
1 Introduction: Why Time Series Analysis

• Compare the OLS estimation of β in AR(1) model

yt = βyt−1 + ut, |β| < 1 (1)

and the OLS estimation of β in the model

yt = βyt−1 + ut, β = 1, (2)

where t = 1, 2, · · · , T ; y0 = 0, and {ut} is a white noise process, i.e.

E(ut) = 0,

E(u2t ) = σ2,

E(utuτ) = 0, t 6= τ .

The OLS estimator β̂ is

β̂ =

Ã
TX
t=1

y2t−1

!−1 TX
t=1

ytyt−1 = β +

Ã
TX
t=1

y2t−1

!−1 TX
t=1

utyt−1.

This estimator is biased (Eβ̂ 6= β) since ut is not independent of yt, yt+1, · · · , yT
(even though ut is independent of yt−1). The conventional t and F tests can not

be applied. For Model (1), as T →∞,
√
T (β̂ − β)→ N(0, 1− β2).

However, for Model (2), as T →∞,
√
T (β̂ − β)→ 0 in probability,

which is of no use in test. How about T (β̂ − 1) for Model (2)? From Model (2),

yt = u1 + u2 + · · ·+ ut,

and hence yt ∼ N(0, tσ2) or yt
σ
√
t
∼ N(0, 1). Note that y2t = (yt−1 + ut)2 = y2t−1 +

u2t + 2utyt−1. Therefore,

1

σ2T

TX
t=1

utyt−1 =
1

2σ2T

TX
t=1

¡
y2t − y2t−1 − u2t

¢
=

1

2σ2T
y2T −

1

2σ2T

TX
t=1

u2t =
1

2

µ
yT

σ
√
T

¶2
− 1

2σ2T

TX
t=1

u2t

→ 1

2

¡
χ2(1)− 1

¢
.
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Since yt−1 ∼ N(0, (t− 1)σ2), we have E(y2t−1) = (t− 1)σ2 and

E

Ã
TX
t=1

y2t−1

!
=

TX
t=1

(t− 1)σ2 = T (T − 1)
2

σ2 = O(T 2).

To construct a random variable with convergence distribution for the estimator β̂

in Model (2), we should study

T (β̂ − 1) = (1/T )
PT

t=1 utyt−1

(1/T 2)
PT

t=1 y
2
t−1

(3)

instead of studying
√
T (β̂−1). Obviously, the asymptotic distribution of T (β̂−1)

is not the same as normality. It will be shown that

T (β̂ − 1)→
µZ 1

0

W 2(r)dr

¶−1 Z 1

0

W (r)dW (r),

where W (r) is the standard Brownian motion. Hence the problems of stationarity

and unstationarity.

• Examine the following simple model:

yt = a0 + a1zt + et, (4)

where {yt} and {zt} are two independent random walk processes, i.e.

yt = yt−1 + εyt (5)

zt = zt−1 + εzt (6)

with two independent white-noise processes εyt and εzt. Any relationship between

yt and zt is meaningless since {yt} and {zt} are independent. Sometimes OLS can
give spurious estimation, i.e. high R2 and significant t-test for the coefficients,
but no economic meaning. Why? The error term et in the regression equation is

et = yt − a0 − a1zt

= −a0 +
tX
i=1

εyi − a1
tX
i=1

εzi.

Since V ar(et) = t(σ2εy+a
2
1σ
2
εz) becomes infinitely large as t increases, and Etet+i =

et for i ≥ 0, the t-test, F-test or R2 values are unreliable. Under the null: a1 = 0,
yt = a0 + et. This is inconsistent with the distributional theory in OLS, which
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requires that the error term be a white-noise. Phillips (1986) shows that, the large

the sample, the more likely to falsely reject the null (i.e. the more significant for the

test in OLS). Therefore, before estimation, we should pretest the unstationarity

of the time series variables in the regression model (the unit root test). A further

study on some cases in Model (4):

1. If {yt} and {zt} are both stationary, the regression model is appropriate.

2. If {yt} and {zt} are integrated of different orders, the regression is meaning-
less.

3. If {yt} and {zt} are integrated of the same order and the residual sequence is
unstationary, the regression is spurious.

