3 Modelling Volatility: ARCH

e Why ARCH processes?

1) Many economic time series exhibit periods of unusually large volatility followed
by periods of relative tranquility (see Figure 2.5 and Figure 3.4). The conditional ho-
moskedasticity assumption for the error term is inappropriate in these cases.

2) Sometimes we are more interested in the conditional variance of a series.

3) Conditional forecasts are superior to unconditional forecasts. For example, study
AR(1) model with conditional homoskedasticity assumption for the error term: y; = ag+
a1ys_1 + &, where g; is a white process satisfying F(g|y;_1) = 0 and Var(ely;_1) = o

Since Eyyi1 = ap + a1y, and By, = ag/(1 — ay), we have

E; (Yep1 — ao — aryy)’ = Eilesn) = o

o 2
: o
E (yr41 — ao/(1 — al))2 = b (Z allgt-l-l—z’) = 3 = o’
i=0 1

That is, the unconditional forecast has a larger variance than the conditional forecast.
4) Some series appear in volatility clustering, which are different from the series in

the random walk process.

e ARCH (Autoregressive Conditional Heteroskedastic) processes: The main

model can be an AR model, an ARMA model, or a standard regression model, i.e.

Y = Ty + &y,

where ¢, is conditionally heteroskedastic in the form of

€ = v\ Iy, (1)
where
hy = ag+one? |+ + ozqsf,q, ARCH/(q)
and
ag> 0,07 >0,---, 4 > 0.
Here v; is a white-noise process with Var(v;) = 1, and v; and €;_4,--- , &, are

independent. In ARCH(q), all the shocks from ¢;_; to €;_, have a direct effect on
g; due to the nonlinear correlation between ¢, and &, ; through &, ,: & = v;\/y.

It is assumed that all the roots of
l—az—-—auz?=0
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lie outside the unit circle. It is easy to verify that

E&ft = O,
Var(e;) = a0 ,

l—ay——aq4

FEeig, s = 0, Vs#0

and

Eleiler1,60-2,] =0,

0} = E(e}ler—1,61-0,+) = g+ ongy_y + - + agep_, (2)
The series {g,} are serially uncorrelated (E[eie;—s] = 0,5 # 0), but they are not
independent (Var(e¢|er—1,€i-2,---) # 0). The ARCH model can capture periods
of tranquility and volatility in the {;} series. The conditional variance o2 has two
parts: a constant term «g and the linear combination of the information about the
squared errors €7 ;,--- ,&; . (i.e. an ARCH term).

Note: (i) Specification (2) can be written in the following form:
2 _ 2 2
g =apt+aug + -t agEl g, (3)

where 7, is i.i.d with En, = 0, Var(n,) = A\* and 1, > —ap,t = 1,2,--- .The speci-
fication (1) is preferred since the multiplicative disturbance of v; gives the convenient
way to simultaneously estimate the parameters in the main model and the conditional
variance specification by MLE. (ii) It is proved that 1, = h;(v? — 1). Although the error
term in (3) is homoskedastic unconditionally, its conditional variance is a function of ¢:
E(n?lei-1,61-2, -+ ) = h?E(v? — 1)?. Then

N = EE(m?|ei 1,619, ) = Eh? - E(v? —1)2
(iii) A may have non-real solution. For example, assume that h; = ap + a2 ;. Then

22 2
Qi g

Eh? =
t 1— Oé% (1 _ a1)2

and

2)\2 2
AQZ[O” +—2 | B 12

1-aof (1 _a1)2

e Example In ARCH(1) process

{ Y= ao + a1y e, ar] <1

g = v/ ap + el 4, ap >0, 0 <y <1,
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the series {y;} is stationary since

Y = —i—g ast
1—&1 1=t

=0

Qo

E(y,) =

]_—CL1

1 (67))
V ZV IS =
ar yt E aq CLT t— Z 1_a11_a1

aj Y

Cov( s) a5+2]Va7‘ (64) = —— )
yt7yt Z t 1—a%1—a1

The variance of y; is increasing in «; and in the absolute value of a;. The ARCH
error process can be used to model periods of volatility within the univariate

framework. However,

Ei 1yt = E (Y|ye—1,Yt—2, -+ ,) = ao + a1ys—1,
Var (ytlyt—la Yg—2,° - a) = Et—l[yt — Qg — alyt_1]2 = Et—lg,? = Qo + 0415?_1-

See ex4 for the simulated ARCH processes y; = a1y;_1 + &¢, € = \/ v(1+0.8¢2 ;)
with a; = 0.2 and 0.9.

Conditional Maximum Likelihood Estimation of ARCH Consider the ARC'H (q)

model

Y = 10 + &
with
et = v\ fu,
where
hi =ag +ajel |+ + ozqsf_q,
v ~1.1.d.N(0,1), and v; and &1, - , €44 are independent. We condition on the
first g observations (t = —g+ 1,---,1,0) and use observations t = 1,2,--- , T for

estimation. Denote

P /
Y = (ytayt 1, Y1, Y0, s Y—q+1, Tty Te—1, - 5 L0, " " ° am—q—i—l) .

