
4 Nonstationary AR Process and Testing for Unit
Root

• Trend and Random Walk

The general solution to a linear stochastic difference equation: yt = trend+stationary

component + noise.

“Trend”: permanent or nondecaying component of a time series. The trend has a
permanent effect on a series.

“Trend stationary”: yt = y0+ a0t+A(L)εt, where A(L)εt is a stationary component

of yt.

“Not trend stationary”: yt = y0 +
Pt

i=1 εi + a0t.
Pt

i=1 εi is a stochastic trend com-

ponent of yt. Each εi shock has a permanent change in the conditional mean of {yt}.

Random walk model:

yt = y0 +
tX
i=1

εi

or

yt = yt−1 + εt,

where εt is a white-noise. Nonstationary and Difference stationary

Eyt = Eyt−s = y0,

V ar(yt) = tσ2, V ar(yt−s) = (t− s)σ2,
Etyt+1 = Etyt+s = yt, s > 0.

An εi shock (i < t) has a permanent effect on yt and hence the forecasts for yt+s. Since

Cov(yt, yt−s) = Cov

Ã
tX
i=1

εi,
t−sX
i=1

εi

!
= (t− s)σ2,

ρs =
(t− s)σ2√
tσ2
p
(t− s)σ2

= (1− s/t)1/2 ,

as s increases, ρs will decline, and hence the ACF for a random walk process will show a

slight tendency to decay. It is impossible to use the ACF to distinguish between a unit

root process and a stationary process with a near-unit root.

Random walk plus drift model:

yt = y0 +
tX
i=1

εi + a0t
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or

yt = a0 + yt−1 + εt,

where εt is a white-noise. Nonstationary: a linear deterministic trend a0t and a stochastic

trend
Pt

i=1 εi. It is difference-stationary.

Etyt+s = yt + a0s.

Random walk plus noise model:

yt = y0 +
tX
i=1

εi + ηt

or

yt = yt−1 + εt +∆ηt,

where ηt is a white-noise with variance σ
2
η and independent of εt−s for all t and s; η0 = 0.

It is Nonstationary but Difference-stationary.

Eyt = Eyt−s = y0,

V ar(yt) = tσ2 + σ2η, V ar(yt−s) = (t− s)σ2 + σ2η,

Etyt+1 = Etyt+s = yt, s > 0.

The shock εt has a permanent effect on yt and hence the forecasts for yt+s. However, the

noise ηt only affects yt but not the subsequent values yt+s. Since

Cov(yt, yt−s) = Cov

Ã
tX
i=1

εi + ηt,
t−sX
i=1

εi + ηt−s

!
= (t− s)σ2,

ρs =
(t− s)σ2p

tσ2 + σ2η

q
(t− s)σ2 + σ2η

,

the ACF is always smaller than that for the pure random walk model above. The noise is

only to increase the variance of {yt} without affecting its long-run behavior. The model
is nothing more than the random walk model with a purely temporary component added.

Trend plus noise model:

yt = y0 + a0t+
tX
i=1

εi + ηt

or

yt = a0 + yt−1 + εt +∆ηt,
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where ηt is a white-noise process with variance σ2η and Eεtηt−s = 0 for all t and s.

Nonstationary: a linear deterministic trend a0t, a stochastic trend
Pt

i=1 εi, and a pure

white-noise ηt. It is difference-stationary.

General trend plus irregular model:

yt = y0 + a0t+
tX
i=1

εi +A(L)ηt

or

yt = a0 + yt−1 + εt +A(L)∆ηt,

where A(L)ηt is a stationary process. Nonstationary: a linear deterministic trend a0t,

a stochastic trend
Pt

i=1 εi, and a stationary component A(L)ηt. Shocks to a stationary

series are necessarily temporary; the effects of the irregular component will dissipate

and do not affect its long-run mean level. But the trend components will determine the

trend of the yt process.

• How to remove the trend?

Two methods: Differencing and detrending.

1) Differencing:

• 1. Random walk plus drift model:

yt = y0 +
tX
i=1

εi + a0t

or ∆yt = a0 + εt, where εt is a white-noise. Stationarity of {∆yt} :

E∆yt = a0

V ar(∆yt) = σ2

Cov(∆yt,∆yt−s) = 0, s > 0.

2. Random walk plus noise model:

yt = y0 +
tX
i=1

εi + ηt
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or ∆yt = εt+∆ηt, where ηt is a white-noise with variance σ
2
η and independent

of εt−s for all t and s, and η0 = 0. Stationarity of {∆yt} :

E∆yt = 0

V ar(∆yt) = σ2 + 2σ2η

Cov(∆yt,∆yt−1) = −σ2η
Cov(∆yt,∆yt−s) = 0, s > 1.

Note that

−0.5 ≤ ρ1 =
Cov(∆yt,∆yt−1)

V ar(∆yt)
=

−σ2η
σ2 + 2σ2η

≤ 0

ρs = 0, s > 1.

{∆yt} acts exactly as anMA(1) process, and hence {yt} acts asARIMA(0, 1, 1).
3. Similarly, for the trend plus noise model,

yt = y0 + a0t+
tX
i=1

εi + ηt

or ∆yt = a0 + εt + ∆ηt, where ηt is a white-noise process with variance σ2η
and Eεtηt−s = 0 for all t and s, {yt} acts as an ARIMA(0, 1, 1) process.