4. If {yt} and {zt} are integrated of the same order and the residual sequence is
stationary, then they are cointegrated.

Example 1 (see ex1): Give the graphs for the time series variables of the AR(1)
and the Random walk process, and conduct the OLS estimation.

The purpose of this course is to introduce basic theory and applications of time

series econometrics. The course requires basic knowledge of probability and statistics.

Students are require to perform computations using EViews.

An outline of the course (tentative):

CH1 Basic Regression with Time Series

CH2 Stationary Autoregressive Process

CH3 ARCH and GARCH

CH4 Unstationary Autoregressive Process

CH5 Vector Autoregression (VAR) Models

CH6 Cointegration

There are no texts for this course. The following materials will be useful for the

course.

• Walter Enters (2003), “Applied Econometric Time Series” (Second Edition).

• Hamilton (1994), “Time Series Analysis”, Princeton University Press.

• Wooldridge(2009), Introductory Econometrics: A Modern Approach (4th Edition)
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2 Stationary Autoregressive Process

Methods to solve the difference equation

• Iterative method: Consider, for example, the model

yt = a0 + a1yt−1 + ut. (7)

If y0 is known, by iterating, yt is expressed as a function of t, the known y0, and

the forcing process xt =
Pt−1

i=0 a
i
1ut−i, i.e.

yt = a0

t−1X
i=0

ai1 + a
t
1y0 +

t−1X
i=0

ai1ut−i.

If y0 is unkown, by further iterating, we have

yt = a0

t−1X
i=0

ai1 + a
t
1y0 +

t−1X
i=0

ai1ut−i

= a0

t+mX
i=0

ai1 + a
t+m+1
1 y−m−1 +

t+mX
i=0

ai1ut−i.

If |a1| < 1, as m→∞,

yt = a0

∞X
i=0

ai1 +
∞X
i=0

ai1ut−i

=
a0

1− a1
+

∞X
i=0

ai1ut−i.

This is only a special solution to Model (7). The general solution is given by

yt = Aa
t
1 +

a0
1− a1

+
∞X
i=0

ai1ut−i. (8)

Choosing A = y0−a0/(1−a1)−
P∞

i=0 a
i
1u−i, we can derive the special solution from

the general one above. Note in (8) that Aat1 is the homogeneous solution of the
homogeneous equation yt = a1yt−1 and the other part is a particular solution
to the difference equation (7):

The general solution = the homogeneous solution+ a particular solution.
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Imposing the initial condition on the general solution gives a special solution sat-

isfying the initial condition. If |a1| > 1, given an initial condition y0, yt can be

solved: yt = a0
Pt−1

i=0 a
i
1+ a

t
1y0+

Pt−1
i=0 a

i
1ut−i. If no initial conditions are given, the

sequence cannot be convergent. If a1 = 1,

yt = a0 + yt−1 = a0t+ y0 +
tX
i=1

ui

and∆yt = a0+ut. This shows that each disturbance has a permanent non-decaying

effect on the value of yt.

• How to determine the homogeneous solution? The structure of the homoge-
neous equation is determined by the pattern of the characteristic roots. For AR(1)

Model (7), the characteristic equation (root) is λ = a1; hence the homogeneous

solution is yht = Aat1, where A is an arbitray constant, which is interpreted as a

deviation from long-run equilibrium. For AR(2) model yt = a1yt−1 + a2yt−2 + ut,

the homogeneous equation is yt = a1yt−1+a2yt−2. Inserting yt = Aλ
t deduces that

the characteristic equation is λ2 − a1λ− a2 = 0. The two roots are

λ1,λ2 =

µ
a1 ±

q
a21 + 4a2

¶
/2.

Note that the linear combination of λt1 and λt2 also solves the homogeneous equa-

tion. There are three cases according as a21 + 4a2 > 0,= 0 and < 0. The homoge-

neous solutions are, respectively,

yht = A1λ
t
1 +A2λ

t
2,

yht = (A1 +A2t)λ
t, λ = λ1 = λ2

yht = A1r
t cos (θt+A2) , r =

√
−a2, θ = arg tg

µq
−a21 − 4a2/a1

¶
.

