
3 Modelling Volatility: ARCH

• Why ARCH processes?

1) Many economic time series exhibit periods of unusually large volatility followed

by periods of relative tranquility (see Figure 2.5 and Figure 3.4). The conditional ho-

moskedasticity assumption for the error term is inappropriate in these cases.

2) Sometimes we are more interested in the conditional variance of a series.

3) Conditional forecasts are superior to unconditional forecasts. For example, study

AR(1)model with conditional homoskedasticity assumption for the error term: yt = a0+

a1yt−1 + εt, where εt is a white process satisfying E(εt|yt−1) = 0 and V ar(εt|yt−1) = σ2.

Since Etyt+1 = a0 + a1yt, and Eyt = a0/(1− a1), we have

Et (yt+1 − a0 − a1yt)2 = Et(εt+1) = σ2

E (yt+1 − a0/(1− a1))2 = E

Ã ∞X
i=0

ai1εt+1−i

!2
=

σ2

1− a21
> σ2.

That is, the unconditional forecast has a larger variance than the conditional forecast.

4) Some series appear in volatility clustering, which are different from the series in

the random walk process.

• ARCH (Autoregressive Conditional Heteroskedastic) processes: Themain
model can be an AR model, an ARMA model, or a standard regression model, i.e.

yt = xtγ + εt,

where εt is conditionally heteroskedastic in the form of

εt = vt
p
ht, (1)

where

ht = α0 + α1ε
2
t−1 + · · ·+ αqε

2
t−q, ARCH(q)

and

α0 > 0,α1 ≥ 0, · · · ,αq ≥ 0.

Here vt is a white-noise process with V ar(vt) = 1, and vt and εt−1, · · · , εt−q are
independent. In ARCH(q), all the shocks from εt−1 to εt−q have a direct effect on

εt due to the nonlinear correlation between εt and εt−1 through εt−q: εt = vt
√
ht.

It is assumed that all the roots of

1− α1z − · · ·− αqz
q = 0
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lie outside the unit circle. It is easy to verify that

Eεt = 0,

V ar(εt) =
α0

1− α1 − · · ·− αq
,

Eεtεt−s = 0, ∀s 6= 0

and

E[εt|εt−1, εt−2, · · · ] = 0,
σ2t ≡ E(ε2t |εt−1, εt−2, · · · ) = α0 + α1ε

2
t−1 + · · ·+ αqε

2
t−q. (2)

The series {εt} are serially uncorrelated (E[εtεt−s] = 0, s 6= 0), but they are not
independent (V ar(εt|εt−1, εt−2, · · · ) 6= 0). The ARCH model can capture periods
of tranquility and volatility in the {yt} series. The conditional variance σ2t has two
parts: a constant term α0 and the linear combination of the information about the

squared errors ε2t−1, · · · , ε2t−q ( i.e. an ARCH term).

Note: (i) Specification (2) can be written in the following form:

ε2t = α0 + α1ε
2
t−1 + · · ·+ αqε

2
t−q + ηt, (3)

where ηt is i.i.d with Eηt = 0, V ar(ηt) = λ2 and ηt ≥ −α0, t = 1, 2, · · · .The speci-
fication (1) is preferred since the multiplicative disturbance of vt gives the convenient

way to simultaneously estimate the parameters in the main model and the conditional

variance specification by MLE. (ii) It is proved that ηt = ht(v
2
t − 1). Although the error

term in (3) is homoskedastic unconditionally, its conditional variance is a function of t:

E(η2t |εt−1, εt−2, · · · ) = h2tE(v2t − 1)2. Then

λ2 = EE(η2t |εt−1, εt−2, · · · ) = Eh2t ·E(v2t − 1)2.

(iii) λ may have non-real solution. For example, assume that ht = α0 + α1ε
2
t−1. Then

Eh2t =
α21λ

2

1− α21
+

α20
(1− α1)

2

and

λ2 =

∙
α21λ

2

1− α21
+

α20
(1− α1)

2

¸
· E(v2t − 1)2.

• Example In ARCH(1) process(
yt = a0 + a1yt−1 + εt, |a1| < 1
εt = vt

p
α0 + α1ε2t−1, α0 > 0, 0 < α1 < 1,
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the series {yt} is stationary since

yt =
a0

1− a1
+

∞X
i=0

ai1εt−i,

E(yt) =
a0

1− a1

V ar(yt) =
∞X
i=0

a2i1 V ar(εt−i) =
1

1− a21
α0

1− α1
,

Cov(yt, yt−s) =
∞X
j=0

as+2j1 V ar(εt) =
as1

1− a21
α0

1− α1
.