4. Suppose that A(L)yt = B(L)εt, where A(L) and B(L) are polynomials of

order p and q, respectively. Assume also that A(L) has a single unit root

and that B(L) has all roots outside the unit circle. Then A(L) = (1 −
L)A∗(L), whereA∗(L) is a polynomial of order p−1 whose roots are all outside
of the unit circle. Hence, (1 − L)A∗(L) = B(L)εt or A∗(L)y∗t = B(L)εt,

where y∗t = ∆yt, and {y∗t } is stationary and yt ∼ ARIMA(p − 1, 1, q). If
A(L) has only two unit roots, the same argument deduces that {∆2yt} is
stationary and yt ∼ ARIMA(p− 2, 2, q). Generally, suppose that {yt} is an
ARIMA(p, d, q) process (with d unit roots), then {∆dyt} is stationary and
{∆dyt} is an ARMA(p, q) process. In this case, {yt} is called “integrated of
order d”, i.e. {yt} is an I(d) process or denoted as yt ∼ I(d).

5. Trend plus noise model: yt = y0+a1t+εt or ∆yt = a1+εt−εt−1. {∆yt} is not
well-behaved since it is not invertible, i.e. it cannot be expressed in the form

of an autoregressive process. Hence, differencing does not work well here.

2) Detrending:
For the deterministic trend plus noise model: yt = a0 + a1t+ a2t2 + · · ·+ antn + εt,

applying detrending, i.e. regressing {yt} on the deterministic polynomial time trend
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(a0+a1t+a2t2+ · · ·+antn) and subtracting the estimated values of yt from the observed
series yt will yield estimated values {et} of the {εt} series, where {et} is stationary. The
degree of the polynomial can be determined by t-test, F-test, the AIC or SBC. (First

try a larger n, apply t-test to the last coefficient, ...). The stationary detrended process

can then be modeled using the traditional methods (ARMA estimation).

• Difference or detrend? Inappropriate method to eliminate trend will lead to

a serious problem. (1) First-differencing the TS (trend-stationary) process will

introduce a noninvertible unit root process into the MA component of the model.

Examine the example

A(L)yt = a0 + a1t+B(L)εt.

Detrending yields a satationary and invertible ARMA process, but first-difference

deduces that

A(L)∆yt = a1 + (1− L)B(L)εt
of which the second term (1 − L)B(L)εt makes A(L)∆yt noninvertible. (2) De-
trending a DS process may not eliminate all the trend components (the stochastic

component of the trend). Study the general trend plus irregular model

yt = y0 + a0t+
tX
i=1

εi +A(L)ηt.

• Why nonstationary variables lead to spurious regression (high R2,significant
t-test, but no economic meaning)? (the necessity or the importance of the

unit root test). Examine the following example:

yt = a0 + a1zt + et,

where {yt} and {zt} are two independent random walk processes, i.e.

yt = yt−1 + εyt

zt = zt−1 + εzt

with two independent white-noise processes εyt and εzt. Any relationship between

yt and zt is meaningless since {yt} and {zt} are independent. But OLS often gives
high R2 and significant t-test for the coefficients. Why? The error term et in the

regression equation is

et = yt − a0 − a1zt

= −a0 +
tX
i=1

εyi − a1
tX
i=1

εzi.
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Since V ar(et) = t(σ2εy+a
2
1σ
2
εz) becomes infinitely large as t increases, and Etet+i =

et for i ≥ 0, the t-test, F-test or R2 values are unrealiable. Under the null: a1 = 0,
yt = a0 + et and hence {et} ∼ I(1). This is inconsistent with the distributional
theory in OLS, which requires that the error term be a white-noise. Phillips (1986)

shows that, the larger the sample, the more likely to falsely reject the null (i.e. the

more significant for the test in OLS).

• Recall:

If {∆yt} is a stationary process, then the process {yt} is called a unit root process,
where ∆yt = yt − yt−1. Specially, if {εt} ∼ i.i.d.(0,σ2), σ2 < ∞, then the process {yt}
with yt − yt−1 = εt is called a random walk process.
CLT for a Martingale Difference Sequence: Let {Yt} be a scalar martingale

difference sequence with ȲT = (1/T )
PT

t=1 Yt. Suppose that (a) E(Y
2
t ) = σ2t > 0 with

(1/T )
PT

t=1 σ
2
t → σ2 > 0; (b) E|Yt|r <∞ for some r>2 and all t; (c) (1/T )

PT
t=1 Y

2
t → σ2

in probability. Then

1√
T

TX
t=1

Yt → N(0,σ2). ¥

Study the AR(1) model yt = a1yt−1+ut with |a1| < 1, where {ut} is i.i.d(0,σ2). The
OLS estimator â1 is

â1 = a1 +

Ã
TX
t=1

y2t−1

!−1 TX
t=1

utyt−1.