For higher order homogeneous equation yt =
Pp

i=1 aiyt−i, the characteristic equa-

tion is λt −
Pp

i=1 aiλ
t−i = 0 or λp −

Pp
i=1 aiλ

p−i = 0.

• How to determine particular solutions? Consider yt =
Pp

i=1 aiyt−i + xt.

If xt is deterministic, e.g. xt = 0; bdrt; a0 + bt
d, setting ypt = c, c0 + c1d

rt, c0 +

c1t + · · · + cdtd,solve the constants by inserting the ypt into the equation. If xt =
ut is stochastic, set yst =

P∞
i=0 αiut−i, insert y

s
t into the equation and solve the

coefficients αi by the method of undetermined coefficients.
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• Stable solution and stability conditions: all the characteristic roots lie inside
the unit circle. For AR(2) model yt = a1yt−1+ a2yt−2+ εt, the stability conditions

are

a2 + a1 < 1

a2 − a1 < 1
a2 > −1, a2 < 0

• The general solution of the difference equation is yt = ypt + y
h
t , where y

p
t is a

particular solution of the difference equation; yht is the general solution of its

homogeneous equation. Further, ypt can be expressed as y
d
t + y

s
t , where y

d
t is the

deterministic part and yst is the stochastic part.

• ydt is determined according to the different cases of the deterministic part xt in the
difference equation, e.g. xt = constant, bdrt or btd.

• yst is determined by the stochastic part xt in the difference equation, e.g. if yt =
a1yt−1 + a2yt−2 + xt, and xt = εt, set yst =

P∞
i=0 αiεt−i.

• The coefficients of ydt and yst in yt = ypt + y
h
t can be determined by substituting

yt into the original difference equation and using the method of undetermined

coefficients.

• Lag operator is a linear operator, which is extensively applied in time series analy-
sis. Note the application of 1/(1− aL), |a| < 1 or |a| > 1. If |a| < 1,

yt
1− aL =

∞X
i=0

aiLiyt =
∞X
i=0

aiyt−i.

If |a| > 1,

yt
1− aL = −(aL)

−1 yt
1− (aL)−1 = −(aL)

−1
∞X
i=0

(aL)−iyt = −(aL)−1
∞X
i=0

a−iyt+i.

• A(L)yt = a0 + B(L)εt has the particular solution yt = (a0 +B(L)εt) /A(L). The
stability condition is that the inverse characteristic roots (i.e. the roots of the

inverse characteristic equation A(L) = 0) lie outside of the unit circle.

• Here we introduce three methods to express yt as the sum of a function of time t

and a moving average of the disturbance: Iterative Method, the Method of Unde-

termined Coefficients, and Lag Operator Approach. Whether such an expansion is
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convergent so that the original difference equation is stable is an important issue.

It will be shown that, if yt is expressed by a linear stochastic difference equa-

tion, the stability condition is a necessary condition for the time series {yt} to be
stationary.

Stationary Processes

• Etyt+i ≡ E[yt+i|yt, yt−1, ..., y1], the expectation value of yt+i conditional on the
observed values of y1, y2, · · · , yt.

• White-noise process: {εt}, E[εt] = 0, V ar(εt) = σ2 (constant), Eεtεt−s = Eεt−jεt−s−j
= 0, ∀t and for all j, s 6= 0.

• MA(q): a moving average of order q, {xt} satisfying xt =
Pq

i=0 βiεt−i, where

β0 = 1.If two or more of the coefficients βi differ from 0, {xt} are not white-noise.
(Consider xt = εt + 0.5εt−1)

• AR(p): p-order autoregressive, yt = a0 +
Pp

i=1 aiyt−i + εt

• ARMA(p, q): (p, q)-order autoregressive moving-average process,

yt = a0 +

pX
i=1

aiyt−i +

qX
i=0

βiεt−i, β0 = 1

If at least one of the characteristic roots ≥ 1, {yt} is said to be an integrated
process, called as ARIMA(p, q) model.

