
φ211(i)σ

2
y + φ212(i)σ

2
z

¢
= σ2y

n−1X
i=0

φ211(i) + σ2z

n−1X
i=0

φ212(i).

The proportions of σ2y(n) due to shocks in the {εyt} and {εzt} sequences are,
respectively,

σ2y
Pn−1

i=0 φ211(i)

σ2y(n)
: the proportion due to its own shock

and

σ2z
Pn−1

i=0 φ212(i)

σ2y(n)
: the proportion due to the shock of the other variable zt.

Similarly, the n-step-ahead forecast error variance of zt+n is

σ2z(n) =
n−1X
i=0

¡
φ221(i)σ

2
y + φ222(i)σ

2
z

¢
= σ2y

n−1X
i=0

φ221(i) + σ2z

n−1X
i=0

φ222(i).

The proportions of σ2z(n) due to shocks in the {εyt} and {εzt} sequences are,
respectively,

σ2y
Pn−1

i=0 φ221(i)

σ2z(n)
: the proportion due to the shock of the other variable yt

and
σ2z
Pn−1

i=0 φ222(i)

σ2z(n)
: the proportion due to its own shock.
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This is the forecast error variance decomposition. If εzt shocks explain none of
the variance of yt at all forecast horizons, {yt} is exogenous, and hence {yt} evolves
independently of εzt shocks and {zt}; If εzt shocks explain all of the forecast error
variance of yt at all forecast horizons, {yt} is entirely endogenous.

Under the restriction b21 = 0, the original structural model is identified: e1t =

εyt− b12εzt and e2t = εzt. All of the one-period forecast error variance of zt is due to εzt,

since, as n = 1, by (2),

σ2y
Pn−1

i=0 φ221(i)

σ2z(n)
=

σ2yφ
2
21(0)

σ2z(1)
= 0 or

σ2z
Pn−1

i=0 φ222(i)

σ2z(n)
=

σ2zφ
2
22(0)

σ2z(1)
= 1.

Similarly, under the restriction b12 = 0, since e1t = εyt and e2t = −b21εyt + εzt, all of the

one-period forecast error variance of yt is due to εyt.

n-equation VAR (the reduced form):⎛⎜⎜⎜⎜⎝
x1t

x2t
...

xnt

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
A10

A20
...

An0

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝
A11(L) A12(L) · · · A1n(L)

A21(L) A22(L) · · · A2n(L)
...

...
...

An1(L) An2(L) · · · Ann(L)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1t−1

x2t−1
...

xnt−1

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝
e1t

e2t
...

ent

⎞⎟⎟⎟⎟⎠
where Aij(L) = aij(1) + aij(2)L · · ·+ aij(p)Lp−1 (the polynomial in the lag operator L).
All the equations have the same lag length. The error terms e1t, e2t, · · · , ent are white
noises which may be correlated with a variance-covariance matrix Σ. Here we use the

same lag length for each variable. For different lag lengths across equations, the model

is called near-VAR model, which is estimated by SUR (seemingly unrelated regressions).

Two important things are the choice of p and the choice of variables into the system.

1. How to select the lag length p? Begin with the longest plausible lag length

and set the VAR model as the Unrestricted Model; Determine whether a
shorter lag length is appropriate. Restrict the coefficients of x0t−is for the lags

between the longest lag length and this shorter lag length to be zero and obtain

the Restricted Model. Then examine the significance of the null of these zero
coefficients by using the χ2 statistic (likelihood ratio test):

(T − c) (log |Σr|− log |Σu|) ,

where T is the sample size used in the estimation; c is the number of parameters

estimated in each equation of the unrestricted model; |Σu| is the determinant of
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the variance-covariance matrix of the residuals from the unrestricted VAR model;

|Σr| is the determinant of the variance-covariance matrix of the residuals from
the restricted VAR model. The degree = the number of restrictions. Large value

(greater than the critical value) of this sample statistic implies a rejection of the

restriction; hence use the model with the longer lag length. Alternative test
criteria are the AIC and SBC:

AIC = T log |Σ|+ 2N

and

SBC = T log |Σ|+N log T
which are measures of the overall fit of alternative models, where N is the total

number of parameters estimated in all equations.

2. Granger Causality: How to test whether the lags of one variable enter into the
equation for another variable in a VAR model?

xj does not Granger cause xi ⇔ all the coefficients of Aij(L) equal zero.

Thus, if {xjt} does not improve the forecasting performance of {xit}, {xjt} does
not Granger cause {xit}. If all variables in the VAR model are stationary, conduct
a standard F-test of the restriction

aij(1) = aij(2) = · · · = aij(p) = 0.

Notice the difference between Granger causality and exogeneity: “{yt} Granger
cause {zt}” refers to the effects of past values of {yt} on the current value of zt,
and hence, Granger causality measures whether current and past values of yt help

to forecast future values of {zt}; “zt is exogenous in the equation of yt” means that
zt is not affected by the contemporaneous value of yt. Study the example

zt = z̄ + φ21(0)εyt +
∞X
i=0

φ22(i)εzt−i.