This estimator is biased (Eâ1 6= a1) since ut may not be independent of yt, yt+1, · · · , yT ,
but, as T →∞, √

T (â1 − a1)→ N(0, 1− a21). ¥

• Winner Process:

Now study

yt = a1yt−1 + εt, a1 = 1,

where εt ∼ i.i.d.N(0,σ2).The OLS estimator for a1 satisfies

T (â1 − 1) =
(1/T )

PT
t=1 εtyt−1

(1/T 2)
PT

t=1 y
2
t−1
,
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which is not asymptotically normally distributed. We will show that the asymptotic

distribution of T (â1 − 1) is related with Winner process.
Winner Process (Standard Brownian Motion) W (·) is defined as a continuous-

time stochastic process, associating each date t ∈ [0, 1] with the scalar W (t) such that
(i) W (0) = 0;

(ii) For any dates 0 ≤ t1 < t2 < · · · < tk = 1, the changes

[W (t2)−W (t1)] , [W (t3)−W (t2)] , · · · , [W (tk)−W (tk−1)]

are independent random variables;

(iii) For any 0 ≤ t < s ≤ 1, W (s)−W (t) ∼ N(0, s− t).
Notes:
1) For any t ∈ [0, 1], select dt > 0 such that 0 < t− dt < 1. W (t)−W (t− dt) = ηt ∼

N(0, dt) or

W (t) =W (t− dt) + ηt with ηt ∼ N(0, dt)

is a random walk with the time-step dt.

2) Other continuous-time processes can be generated from standard Brownian mo-

tion. For example, B(t) ≡ σW (t) ∼ N(0,σ2t), which is called as Brownian motion with
variance σ2; Z(t) =W 2(t) ∼ tχ2(1).
3) W (t) is continuous but not differentiable in t ∈ [0, 1], where the distance of W (t1)

and W (t2) is defined as

d(t1, t2) =

q
E (W (t1)−W (t2))2

for any t1, t2 ∈ [0, 1] and t2 > t1. The reasons are that, for any t0 ∈ [0, 1], dt > 0, t0+dt ∈
[0, 1], W (t0 + dt)−W (t0) ∼ N(0, dt), and hence

d(t0, t0 + dt) =

q
E (W (t0 + dt)−W (t0))2

=
p
V ar (W (t0 + dt)−W (t0))

=
√
dt→ 0, as dt→ 0

and

lim
dt→0+

d(t0, t0 + dt)

dt
= lim

dt→0+

√
dt

dt
=∞.

• The Functional Central Limit Theorem
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If εt ∼ i.i.d.(0,σ2),σ2 < ∞, then 1√
T

PT
t=1 εt → N(0,σ2) as T → ∞. This is the

Lindeberg-Levy CLT. Also, as T →∞,

1p
[T/2]

[T/2]X
t=1

εt → N(0,σ2).

Generally, for any r ∈ (0, 1), as T →∞,

1p
[Tr]

[Tr]X
t=1

εt → N(0,σ2).

Define

XT (r) ≡
1

T

[Tr]X
t=1

εt.

It is easily deduced that, for any given realization,

XT (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ r < 1/T
ε1/T, 1/T ≤ r < 2/T
(ε1 + ε2)/T, 2/T ≤ r < 3/T
...

(ε1 + ε2 + · · ·+ εT−1)/T, (T − 1)/T ≤ r < 1
(ε1 + ε2 + · · ·+ εT )/T, r = 1

is a step function in r. Since

√
TXT (r) ≡

1√
T

[Tr]X
t=1

εt =

p
[Tr]√
T

1p
[Tr]

[Tr]X
t=1

εt

and limT→∞
√
[Tr]√
T
→√r, we have

√
TXT (r) ≡

1√
T

[Tr]X
t=1

εt → N(0, rσ2) (1)

or
√
TXT (r)/σ ≡

1√
Tσ

[Tr]X
t=1

εt → N(0, r).

For any 1 > r2 > r1 > 0,

√
T (XT (r2)−XT (r1)) /σ → N(0, r2 − r1),
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and it is independent of
√
TXT (r)/σ, provided that r < r1. Therefore, the set of functions

{
√
TXT (·)/σ}∞T=1 has an asymptotic distribution:

√
TXT (·)/σ →W (·).

Note that here XT (·) is a random function and XT (r) is a random variable, which is

the value of the function XT (·) at date r. The limiting distribution of
√
TXT (r) is the

same as the distribution of the Wiener process B(r) = σW (r) since W (r) ∼ N(0, r).
Specially,

√
TXT (1)/σ ≡

1√
Tσ

TX
t=1

εt →W (1) ∼ N(0, 1).

• Continuous Mapping Theorem: If ST (·) → S(·) in distribution and g(·) is a
continuous function, then g(ST (·))→ g(S(·)) in distribution.

For example, since
√
TXT (·)/σ →W (·),we have

√
TXT (·)→ σW (·) and

√
TXT (r) ∼

N(0,σ2r); ST (·) ≡
³√
TXT (·)

´2
→ σ2W 2(·);

R 1
0

√
TXT (r)dr→ σ

R 1
0
W (r)dr.

• Stochastic Integral:
R 1
0
f(r)dW (r) Definition and properties.

Z 1

0

dW =W (1) ∼ N(0, 1)Z 1

0

W (t)dW (t) =
1

2

£
W 2(1)− 1

¤
∼ 1
2

£
χ2(1)− 1

¤
Z 1

0

rdW (r) ∼ N(0, 1/3)

• Applications to Random Walk Processes:

Theorem 1 Suppose that yt = yt−1+ εt, where εt ∼ i.i.d.N(0,σ2). Then as T →∞,

T−1/2
TX
t=1

εt → σW (1) (2)

T−1
TX
t=1

yt−1εt →
1

2
σ2(W 2(1)− 1) (3)

T−3/2
TX
t=1

tεt → σW (1)− σ

Z 1

0

W (r)dr (4)
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T−3/2
TX
t=1

yt−1 → σ

Z 1

0

W (r)dr (5)