• Moving-average representation of ARMA(p, q) process {yt} (all the characteristic
roots lie in the unit circle) in terms of εt:

yt =

Ã
a0 +

qX
i=0

βiεt−i

!
/

Ã
1−

pX
i=1

aiL
i

!
,

which yields an MA(∞) process.

• {yt} is (covariance) stationary if, for any t, t− s,

Eyt = Eyt−s = μ,

V ar(yt) = V ar(yt−s) = σ2y <∞,
Cov(yt, yt−s) = Cov(yt−j, yt−j−s) ≡ γs
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are all constants, which are time-invariant (i.e. unaffected by a change of time

origin). Note the difference between “(covariance) stationary” and “strictly
stationary”(∀j1, j2, · · · , js, the joint distribution of (yt, yt+j1, · · · , yt+js) is deter-
mined by j1, j2, · · · , js, but unaffected by a change of time origin; i.e. it is invari-
ant to the time t in which the observations are made). The covariance stationary

process requires that the mean and the covariance are time-invariant and finite

while strictly stationary process requires that the mean, the covariance and the

other higher moments be time-invariant, but not necessarily be finite. If the mean

and the covariance are finite, the strong stationary process is covariance stationary

and the strong stationarity is stronger.

• autocorrelation between yt and yt−s: ρs ≡ γs
γ0
= Cov(yt,yt−s)

Cov(yt,yt)
= Cov(yt,yt−s)

σ2y
, ρ0 = 1.

The autocorrelation coefficients ρs are time-invariant for the stationary sequence

{yt}.

• Find stationarity conditions for AR(1):

yt = a0 + a1yt−1 + εt,

where εt is white-noise. Note that, for any given initial condition y0 (deterministic),

yt =
a0(1− at1)
1− a1

+ at1y0 +
t−1X
i=0

ai1εt−i.

Since two means

Eyt =
a0(1− at1)
1− a1

+ at1y0,

Eyt−s =
a0(1− at−s1 )

1− a1
+ at−s1 y0

are time dependent and Eyt 6= Eyt−s, the {yt} cannot be stationary. Add re-
strictions:

|a1| < 1 and {yt} have been occurring for an infinitely long time.

Then for any integer m > 0,

yt =
a0(1− at+m+11 )

1− a1
+ at+m+11 y−m−1 +

t+mX
i=0

ai1εt−i. (9)
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As m→∞, yt = a0
1−a1 +

P∞
i=0 a

i
1εt−i. Consider this {yt}, the limit of (9). Since

Eyt =
a0

1− a1
= Eyt−s,

V ar(yt−s) =
σ2

1− a21
,

Cov(yt, yt−s) = σ2
∞X
j=0

a2j+s1 δi,j+s =
σ2as1
1− a21

are all time-invariant, {yt} is stationary. Here we use δij = 1, if i = j; 0, otherwise.
We have known that, if no initial condition were given, the general solution of

AR(1) is (use the solution construction yt = y
p
t + y

h
t )

yt =
a0

1− a1
+

∞X
i=1

ai1εt−i +Aa
t
1,

which cannot be stationary unless Aat1 6= 0. Therefore, for {yt} to be stationary,
the initial condition cannot be deterministic and the sequence must have started

infinitely long ago or the arbitrary constant A must be zero (no deviation from

the long-run equilibrium). Therefore, the stationarity conditions for AR(1)
sequence {yt} are:

yht ≡ 0,

|a1| < 1.

The former follows from the assumption: Either the sequence {yt} must have
started infinitely far in the past or the process must always be in equilibrium (so

that A = 0). The latter says that the characteristic root of AR(1) sequence must

be less than unity in absolute value.

A hint from above is that if any portion of the homogeneous equation is present, the

mean, variance, and all covariances will be time-dependent. Hence, for any ARMA(p, q)

model, stationarity necessitates that the homogeneous solution be zero.

• Find stationarity conditions for ARMA(2, 1):

yt = a1yt−1 + a2yt−2 + εt + β1εt−1.