Then (y¢|xt, Yi—1) ~ N(x:0, hi). The conditional log likelihood function is

T 2
1 (yt - xtﬁ)
InL =1 —_
’ ’ (t—l V2mhy o ( 2he

T 1< 1< (ye — xtﬁ)Q
— —_—— _ 1 _ _—_—
5 In(27) 5 ; n(hy) 5 ; m
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with by = ap + oy (Y1 — ffl’/’t—lﬁ)2 + ot ag (Yeg — xt,qﬁf .

e Testing for ARCH(q) Conduct the standard ACF or Q-statistic test to the
squared residuals from the estimated main model of y;, which can help identify the
order of the GARCH process. Also, Lagrange multiplier test (Engle(1982)) can
be used. The null is Hy : a3 = --- = oy = 0. That is, the error term ¢, is an white
noise process. Use Lagrange multiplier test according to the following steps: (i) LS
regress y; on x; by using the observations t = —q+ 1, —q + 2,--- ,T and save the

= I &% (i) Regress £2/hg—1on 1,2 |, - &l

Then the sample size T' times the R? from this regression converges in distribution

sample residuals &; and hy =

to x2(¢) under the null Hy. Or generate the squared residual sequences {22}, then

estimate a regression of the form
=g+ af] | il et aqé?_q.
Test the null hypothesis using the statistics TR? ~ x?(q) or F' ~ F(q,T — q).

Note: 1). F test is superior for small sample size T. 2). Unfortunately, there is no
available method to test the null of white-noise errors versus the specific alternative of
GARCH (p,q) errors.

e GARCH(p,q) (Generalized Autoregressive Conditional Heteroskedastic)
(Bollerslev (1986)): The error term in the main model y; = x;0 + ¢; satisfies

g; = vyv/hy, where {v;} is a white-noise with o2 = 1, independent of h;, and
ht = (50 + (Slhtfl + - 6pht7p + 0515371 + -4 OéqS?fq.
The process {h;} can be seen as an ARMA(c0) process:

hy = ag + m(L)e?

where
o) il +asl?+ -+ a Lt
L) = L) = = 4
(L) Zﬂﬂ 1—6(L) 1—08,L—65L2— - —6,LP
7j=1
and (1 —6; — 62—+ —0,) g = 6p. The GARCH(p,q) process {h;} is stationary
if

§1 464+ 6p+oan+ag+ - +ay; <l

The GARCH (1, 1) specification is the most popular form of conditional volatility

for financial data. Denote
O'? = Var(€t|€t,1, Et—92,y " )
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Since Eletles 1,612, -] = 0 and FE;_(e?) = hy, we have h; = 02 and the condi-

tional variance equation
op = Eia(e) =M
= o+ 6107+ 6,07, Fougr o+ agE,
which is not constant. That is, the conditional variance of the disturbances in the
model of y; looks very much like (but is not) an ARM A(p, q) process (derive the
process?). For unconditional mean, variance and covariance, we have
ESt =0
Ee} = Evw}-Eh =Eh =FE (E;_1(c}))
= bo+oBe}  + -+ agBe}  + B Ehyy+ -+ 3,Eh_,
= So+ (a1 + - +ag+6i+-+6,) Ee;
= do/(l—ag—-—a,— 61— —0,)

< oo, ifl—ag—--—a;—61—---—06,>0.
EEtgt—s = F (Utvt—s\/ htht—s) =0Vs 7é 0.

In a GARCH process, the errors {¢;} are uncorrelated since Fe;e;_s = 0, but the
squared errors are dependent since €7 = 8o + 6107 | + -+ 0,07, +a1g;  + -+
g}y + &, where Ey_(€;) = 0.

MLE of GARCH For the GARCH model

Y = iCtﬁ + &, & = V¢ ht, Vg lldN(O, ].),
he = S0+ 61hur 4+ Ophy_p + arg;_y + -+ gl

the conditional likelihood function is

_ 1 _—mp)
L= H T exp ( o > .

t=1

Diagnostics for model adequacy: An estimated GARCH model should capture
all dynamic aspects of the model of the mean and the model of the conditional
variance. The estimated residuals should be serially uncorrelated (&; close to white
noise process) and should not display any remaining conditional volatility (the

residuals @, in the model of the conditional variance close to white noise process).