T−5/2
TX
t=1

tyt−1 → σ

Z 1

0

rW (r)dr (6)

T−2
TX
t=1

y2t−1 → σ2
Z 1

0

W 2(r)dr. (7)

Proof: (2) is obvious. For (3), note that y2t = (yt−1+εt)
2 = y2t−1+ε2t+2εtyt−1. Therefore,

T−1
TX
t=1

εtyt−1 =
1

2T

TX
t=1

¡
y2t − y2t−1 − ε2t

¢
=

1

2T
y2T −

1

2T

TX
t=1

ε2t =
1

2

Ã
1√
T

TX
t=1

εt

!2
− 1

2T

TX
t=1

ε2t

=
1

2

³√
TXT (1)

´2
− 1

2T

TX
t=1

ε2t

→ 1

2
(σW (1))2 − 1

2
σ2 =

1

2
σ2
¡
W 2(1)− 1

¢
.

For (4) and (5), since

XT (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ r < 1/T
y1/T, 1/T ≤ r < 2/T
y2/T, 2/T ≤ r < 3/T
...

yt−1/T, (T − 1)/T ≤ r < 1
yT/T, r = 1

the integral of XT (r) in [0, 1] isZ 1

0

XT (r)dr = y1/T
2 + y2/T

2 + · · ·+ yT−1/T 2 = T−2
TX
t=1

yt−1,

and hence as T →∞,

T−3/2
TX
t=1

yt−1 =

Z 1

0

√
TXT (r)dr →

Z 1

0

σW (r)dr.
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On the other hand, it follows from

T−3/2
TX
t=1

yt−1

= T−3/2[ε1 + (ε1 + ε2) + (ε1 + ε2 + ε3) + · · ·+ (ε1 + · · ·+ εT−1)]

= T−3/2[(T − 1)ε1 + (T − 2)ε2 + (T − 3)ε3 + · · ·+ (T − (T − 1))εT−1]

= T−3/2
TX
t=1

(T − t)εt

= T−1/2
TX
t=1

εt − T−3/2
TX
t=1

tεt

that T−3/2
PT

t=1 tεt = T
−1/2PT

t=1 εt − T−3/2
PT

t=1 yt−1 → σW (1)−
R 1
0
σW (r)dr as T →

∞, and hence (4).
For (6), since

tyt−1 = t(ε1 + ε2 + · · ·+ εt−1)

= T

Z t/T

(t−1)/T
([Tr] + 1)(ε1 + ε2 + · · ·+ ε[Tr])dr

= T 2
Z t/T

(t−1)/T
([Tr] + 1)XT (r)dr,

we have

T−5/2
TX
t=1

tyt−1 = T
−1/2

TX
t=1

Z t/T

(t−1)/T
([Tr] + 1)XT (r)dr

=
TX
t=1

Z t/T

(t−1)/T

[Tr] + 1

T

√
TXT (r)dr =

Z 1

0

[Tr] + 1

T

√
TXT (r)dr

→ σ

Z 1

0

rW (r)dr as T →∞.

(7) is obtained by writing

T−2
TX
t=1

y2t−1 = T
−2

TX
t=1

(ε1 + ε2 + · · ·+ εt−1)
2

=
TX
t=1

Z t/T

(t−1)/T

³√
TXT (r)

´2
dr =

Z 1

0

³√
TXT (r)

´2
dr

and applying the continuous mapping theorem, where TXT (r) ≡
P[Tr]

t=1 εt is used. ¥
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• Applications to Regression Models:

Theorem 2 Consider the following three models:

Model 1 : yt = a1yt−1 + εt, a1 = 1;

Model 2 : yt = a0 + a1yt−1 + εt, a0 = 0, a1 = 1;

Model 3 : yt = a0 + a1yt−1 + βt+ εt, a0 = 0, a1 = 1, β = 0.

(i) In Model 1, the data are generated by a random walk: yt = yt−1 + εt, but the

model is estimated by OLS: yt = a1yt−1 + εt. The OLS estimator for a1 satisfies that

T (â1 − 1)→
R 1
0
W (r)dW (r)R 1
0
W 2(r)dr

=
(W 2(1)− 1)/2R 1

0
W 2(r)dr

where W (r) is standard Brownian motion.

(ii) In Model 2, the data are generated by a random walk: yt = yt−1 + εt, but the

model is estimated by OLS: yt = a0 + a1yt−1 + εt. The OLS estimator for a1 satisfies

that

T (â1 − 1)→
R 1
0
W̄ (r)dW (r)R 1
0
W̄ 2(r)dr

,

where W̄ (r) =W (r)−
R 1
0
W (r)dr is the demeaned Brownian motion.

(iii) In Model 3, the data are generated by a random walk: yt = yt−1 + εt, but the

model is estimated by OLS: yt = a0+a1yt−1+βt+εt. The OLS estimator for a1 satisfies

that

T (â1 − 1)→
R 1
0
W ∗(r)dW (r)R 1
0
W ∗2(r)dr

,

whereW ∗(r) =W (r)−4
³R 1

0
W (r)dr − 3

2

R 1
0
rW (r)dr

´
+6r

³R 1
0
W (r)dr − 2

R 1
0
rW (r)dr

´
is the demeaned and detrended Brownian motion.