From above, stationarity requires that yht must be zero. It is only necessary to find a

particular solution of ARMA(2, 1). Now try a particular solution yt =
P∞

i=0 αiεt−i

by using the method of undetermined coefficients:

α0εt + α1εt−1 +
∞X
i=2

αiεt−i = εt + (a1α0 + β1)εt−1 +
∞X
i=2

(a1αi−1 + a2αi−2)εt−i
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and hence

α0 = 1

α1 = a1α0 + β1 ⇒ α1 = a1 + β1

αi = a1αi−1 + a2αi−2, i ≥ 2.

Therefore, yt = εt + (a1 + β1)εt−1 +
P∞

i=2 αiεt−i, where αi are determined by the

difference equation αi = a1αi−1 + a2αi−2, i ≥ 2, with α0 = 1 and α1 = a1 + β1. If
the characteristic roots of ARMA(2, 1) model lie within the unit circle,
{αi} constitute a convergent sequence, and {yt} become stationary. Check the
stationarity conditions for {yt} generated by the ARMA(2, 1) :

Eyt = 0 = Eyt−s,∀t, s,

V ar(yt) = V ar(yt−s) = σ2
∞X
i=0

α2i ,∀t, s,

Cov(yt, yt−s) = E
∞X
i,j=0

αiαjεt−iεt−s−j = σ2
∞X
i,j=0

αiαjδi,s+j = σ2
∞X
j=0

αs+jαj.

• Find stationarity conditions for MA(∞) : xt =
P∞

i=0 βiεt−i, β0 = 1. ∀t, s,

Ext = 0 = Ext−s

V ar(xt) = σ2
∞X
i=0

β2i = V ar(xt−s)

Cov(xt, xt−s) = Extxt−s = σ2
∞X
i=0

βiβi+s

If
P∞

i=0 βiβi+s < ∞ ∀s, MA(∞) will be stationary. A direct implication is that
MA(q) is always stationary for any finite q.

• Find stationarity conditions for AR(p) :

yt = a0 +

pX
i=1

aiyt−i + εt.

If the characteristic roots of the homogeneous equation all lie inside the
unit circle (and hence 1−

Pp
i=1 ai 6= 0), the particular solution

yt =
a0

1−
Pp

i=1 ai
+

∞X
i=0

αiεt−i
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is convergent, since the series {αi} solve the difference equation αi−
Pp

j=1 ajαi−j =

0. Check the stationary conditions:

Eyt = Eyt−s =
a0

1−
Pp

i=1 ai
,

V ar(yt) = E

Ã ∞X
i=0

αiεt−i

∞X
j=0

αjεt−j

!
=

∞X
i,j=0

αiαjE(εt−iεt−j)

=
∞X
i,j=0

αiαjσ
2δi,j = σ2

∞X
i=0

α2i <∞,

Con(yt, yt−s) = E

Ã ∞X
i=0

αiεt−i

∞X
j=0

αjεt−s−j

!
= σ2

∞X
i,j=0

αiαjδi,s+j

= σ2
∞X
j=0

αj+sαj <∞

are all time-invariant for t.

• Find stationarity conditions for ARMA(p, q) :

yt = a0 +

pX
i=1

aiyt−i +

qX
i=0

βiεt−i, β0 = 1.

Since {
Pq

i=0 βiεt−i} is stationary for any finite q, only the characteristic roots of
the autoregressive portion of the ARMA(p, q) process determine whether the {yt}
is stationary. Therefore, if the roots of the inverse characteristic equation
1 − a1L − a2L2 − · · · − apLp = 0 lie outside of the unit circle, then {yt} is
stationary.

Autocorrelation function (ACF): ρs≡ γs/γ0

• The autocorrelation function ρs =
γs
γ0
= Cov(yt,yt−s)

V ar(yt)
, the plot of which against s,

serves as a useful tool to identify and estimate time-series models (the Box-Jenkins

Approach).

• ACF for AR(1) process: yt = a0+ a1yt−1+ εt. Since yt = a0
1−a1 +

P∞
i=0 a

i
1εt−i, we

have

γ0 = V ar(yt) = σ2/(1− a21),

γs = Cov(yt, yt−s) = σ2
∞X
j=0

a2j+s1 δi,j+s =
σ2as1
1− a21

.
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Therefore ρ0 = 1, ρs = as1 for s ≥ 1. The ACF ρs converge to 0 geometrically

(directly or oscillatorily according as a1 > 0 and a1 < 0) as s → ∞, provided
|a1| < 1.