The variance of yt is increasing in α1 and in the absolute value of a1. The ARCH

error process can be used to model periods of volatility within the univariate

framework. However,

Et−1yt = E (yt|yt−1, yt−2, · · · , ) = a0 + a1yt−1,
V ar (yt|yt−1, yt−2, · · · , ) = Et−1[yt − a0 − a1yt−1]2 = Et−1ε2t = α0 + α1ε

2
t−1.

See ex4 for the simulated ARCH processes yt = a1yt−1 + εt, εt =
p
vt(1 + 0.8ε2t−1)

with a1 = 0.2 and 0.9.

• Conditional MaximumLikelihood Estimation of ARCHConsider theARCH(q)
model

yt = xtβ + εt

with

εt = vt
p
ht,

where

ht = α0 + α1ε
2
t−1 + · · ·+ αqε

2
t−q,

vt ∼i.i.d.N(0, 1), and vt and εt−1, · · · , εt−q are independent. We condition on the
first q observations (t = −q + 1, · · · , 1, 0) and use observations t = 1, 2, · · · , T for
estimation. Denote

Yt ≡ (yt, yt−1, · · · , y1, y0, · · · , y−q+1, xt, xt−1, · · · , x0, · · · , x−q+1)0 .

Then (yt|xt,Yt−1) ∼ N(xtβ, ht). The conditional log likelihood function is

lnL = ln

Ã
TY
t=1

1√
2πht

exp

Ã
−(yt − xtβ)

2

2ht

!!

= −T
2
ln(2π)− 1

2

TX
t=1

ln(ht)−
1

2

TX
t=1

(yt − xtβ)2

ht
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with ht = α0 + α1 (yt−1 − xt−1β)2 + · · ·+ αq (yt−q − xt−qβ)2 .

• Testing for ARCH(q) Conduct the standard ACF or Q-statistic test to the
squared residuals from the estimated main model of yt, which can help identify the

order of the GARCH process. Also, Lagrange multiplier test (Engle(1982)) can
be used. The null is H0 : α1 = · · · = αq = 0. That is, the error term εt is an white

noise process. Use Lagrange multiplier test according to the following steps: (i) LS

regress yt on xt by using the observations t = −q + 1,−q + 2, · · · , T and save the
sample residuals ε̂t and h0 ≡ 1

T

PT
t=1 ε̂

2
t ; (ii) Regress ε̂

2
t/h0− 1 on 1, ε̂2t−1, · · · , ε̂2t−q.

Then the sample size T times the R2 from this regression converges in distribution

to χ2(q) under the null H0. Or generate the squared residual sequences {ε̂2t}, then
estimate a regression of the form

ε̂2t = α0 + α1ε̂
2
t−1 + α2ε̂

2
t−2 + · · ·+ αqε̂

2
t−q.

Test the null hypothesis using the statistics TR2 ∼ χ2(q) or F ∼ F (q, T − q).

Note: 1). F test is superior for small sample size T. 2). Unfortunately, there is no
available method to test the null of white-noise errors versus the specific alternative of

GARCH(p, q) errors.

• GARCH(p, q) (Generalized Autoregressive Conditional Heteroskedastic)
(Bollerslev (1986)): The error term in the main model yt = xtβ + εt satisfies

εt = vt
√
ht, where {vt} is a white-noise with σ2v = 1, independent of ht, and

ht = δ0 + δ1ht−1 + · · ·+ δpht−p + α1ε
2
t−1 + · · ·+ αqε

2
t−q.

The process {ht} can be seen as an ARMA(∞) process:

ht = α0 + π(L)ε2t

where

π(L) ≡
∞X
j=1

πjL
j =

α(L)

1− δ(L)
=

α1L+ α2L
2 + · · ·+ αqL

q

1− δ1L− δ2L2 − · · ·− δpLp

and (1− δ1 − δ2 − · · ·− δp)α0 = δ0. The GARCH(p,q) process {ht} is stationary

if

δ1 + δ2 + · · ·+ δp + α1 + α2 + · · ·+ αq < 1.