Proof: (i) For Model 1, the true model is yt = yt−1 + εt. Since

â1 =

PT
t=2 ytyt−1PT
t=2 y

2
t−1

= 1 +

PT
t=2 εtyt−1PT
t=2 y

2
t−1

,

from Theorem 1, we obtain

T (â1 − 1) =
T−1

PT
t=2 εtyt−1

T−2
PT

t=2 y
2
t−1

→
µ
σ2
Z 1

0

W 2(r)dr

¶−1
1

2
σ2(W 2(1)− 1)

=

µZ 1

0

W 2(r)dr

¶−1 Z 1

0

W (r)dW (r).
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(ii) For Model 2, the true model is yt = yt−1 + εt. By the OLS estimator in yt =

a0 + a1yt−1 + εt,

â1 =
T
PT

t=1 ytyt−1 −
³PT

t=1 yt
´³PT

t=1 yt−1
´

T
PT

t=1 y
2
t−1 −

³PT
t=1 yt−1

´2 ,

we have

T (â1 − 1) = T
T
PT

t=1 εtyt−1 −
³PT

t=1 εt
´³PT

t=1 yt−1
´

T
PT

t=1 y
2
t−1 −

³PT
t=1 yt−1

´2
=

T−1
PT

t=1 εtyt−1 −
³
T−1/2

PT
t=1 εt

´³
T−3/2

PT
t=1 yt−1

´
T−2

PT
t=1 y

2
t−1 −

³
T−3/2

PT
t=1 yt−1

´2
→

R 1
0
W (r)dW (r)−W (1)

R 1
0
W (r)drR 1

0
W 2(r)dr −

³R 1
0
W (r)dr

´2
=

µZ 1

0

W̄ 2(r)dr

¶−1 Z 1

0

W̄ (r)dW (r),

where W̄ (r) ≡W (r)−
R 1
0
W (r)dr.

An alternative proof: Let ȳt be the demeaned yt, i.e. the residuals from the

OLS regression yt = â0 + ȳt. Denote W̄ (r) as the limit distribution of 1√
Tσ
ȳ[Tr], i.e.

1√
T
ȳ[Tr] → σW̄ (r). It follows from ȳt = yt− â0 = yt−T−1

PT
t=1 yt that ȳt = ȳt−1+εt and

1√
T
ȳ[Tr] =

1√
T
y[Tr] − T−3/2

TX
t=1

yt → σ

µ
W (r)−

Z 1

0

W (r)dr

¶
.

Therefore W̄ (r) =W (r)−
R 1
0
W (r)dr. Then from (i),

T (â1 − 1) =
T−1

PT
t=1 εtȳt−1

T−2
PT

t=1 ȳ
2
t−1

→
µZ 1

0

W̄ 2(r)dr

¶−1 Z 1

0

W̄ (r)dW̄ (r) =

µZ 1

0

W̄ 2(r)dr

¶−1 Z 1

0

W̄ (r)dW (r).

(iii) Omitted (see Hamilton(1994)). ¥

• Limit Distribution of t-Statistic for Models 1, 2 and 3:
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Model 1: Under the null: a1 = 1, the OLS estimator â1 is a consistent estimator,
and hence

σ̂2T ≡
1

T − 1

TX
t=1

(yt − â1yt−1)2 → σ2 in probability.

Then

tT ≡ â1 − 1
s.e.(â1)

=
T−1

PT
t=1 yt−1εt

σ̂
q
T−2

PT
t=1 y

2
t−1

→
1
2
σ2(W 2(1)− 1)

σ
q

σ2
R 1
0
W 2(r)dr

=

R 1
0
W (r)dW (r)qR 1
0
W 2(r)dr

.

The t-statistic converge weakly to a functional of the Brownian motion with asymmetric

limit distribution.

Model 2: Under the null: a1 = 1,

tT ≡
â1 − 1
s.e.(â1)

→
R 1
0
W̄ (r)dW (r)qR 1
0
W̄ 2(r)dr

.

Model 3: Under the null: a1 = 1,

tT ≡
â1 − 1
s.e.(â1)

→
R 1
0
W ∗(r)dW (r)qR 1
0
W ∗2(r)dr

.

• Random Walk with a Drift: What is the Limit Distribution of the OLS
Estimator for the autoregression?

Consider the following random walk plus drift process:

yt = a+ ρyt−1 + εt, (8)

where a 6= 0, ρ = 1, and εt is i.i.d. Write

yt = y0 + at+
tX
i=1

εi ≡ y0 + at+ ξt,

which includes a deterministic trend at, where ξt ≡
Pt

i=1 εi. Hence,

TX
t=1

yt−1 = Ty0 +
T (T − 1)a

2
+

TX
t=1

ξt−1

14



and as T →∞, in probability,

T−2
TX
t=1

yt−1 = T
−1y0 +

T (T − 1)a
2T 2

+ T−1/2

Ã
T−3/2

TX
t=1

ξt−1

!
→ a

2
,

which means that T−2
PT

t=1 yt−1 does not have a non-degenerate distribution duo to the

nonzero drift a. Note that
TX
t=1

y2t−1 =
TX
t=1

¡
y0 + a(t− 1) + ξt−1

¢2
= Ty20 + a

2
TX
t=1

(t− 1)2 +
TX
t=1

ξ2t−1 + 2y0a
TX
t=1

(t− 1) + 2y0
TX
t=1

ξt−1 + 2ay0

TX
t=1

(t− 1)ξt−1,

T−3a2
TX
t=1

(t− 1)2 → a2

3
, T−2

TX
t=1

ξ2t−1 → σ2
Z 1

0

W 2(r)dr,

T−3/2
TX
t=1

ξt−1 → σ

Z 1

0

W (r)dr, T−5/2
TX
t=1

(t− 1)ξt−1 → σ

Z 1

0

rW (r)dr,

we have T−3
PT

t=1 y
2
t−1 → a2

3
in probability. Now we derive the limit distribution of the

OLS estimators of â and ρ̂. SinceÃ
â− a
ρ̂− 1

!
=

Ã
T

PT
t=1 yt−1PT

t=1 yt−1
PT

t=1 y
2
t−1

!−1Ã PT
t=1 εtPT

t=1 yt−1εt

!
,

we have Ã
T 1/2 (â− a)
T 3/2 (ρ̂− 1)