. Use the standardized residuals §; = &,/ fz% /2 and conduct Ljung-Box Q-statistic test

to see if the model of the mean is properly specified.
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2. Use the squared standardized residuals §2 = £2/h, = 02 and conduct Ljung-Box
Q-statistic test to see if there are remaining GARCH effects in the model of the

conditional variance.

e Assessing the fit of GARCH estimation: 1) Choose the model with the
N2
smallest RSS" = 3.1, (é? — ht> ; 2) Select the model with smallest AIC and SBC:

AIC' = —InL+2n, SBC = —InL+nInT, where L = — I, <1n’3t+53/’3t> :

e Forecast the mean and the conditional variance: Consider, for example, the
GARCH(1,1) model with ¢, = vthi‘ / 2, where v; is independent of ¢;,_, for all s > 0
and hy = ap + aqe? | + B1hy_1 with ay > 0 and 3; > 0. The confidence intervals

for the forecast of the mean are

By £ 2ht14217

By £ thﬁ"

The forecasts of the conditional variance are

By = ag+ e + B,

Eihe; = oo+ oaBel ;o + BB
= o+ (a1 + By) Bihij (since B}, =1, Eie} iy = Ehyyj1)
= ap+ag (o +By) + (o + B Eihiyj—2
= Qg <1 + (a1 +By) + -+ (a + 51)%1) + (a1 + By Eihy

1— J :
- M 1 _((j;lltﬁﬁll) + (ou + 51)

— ap/(l—a;—f), as j — oo, if a1 + 5, < 1.

e ARCH-M model (Engle, Lilien and Robins (1987)): Assume that the risk premium
is an increasing function of the conditional variance of ¢;.The ARCH in mean

model of the excess return y; is
Yo = 20 + 6y + &, & = vthi/Q,

where h; is the conditional variance of ¢; and satisfies an ARC H(q) process: h; =
a+ Y0, ae? ;. Alternatively, the mean equation can also be specified as other

forms, e.g.
Yt = iCtﬁ —+ 6}12/2 -+ Et
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or
Yy = x0 + 6log(hy) + ;.

Other Models of conditional variance (also see EViews 5 Users Guide for the de-

tails): for example,

. IGARCH: For GARCH(1,1), a; + (3; = 1. The conditional variance is
hi =ag+ (1= B)er, + Brhis

or

he = ao/(1 = By) + (1 = fy) 25353—147
=0

which yields a very parsimonious specification of a geometrically decaying condi-

tional variance (in the past realizations of the {£7}).

. GARCH with explanatory variables: Some exogenous factor D; affects the
volatility:
hi = ag + azel | + Brhi1 + Dy, v > 0.

. TARCH: the threshold-GARCH model:
ht = Qg + (Oél + )\1dt71) 8?71 + ﬁlhtfl,

where d;_1 = 1, if g,_1 < 0; 0,otherwise. That is, ;.1 = 0 is a threshold such
that shocks greater than the threshold have different effects (on the volatility h;)
from shocks below the threshold. If \; is statistically different from zero, the data

contains a threshold effect.

. EGARCH: the exponential-GARCH:

Inh; = ag + alst,l/hiﬁ + M\

e /hiﬁ‘ 4B Inh .

Note that 1) the volatility h; can be never negative; 2) the standardized value

of g;_1,i.e. g1/ htlf 21, is used to give a unit-free measure of the volatility; 3) the

specification allows for leverage (threshold) effects since

041€t71/ht1121 + M 5t71/hi121 =

(O&l + )\1) €t,1/ht1£21, if €1 >0
(a1 — A1) 5t,1/hz21, otherwise,

which implies that the effect of the standardized shock on the log of the volatility

is ai; + Aq if €,_1 is positive while the effect is —ay + A; if £, is negative.
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5. Nonparametric Specification: Corresponding to the linear parametric ARC H(m) :

hy = g+ a1€2_; + -+ + aper_,,, the conditional variance is specified as
T
Z 2
ht = Wr (t)&fT,
T=1,7#t

where the weights {w,(t)}1_, ., satisfies ZZ’:LT# wr(t)=1.1fe, 1,60 0, ,€rm

are close t0 €;_1,& 9, ,E_m, €2 will provide useful information on
ht =F (53‘&71,&72, T 75t7m) )
and we should select a larger weight w, (¢). Choose the kernel estimator of h;:
T r—1—Et— T—2Et— T—m _Et—m
27:1;7&1; 872.1{? (s 1h1€t 1) k (s 2h2€t 2) ook (%)
T T—1"Et— T—2"Et— Er—m —Et—m ’
Zq-:l,r;ét k <€ 1h16t 1) k <€ 2h28t 2) .k ( hmt )

i.e. choose the weights

ht:

k <57'71h715t71> k <57'72h725t72> e k <5T77r;L:n5t7m>
T Er—1—€t—1 Er—2—€t—2 Erm—Ctm \
27:1,7# k ( h1 ) k ( ha ) ok ( hom )

where hy, hy, -, hy, are the bandwidths. Specially, for ARCH(1),

w,(t) =

T 2 Er—1—Et—1
Stk (=)
ZT l{ Er—1—Et—1 '
T=1,7#t h1

ht:

6. Semiparametric Model: h; is specified parametrically while the density of v; is
specified nonparametrically. See Engle R. F. and G-R. Gloria (1991), “Semipara-
metric ARCH Models”, Journal of Business and Economic Statistics 9: 345-359.
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