The GARCH(1, 1) specification is the most popular form of conditional volatility

for financial data. Denote

σ2t ≡ V ar(εt|εt−1, εt−2, · · · ).
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Since E[εt|εt−1, εt−2, · · · ] = 0 and Et−1(ε2t ) = ht, we have ht = σ2t and the condi-

tional variance equation

σ2t = Et−1(ε
2
t ) = ht

= δ0 + δ1σ
2
t−1 + · · ·+ δpσ

2
t−p + α1ε

2
t−1 + · · ·+ αqε

2
t−q,

which is not constant. That is, the conditional variance of the disturbances in the

model of yt looks very much like (but is not) an ARMA(p, q) process (derive the

process?). For unconditional mean, variance and covariance, we have

Eεt = 0

Eε2t = Ev2t · Eht = Eht = E
¡
Et−1(ε

2
t )
¢

= δ0 + α1Eε
2
t−1 + · · ·+ αqEε

2
t−q + β1Eht−1 + · · ·+ βpEht−p

= δ0 + (α1 + · · ·+ αq + δ1 + · · ·+ δp)Eε
2
t

= δ0/ (1− α1 − · · ·− αq − δ1 − · · ·− δp)

< ∞, if 1− α1 − · · ·− αq − δ1 − · · ·− δp > 0.

Eεtεt−s = E
³
vtvt−s

p
htht−s

´
= 0 ∀s 6= 0.

In a GARCH process, the errors {εt} are uncorrelated since Eεtεt−s = 0, but the
squared errors are dependent since ε2t = δ0+ δ1σ

2
t−1+ · · ·+ δpσ

2
t−p+α1ε

2
t−1+ · · ·+

αqε
2
t−q + ξt, where Et−1(ξt) = 0.

• MLE of GARCH For the GARCH model

yt = xtβ + εt, εt = vt
p
ht, vt ∼ i.i.d.N(0, 1),

ht = δ0 + δ1ht−1 + · · ·+ δpht−p + α1ε
2
t−1 + · · ·+ αqε

2
t−q,

the conditional likelihood function is

L =
TY
t=1

1√
2πht

exp

Ã
−(yt − xtβ)

2

2ht

!
.

• Diagnostics for model adequacy: An estimated GARCHmodel should capture
all dynamic aspects of the model of the mean and the model of the conditional

variance. The estimated residuals should be serially uncorrelated (ε̂t close to white

noise process) and should not display any remaining conditional volatility (the

residuals ŵt in the model of the conditional variance close to white noise process).

1. Use the standardized residuals ŝt ≡ ε̂t/ĥ
1/2
t and conduct Ljung-Box Q-statistic test

to see if the model of the mean is properly specified.
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2. Use the squared standardized residuals ŝ2t ≡ ε̂2t/ĥt = v̂2t and conduct Ljung-Box

Q-statistic test to see if there are remaining GARCH effects in the model of the

conditional variance.

• Assessing the fit of GARCH estimation: 1) Choose the model with the

smallestRSS0 =
PT

t=1

³
ε̂2t − ĥt

´2
; 2) Select the model with smallest AIC and SBC:

AIC 0 = − lnL+ 2n, SBC = − lnL+ n lnT, where L = −
PT

t=1

³
ln ĥt + ε̂2t/ĥt

´
.

• Forecast the mean and the conditional variance: Consider, for example, the
GARCH(1,1) model with εt = vth

1/2
t , where vt is independent of εt−s for all s > 0

and ht = α0 + α1ε
2
t−1 + β1ht−1 with α1 > 0 and β1 > 0. The confidence intervals

for the forecast of the mean are

Etyt+1 ± 2h1/2t+1,

Etyt+j ± 2h1/2t+j.

The forecasts of the conditional variance are

Etht+1 = α0 + α1ε
2
t + β1ht,

Etht+j = α0 + α1Etε
2
t+j−1 + β1Etht+j−1

= α0 + (α1 + β1)Etht+j−1 (since Etv
2
t+j = 1, Etε

2
t+j−1 = Etht+j−1)

= α0 + α0 (α1 + β1) + (α1 + β1)
2Etht+j−2

= α0
³
1 + (α1 + β1) + · · ·+ (α1 + β1)

j−1
´
+ (α1 + β1)

j Etht

= α0
1− (α1 + β1)

j

1− α1 − β1
+ (α1 + β1)

j ht

→ α0/(1− α1 − β1), as j →∞, if α1 + β1 < 1.