!
=

Ã
T 1/2 0

0 T 3/2

!Ã
â− a
ρ̂− 1

!

=

Ã
T 1/2 0

0 T 3/2

!Ã
T

PT
t=1 yt−1PT

t=1 yt−1
PT

t=1 y
2
t−1

!−1Ã
T 1/2 0

0 T 3/2

!

·
Ã
T−1/2 0

0 T−3/2

!Ã PT
t=1 εtPT

t=1 yt−1εt

!

=

"Ã
T−1/2 0

0 T−3/2

!Ã
T

PT
t=1 yt−1PT

t=1 yt−1
PT

t=1 y
2
t−1

!Ã
T−1/2 0

0 T−3/2

!#−1

·
Ã

T−1/2
PT

t=1 εt

T−3/2
PT

t=1 yt−1εt

!

=

Ã
1 T−2

PT
t=1 yt−1

T−2
PT

t=1 yt−1 T−3
PT

t=1 y
2
t−1

!−1Ã
T−1/2

PT
t=1 εt

T−3/2
PT

t=1 yt−1εt

!
.

15



Since Ã
1 T−2

PT
t=1 yt−1

T−2
PT

t=1 yt−1 T−3
PT

t=1 y
2
t−1

!
→
Ã
1 a

2
a
2

a2

3

!
and Ã

T−1/2
PT

t=1 εt

T−3/2
PT

t=1 yt−1εt

!
=

Ã
T−1/2

PT
t=1 εt

T−3/2
PT

t=1

¡
y0 + a(t− 1) + ξt−1

¢
εt

!

=

Ã
T−1/2

PT
t=1 εt

T−3/2
PT

t=1 a(t− 1)εt

!
+

Ã
0

T−3/2
PT

t=1

¡
y0 + ξt−1

¢
εt

!

→ N

"Ã
0

0

!
,σ2

Ã
1 a

2
a
2

a2

3

!#
,

we have Ã
T 1/2 (â− a)
T 3/2 (ρ̂− 1)

!
→ N

⎡⎣Ã 0

0

!
,σ2

Ã
1 a

2
a
2

a2

3

!−1⎤⎦ . (9)

= N

"Ã
0

0

!
,σ2

Ã
4 −6

a

−6
a

12
a2

!#

Note: Compared with the random walk without a drift, the limt distribution of

T 1/2 (â− a) and T 3/2 (ρ̂− 1) have following properties:
(i) Asymptotic Normality. (For the random walk without a drift, the distribution is

nonstandard and asymmetric)

(ii) Consistency with the speed rates T−1/2 and T−3/2, respectively. (For the random

walk without a drift, the speed rate of ρ̂ is T−1).

• Example: Suppose that the true model is a unit root process with a constant

yt = α+ yt−1 + ut, (10)

where ut are i.i.d.(0,σ2). However, we use a Trend-Stationary Model

yt = c+ βt+ vt (11)

for the estimation of β. What is the limit distribution of the OLS estimator β̂?

What happens to the conventional t-test for β = 0 in Model (11)?
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Denote st ≡
Pt

i=1 ui. Since yt = at+ st, we have

β̂ =
T
PT

t=1 tyt −
³PT

t=1 t
´³PT

t=1 yt
´

T
PT

t=1 t
2 −

³PT
t=1 t

´2
=

T
PT

t=1 t (at+ st)−
³PT

t=1 t
´³PT

t=1 (at+ st)
´

T
PT

t=1 t
2 −

³PT
t=1 t

´2
= a+

T
PT

t=1 tst −
³PT

t=1 t
´³PT

t=1 st
´

T
PT

t=1 t
2 −

³PT
t=1 t

´2 .

Write

√
T (β̂ − a) =

√
T
T
PT

t=1 tst −
³PT

t=1 t
´³PT

t=1 st
´

T
PT

t=1 t
2 −

³PT
t=1 t

´2
=

T−7/2
h
T
PT

t=1 tst −
³PT

t=1 t
´³PT

t=1 st
´i

T−4
∙
T
PT

t=1 t
2 −

³PT
t=1 t

´2¸ .

Since limT→∞T
−4
∙
T
PT

t=1 t
2 −

³PT
t=1 t

´2¸
= 1/12 and

T−5/2
TX
t=1

tst −
Ã
T−2

TX
t=1

t

!Ã
T−3/2

TX
t=1

st

!