Here {yt} does not Granger cause {zt}, but zt is endogenous in the equation for
yt.

3. Block-causality test: How to determine whether p lags of one variable (say, wt)
enter the equations of any other variables (say yt and zt) in the system. Whether

does wt Granger cause yt or zt?

First, estimate the yt and zt equations using lags of yt, zt and wt ⇒ Σu;

Second, estimate the yt and zt equations only using lags of yt and zt ⇒ Σr;

Then, construct the likelihood ratio statistic :
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(T − 3p− 1) (log |Σr|− log |Σu|) ∼ χ2(2p).

4. Tests with nonstationary variables: (Sims, Stock, and Watson (1990))
If the coefficient of interest can be written as a coefficient on a stationary variable,

a t-test and F-test are appropriate, even though other variables are nonstationary.

Note the following cases:

1). Consider a two-variable VAR model:

yt = a11yt−1 + a12yt−2 + b11zt−1 + b12zt−2 + εt.

If {yt} ∼ I(1) and {zt} ∼ I(0), the t-tests for

H0 : b11 = 0

and

H0 : b12 = 0,

the F-test for

H0 : b11 = b12 = 0,

the lag lengths test of zt, and the test whether {zt} Granger causes {yt} are all appro-
priate. Also, the tests for

H0 : a11 = 0

and

H0 : a12 = 0

are possible to be performed. However, the null

H0 : a11 = a12 = 0

can not be tested.

2). Consider a two-variable VAR model:

yt = a11yt−1 + a12yt−2 + b11zt−1 + b12zt−2 + εt.

If {yt} ∼ I(1) and {zt} ∼ I(1), then it is possible to test (F-test)

H0 : a12 = b12 = 0.

We can perform a lag length test on any variable or any set of variables, but the test

whether {zt} Granger causes {yt} is inappropriate.
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3). We may be able to test Granger causality between two nonstationary variables.

For example, if {yt} ∼ I(1), {zt} ∼ I(1), {xt} ∼ I(1), then in the model

yt = γ1yt−1+a11∆yt−1+a12∆yt−2+b11∆zt−1+b12∆zt−2+c10xt−1+c11∆xt−1+c12∆xt−2+εt,

the test whether {zt} Granger causes {yt} is appropriate, but the test whether {xt}
Granger causes {yt} is inappropriate.
4). If yt and zt are cointegrated, the causality test in VAR is not appropriate. See

the next Chapter.

Structural VARs:

Consider the first-order structural model with n-variables⎛⎜⎜⎜⎜⎝
1 b12 · · · b1n

b21 1 · · · b2n
...

...
...

bn1 bn2 · · · 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1t

x2t
...

xnt

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
b10

b20
...

bn0

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝

γ11 γ12 · · · γ1n
γ21 γ22 · · · γ2n
...

...
...

γn1 γn2 · · · γnn

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1t−1

x2t−1
...

xnt−1

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝

ε1t

ε2t
...

εnt

⎞⎟⎟⎟⎟⎠
or

Bxt = Γ0 + Γ1xt−1 + εt.

The reduced-form VAR is

xt = B−1Γ0 +B
−1Γ1xt−1 +B

−1εt

= A0 +A1xt−1 + et,

where

A0 = B
−1Γ0, A1 = B

−1Γ1, et = B
−1εt

and

Σ ≡ Eete
0
t =

⎛⎜⎜⎜⎜⎝
σ21 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
...

σn1 σn2 · · · σ2n

⎞⎟⎟⎟⎟⎠ (symmetric)

= EB−1εtε
0
tB

0−1 = B−1E(εtε
0
t)B

0−1 ≡ B−1ΣεB
0−1
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Σε ≡ Eεtε0t =

⎛⎜⎜⎜⎜⎝
var(ε1) 0 · · · 0

0 var(ε2) · · · 0
...

...
...

0 0 · · · var(εn)

⎞⎟⎟⎟⎟⎠
As introduced above, the reduced-form VAR can be estimated and we obtain

Â0, Â1, Σ̂, êt (3)

Now the problem is: how to restrict the system so as to recover the various {εit} and
preserve the assumed error structure concerning the independence of them? That is,

how to recover
B, Γ0, Γ1, Σε, εt

from the estimates (3)? Examine the relationship between the estimated parameters
and the to-be-recovered parameters:

B−1ΣεB
0−1 = Σ̂ n× n, symmetric

There are overall1
2
n(n+1) estimated parameters in the right hand side; there are (n2−

n) + n = n2 parameters in the left hand side Since

the number of unknowns− the number of equations

= n2 − 1
2
n(n+ 1) =

1

2
n(n− 1) > 0

tthe structural model is not identified. To exactly identify the structural model from the

estimated VAR,it is necessary to impose n(n-1)/2 restrictions on the structural VAR.

Some examples of restrictions are provided on P295-298. Sometimes, economic theory

suggests more than 1
2
n(n− 1) restrictions, hence the problem of overidentification.
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