• ACF for AR(2) process: yt = a1yt−1+ a2yt−2+ εt. Stationarity requires that the

roots of (1 − a1L − a2L2) be outside the unit circle. Note that yt =
P∞

i=0 αiεt−i,

Eytεt = σ2, and Eyt−sεt = 0, ∀s ≥ 1. Yule-Walker technique: multiply yt =
a1yt−1 + a2yt−2 + εt by yt, yt−1, · · · , yt−s, respectively, and take expectation,

Eytyt = a1Eyt−1yt + a2Eyt−2yt +Eytεt,

Eytyt−1 = a1Eyt−1yt−1 + a2Eyt−2yt−1 +Eyt−1εt,

Eytyt−2 = a1Eyt−1yt−2 + a2Eyt−2yt−2 +Eyt−2εt,

...

Eytyt−s = a1Eyt−1yt−s + a2Eyt−2yt−s +Eyt−sεt,

we have γ0 = a1γ1 + a2γ2 + σ2, γs = a1γs−1 + a2γs−2, s ≥ 1. Therefore,

ρ0 = 1, ρ1 = a1/(1− a2),
ρs = a1ρs−1 + a2ρs−2, s ≥ 2.

The key point is that ρs satisfy the difference equation (note that ρs = ρ−s):

ρs = a1ρs−1 + a2ρs−2, s > 0, which is stationary since the characteristic roots lie

inside the unit circle. The ACF converge to 0 (directly or oscillatorily) as s→∞.

• ACF for MA(1) process: yt = εt + βεt−1.

γ0 = V ar(yt) = (1 + β2)σ2,

γ1 = Cov(yt, yt−1) = βσ2,

γs = Cov(yt, yt−s) = 0, s ≥ 2.

Hence

ρ0 = 1,

ρ1 = β/(1 + β2),

ρs = 0, s ≥ 2.

The ACF ρs (s = 1, 2, ...) has one spike (ρ1 6= 0) and then cuts to 0.
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• ACF for MA(2) process: yt = εt + β1εt−1 + β2εt−2.

γ0 = V ar(yt) = (1 + β21 + β22)σ
2,

γ1 = Cov(yt, yt−1) = (β1 + β1β2)σ
2,

γ2 = Cov(yt, yt−2) = β2σ
2,

γs = Cov(yt, yt−s) = 0, s ≥ 3.

The ACF has two spikes and then cuts to 0 : ρs = 0, s ≥ 3. Generally, for

MA(q) : yt = εt + β1εt−1 + · · · + βqεt−q, its ACF has q spikes and then cuts to

0 : ρs = 0, s ≥ q + 1.

• ACF for ARMA(1, 1) process: yt = a1yt−1 + εt + β1εt−1. Note that Eytεt = σ2,

Eytεt−1 = (a1 + β1)σ
2 and Eyt−sεt = 0, ∀s > 0.

γ0 = Eytyt = a1γ1 + σ2 + β1(a1 + β1)σ
2

γ1 = Eytyt−1 = a1γ0 + β1σ
2

γs = Eytyt−s = a1γs−1, s > 1.

Hence γ0 =
1+β21+2a1β1

1−a21
σ2 and γ1 =

(1+a1β1)(a1+β1)

1−a21
σ2. Therefore,

ρ1 =
(1 + a1β1)(a1 + β1)

1 + β21 + 2a1β1
ρs = a1ρs−1, s ≥ 2,

which can be solved from the initial condition ρ1.The ACF ρs converge to 0 geo-

metrically (directly or oscillatorily according as a1 > 0 and a1 < 0), as s → ∞,
provided |a1| < 1.