→ σ

Z 1

0

rW (r)dr − 1
2
σ

Z 1

0

W (r)dr,

we have,
√
T (β̂ − a)→ 12σ

Z 1

0

µ
r − 1

2

¶
W (r)dr

and β̂ → a in probability. Now it is concluded that, as long as a 6= 0, the OLS estimator
β̂ from the model (11) has non-zero probability limit, and hence the t-test of the null:

a = 0 would be significant. It seems that we would never reject the deterministic trend

in a difference stationary time series. The significance of the t-test of β̂ and ĉ in the

model (11) can not allow one to distinguish (10) and (11). The first thing we should do

is to conduct the unit root test for the series; only when the unit root test is rejected

can we conduct the conventional t-test for the parameters c and β in the model (11).
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• Unit Root Test:

1) Dickey-Fuller (DF) Test: The three basic models used for regression

Model 1: yt = ρyt−1 + εt,

Model 2: yt = α+ ρyt−1 + εt,

Model 3: yt = α+ δt+ ρyt−1 + εt.

can be equivalently written, respectively, as

Model 1: ∆yt = γyt−1 + εt, (12)

Model 2: ∆yt = α+ γyt−1 + εt, (13)

Model 3: ∆yt = α+ δt+ γyt−1 + εt (14)

where γ = ρ− 1. The null of unit root is γ = 0. Denote the test statistics for Model 1,
2, and 3, respectively, τ , τμ, and τ τ :

τ or τμ or τ τ =
ρ̂− 1
s.e. (ρ̂)

=
γ̂ − 0
s.e. (γ̂)

Dickey and Fuller (1976) apply the distribution of τ -statistic to test for the unit root

ρ = 1, i.e. γ = 0. The critical values of the τ -statistics for the three models above

are different. For example, the critical values for 99% and 95% confidence intervals for

T = 100 are, respectively,

Model used for regression 1% critical value 5% critical value

1: no constant or time trend −2.60 −1.95
2: no time trend −3.51 −2.89
3: constant or time trend −4.04 −3.45

Monte Carlo Experiments (simulation) has been used to determine the critical value of

the test. Evans and Savin (1981) show that DF test is equivalent to Wald or LM test

under the normality assumption of the error term.

Further, Dickey and Fuller (1981) provide three additional F-statistics, called φ1, φ2
and φ3, to test the joint hypothses on the coefficients in the applied regression model.

They are defined as the ordinary F-tests:

φi =
(SSRrestricted − SSRunrestricted) /r

SSRunrestricted/(T − k)
.

For model 2, the test statistic for the joint hypothesis α = γ = 0 is φ1;

18



For model 3, the test statistic for the joint hypothesis α = δ = γ = 0 is φ2;

For model 3, the test statistic for the joint hypothesis δ = γ = 0 is φ3.

Summarily,

Model used for regression Null Hypothesis H0 Test Statistic

Model 3: ∆yt = α+ δt+ γyt−1 + εt γ = 0 τ τ

γ = δ = 0 φ3
α = γ = δ = 0 φ2

Model 2: ∆yt = α+ γyt−1 + εt γ = 0 τμ

α = γ = 0 φ1
Model 1: yt = ρyt−1 + εt, γ = 0 τ

Note: Problems:
(i) For yt, AR(p)?

(ii) For the error term, MA(q)?

(iii) When to include the constant or time trend in the regression model?

(iv) More than one unit roots?

(v) Structural change?

2) Augmented Dickey-Fuller (ADF) Test (Said and Dickey test): Extend
the DF test to ARMA(p,q) models

yt = a1yt−1 + · · ·+ apyt−p + εt + b1εt−1 + · · ·+ bqεt−q

or

(1−A(L))yt ≡ (1− a1L− · · ·− apLp)yt = (1 + b1L+ · · ·+ bqLq)εt ≡ B(L)εt,

where all the roots of the equation B(r) = 0 lie outside the unit circle (i.e. the invertibil-

ity condition of ARMA model is satisfied), and 1−A(L) = 0 may have one positive unit
root and the rest outside the unit circle. We are interested in testing for the presence of

a unit root in the characteristic equation 1 − A(L) = 0. Suppose B(L)−1 = 1 − C(L).
Since

B(L)−1(1−A(L))yt = εt

or

(1− C(L))(1−A(L))yt = εt,

we have

yt = L
−1 [A(L) + C(L)−A(L)C(L)] yt−1 + εt ≡ Ω(L)yt−1 + εt
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or

∆yt = (Ω(L)− 1)yt−1 + εt

Applying the Beveridge-Nelson decomposition

Ω(z) =
∞X
j=0

wjz
j = Ω(1)− (1− z)Ω̃(z)

where Ω̃(z) =
P∞

j=0 w̃jz
j and w̃j =

P∞
k=j+1wk, we have

∆yt =
h
Ω(1)− (1− L)Ω̃(L)− 1

i
yt−1 + εt

= [Ω(1)− 1] yt−1 − Ω̃(L)∆yt−1 + εt

= γyt−1 −
∞X
i=0

w̃i∆yt−i−1 + εt

= γyt−1 +
∞X
i=2

βi∆yt−i+1 + εt,

where γ = Ω(1) − 1. (Note: A simpler derivation for AR(p) models is given
on page 190 in Enders’s book). This contains infinite number of regressors and is
inadequate for estimation. Thus, we use its truncated version

Model 10: ∆yt = γyt−1 +
kX
i=2

βi∆yt−i+1 + ukt,

where k is chosen as a finite number (often by AIC or SBC). Said and Dickey (1984)

derive the limiting distribution of the t-test (ADF test) for the null hypothesis γ = 0,

which is the same as that in Model 1 above. Therefore, the test statistic for γ = 0 is the

same as the τ -statistic above. Similarly, the tests for γ = 0 in the following models

Model 20: ∆yt = α+ γyt−1 +
kX
i=2

βi∆yt−i+1 + ukt

and

Model 30: ∆yt = α+ γyt−1 + δt+
kX
i=2

βi∆yt−i+1 + ukt

are also the same as those in Model 2 and Model 3, respectively.
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• A Four-step Test Approach: when the form of the DGP is completely
unknown. See Enders’s book: P213 Figure 4.13. Note that 1) Plotting the
data is usually an important indicator of presence of deterministic regressors; 2)

Theoretical consideration might suggest the appropriate deterministic regressors.