• ARCH-Mmodel (Engle, Lilien and Robins (1987)): Assume that the risk premium

is an increasing function of the conditional variance of εt.The ARCH in mean
model of the excess return yt is

yt = xtβ + δht + εt, εt = vth
1/2
t ,

where ht is the conditional variance of εt and satisfies an ARCH(q) process: ht =

α0 +
Pq

i=1 αiε
2
t−i. Alternatively, the mean equation can also be specified as other

forms, e.g.

yt = xtβ + δh
1/2
t + εt
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or

yt = xtβ + δ log(ht) + εt.

• Other Models of conditional variance (also see EViews 5 Users Guide for the de-
tails): for example,

1. IGARCH: For GARCH(1,1), α1 + β1 = 1. The conditional variance is

ht = α0 + (1− β1)ε
2
t−1 + β1ht−1

or

ht = α0/(1− β1) + (1− β1)
∞X
i=0

βi1ε
2
t−1−i,

which yields a very parsimonious specification of a geometrically decaying condi-

tional variance (in the past realizations of the {ε2t}).

2. GARCH with explanatory variables: Some exogenous factor Dt affects the
volatility:

ht = α0 + α1ε
2
t−1 + β1ht−1 + γDt, γ > 0.

3. TARCH: the threshold-GARCH model:

ht = α0 + (α1 + λ1dt−1) ε
2
t−1 + β1ht−1,

where dt−1 = 1, if εt−1 < 0; 0,otherwise. That is, εt−1 = 0 is a threshold such

that shocks greater than the threshold have different effects (on the volatility ht)

from shocks below the threshold. If λ1 is statistically different from zero, the data

contains a threshold effect.

4. EGARCH: the exponential-GARCH:

lnht = α0 + α1εt−1/h
1/2
t−1 + λ1

¯̄̄
εt−1/h

1/2
t−1

¯̄̄
+ β1 lnht−1.

Note that 1) the volatility ht can be never negative; 2) the standardized value

of εt−1,i.e. εt−1/h
1/2
t−1, is used to give a unit-free measure of the volatility; 3) the

specification allows for leverage (threshold) effects since

α1εt−1/h
1/2
t−1 + λ1

¯̄̄
εt−1/h

1/2
t−1

¯̄̄
=

(
(α1 + λ1) εt−1/h

1/2
t−1, if εt−1 > 0

(α1 − λ1) εt−1/h
1/2
t−1, otherwise,

which implies that the effect of the standardized shock on the log of the volatility

is α1 + λ1 if εt−1 is positive while the effect is −α1 + λ1 if εt−1 is negative.
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5. Nonparametric Specification: Corresponding to the linear parametricARCH(m) :
ht = α0 + α1ε

2
t−1 + · · ·+ αmε

2
t−m, the conditional variance is specified as

ht =
TX

τ=1,τ 6=t
wτ(t)ε

2
τ ,

where the weights {wτ(t)}Tτ=1,τ 6=t satisfies
PT

τ=1,τ 6=twτ(t) = 1. If ετ−1, ετ−2, · · · , ετ−m
are close to εt−1, εt−2, · · · , εt−m, ε2τ will provide useful information on

ht = E
¡
ε2t |εt−1, εt−2, · · · , εt−m

¢
,

and we should select a larger weight wτ (t). Choose the kernel estimator of ht:

ht =

PT
τ=1,τ 6=t ε

2
τk
³
ετ−1−εt−1

h1

´
k
³
ετ−2−εt−2

h2

´
· · · k

³
ετ−m−εt−m

hm

´
PT

τ=1,τ 6=t k
³
ετ−1−εt−1

h1

´
k
³
ετ−2−εt−2

h2

´
· · · k

³
ετ−m−εt−m

hm

´ ,

i.e. choose the weights

wτ(t) =
k
³
ετ−1−εt−1

h1

´
k
³
ετ−2−εt−2

h2

´
· · · k

³
ετ−m−εt−m

hm

´
PT

τ=1,τ 6=t k
³
ετ−1−εt−1

h1

´
k
³
ετ−2−εt−2

h2

´
· · · k

³
ετ−m−εt−m

hm

´ ,
where h1, h2, · · · , hm are the bandwidths. Specially, for ARCH(1),

ht =

PT
τ=1,τ 6=t ε

2
τk
³
ετ−1−εt−1

h1

´
PT

τ=1,τ 6=t k
³
ετ−1−εt−1

h1

´ .

6. Semiparametric Model: ht is specified parametrically while the density of vt is
specified nonparametrically. See Engle R. F. and G-R. Gloria (1991), “Semipara-

metric ARCH Models”, Journal of Business and Economic Statistics 9: 345-359.
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