See GDP and Unit Roots example on P214.

• An Empirical Example: PPP (Purchasing Power Parity) Puzzle: Pur-
chasing power parity does not significantly hold in empirical studies. Why? Aca-

demic and Empirical explanations.

• Some Problems about the Unit Root Test:

1. Choice of k derived from an ARMA(p, q) model or p in the AR(p) model–—use
t-test and F-test (Note that the OLS estimator for the coefficient β is asymptot-

ically normally distributed and hence the t-test and F-test are appropriate (see

Sims, Stock and Watson (1990)), but, since the estimator for γ is not normally

distributed, we have to apply the DF test for unit root).

2. Multiple unit roots–—If two unit roots are suspected, estimate

∆2yt = a0 + β1∆yt−1 + εt

and use the appropriate statistic (τ , τμ, τ τ depending on the deterministic elements

actually included in the regression) to test the null H0 : β1 = 0. If accepting H0,

conclude that {yt} ∼ I(2); otherwise, go on to test a single unit root by estimating

∆2yt = a0 + β1∆yt−1 + β2yt−1 + εt

and testing the null β2 = 0. If accepting, conclude that {yt} has a single unit root;
otherwise, rejecting the null deduces that {yt} is stationary. Similarly for the test
of more than two unit roots.

3. Seasonal unit roots–—Note that, the first difference of a seasonal unit root
processes will not be stationary; however, the seasonal difference of a unit root

process may be stationary.(Study the process {yt} : yt = yt−4+εt). Some methods

to treat seasonality:
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(a) Introduce seasonal dummy variables, e.g. for quarterly data,

∆yt = a0 + α1D1 + α2D2 + α3D3 + γyt−1 +

pX
i=2

βi∆yt−i+1 + εt.

Use the DF τμ statistic to test the null H0 : γ = 0. If rejecting H0, conclude

that {yt} is stationary. For a time trend in the model, use the τ τ statistic to
test H0. (The shortcoming: hard to test the hypothesis about a0.Solution is

to introduce centered seasonal dummy variables s.t. the mean for each of the

dummy variables is zero).

(b) Test for seasonality: e.g. for quarterly data, if γ = 1,

(1− γL4)yt = (1− γ1/4L)(1 + γ1/4L)(1− iγ1/4L)(1 + iγ1/4L)yt = εt

only allows for a unit root at an annual frequency, i.e. a seasonal unit root.

Generally, consider

(1− a1L)(1 + a2L)(1− ia3L)(1 + ia4L) = εt. (15)

(a) If a1 = a2 = a3 = a4 = 1, there is a seasonal unit root (γ = 1); (b) If a1 =

1, yt = yt−1 is one homogeneous solution of the model; there is no seasonal

unit root. (Differencing the data is appropriate); (c) If a2 = 1, yt + yt−1 = 0

is one homogeneous solution of the model; there is a semiannual unit root;

(d) If a3 or a4 = 1, yt = iyt−1 or yt = −iyt−1 is the homogeneous solution of
the model; there is a seasonal unit root. Use the difference ∆4yt = (1−L4)yt.
Generally, by a Taylor expansion at a1 = a2 = a3 = a4 = 1, the model (15)

above is approximated by

(1− L4)yt = γ1(1 + L+ L
2 + L3)yt−1 − γ2(1− L+ L2 − L3)yt−1

+γ5(1− L2)yt−1 − γ6(1− L2)Lyt−1 + εt

≡ γ1y1t−1 − γ2y2t−1 + γ5y3t−1 − γ6y3t−2 + εt (16)

where γ1 = a1 − 1, γ2 = a2 − 1, γ5 = (a3 − a4)i, γ6 = a3 + a4 − 2, and

y1t−1 = (1 + L+ L2 + L3)yt−1,

y2t−1 = (1− L+ L2 − L3)yt−1,
y3t−1 = (1− L2)yt−1,
y3t−2 = (1− L2)Lyt−1.

In application, for quarterly data {yt}, estimate the model (16) (when nec-
essary, modify the form by including the intercept, deterministic seasonal
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dummies, and a linear time trend), insuring that the residuals approximate a

white-noise process. First, test γ1 = 0 by using the critical values reported

in Hylleberg, et al (1990) (see also P.199 in the textbook). If accepting the

null, conclude that a1 = 1 and there is a nonseasonal unit root. Then t-test
γ2 = 0. If accepting γ2 = 0, conclude that a2 = 1 and there is a unit root with
a semiannual frequency. Finally, F-test γ5 = γ6 = 0. If the calculated value

is less than the critical value reported in Hylleberg, et al (1990), conclude

that γ5= γ6 = 0 and there is a seasonal unit root.

4. Structural Unit Root Test: Perron’s Test.

5. KPSS Test: The null is that the series is stationary.
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