• ACF for ARMA(p, q) process: yt = a1yt−1+· · ·+apyt−p+εt+β1εt−1+· · ·+βqεt−q.
The ACF ρs (s = 1, 2, · · · , q) calculation is complicated, thus omitted here. The
ACF ρs (s > q) satisfy (Note that ρs = ρ−s ):

ρs = a1ρs−1 + · · ·+ apρs−p, s ≥ q + 1.

Under the stationarity restriction (all the characteristic roots of the model are

within the unit circle), the ACF converge to 0 as s→∞.

Partial Autocorrelation Function (PACF): φss

• PACF between yt and yt−s eliminates the effects of the intervening values yt−1,
yt−2,··· ,yt−s+1.
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• How to do? Set y∗t = yt − Eyt and construct

y∗t = φ11y
∗
t−1 + et,

then φ11 = PACF between yt and yt−1. Construct

y∗t = φ21y
∗
t−1 + φ22y

∗
t−2 + et,

then φ22 = PACF between yt and yt−2. The same arguments for φ33,φ44, ...

• AR(P): no direct correlation between yt and yt−s for s > p, i.e. φss = 0 for

s ≥ p+ 1.

• MA(q) results in infinite-order AR representation. The PACF exhibit a decay.

• ARMA(p,q): ACF begin to decay after lag q (since the ACF for MA(q) cut to 0
after lag q and the ACF for AR(p) decay) while PACF begin to decay after lag p

(since the PACF for AR(p) cut to 0 after lag p and the PACF for MA(q) exhibit

a decay).

• A rule to select models is used by comparing the graphs of the ACF and PACF
to the theoretical patterns. For example, if the ACF exhibited a single spike and

the PACF exhibited monotonic decay, try to select an MA(1) model; however,

if the ACF exhibited monotonic decay and the PACF exhibited a single spike,

try to select an AR(1) model. If the ACF exhibited monotonic decay and the

PACF exhibited two spikes, try to select an AR(2) model. If the PACF exhibited

monotonic decay with no spikes, try to select an ARMA or MA model. ....... (see

ex2 for the graphs of ACF and PACF for some simpe ARMA models).

Sample ACF and Sample PACF and Model Selection
• Sample ACF and Sample PACF of {yt}Tt=1 : The sample ACF and the sample
PACF help identify the true model of the data generating process. Define ȳ =

(1/T )
PT

t=1 yt, σ̂
2 = (1/T )

PT
t=1(yt− ȳ)2. For s = 1, 2, · · · , define the sample ACF

rs =

PT
t=s+1(yt − ȳ)(yt−s − ȳ)PT

t=1(yt − ȳ)2
,

which is the sample analog for the ACF ρs = Cov(yt, yt−s)/V ar(yt). The sample

PACF φ̂ss is the estimator of φss in y
∗
t = φs1y

∗
t−1 + · · ·+ φssy

∗
t−s + et. The sample

partial autocorrelation at lag s is recursively determined by

φ̂ss =

(
r1, for s = 1³
rs −

Ps−1
j=1 φ̂s−1,jrs−j

´
/
³
1−

Ps−1
j=1 φ̂s−1,jrj

´
, for s ≥ 2,
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where φ̂s,j = φ̂s−1,,j − φ̂ssφ̂s−1,s−j, j = 1, 2, · · · , s − 1. φ̂ss is a consistent approx-
imation of the PACF. For example, if the true value of rs is zero (i.e. ρs = 0),

there is no autoregression part in the process and hence the process is MA(s− 1);
if the true value of φ̂ss is zero (i.e. φss = 0), there is no moving average part in

the process and hence the process is AR(s− 1).

• Under the null: yt ∼ MA(s − 1) (i.e. ρs = 0) with normally distributed errors,

rs ∼ N(0, V ar(rs)) asymptotically, where

V ar(rs) =

(
T−1, s = 1

T−1
¡
1 + 2

Ps−1
i=1 r

2
j

¢
, s > 1.

Under the null: yt ∼ AR(p) (i.e. φp+i,p+i = 0, i > 0), the variance V ar(φ̂p+i,p+i) is
approximately 1/T. In EViews, the dotted lines in the plots of the ACF and PACF

are the approximate two standard error bounds of r1 or φ̂11 computed as ±2/
√
T .

If the value of the ACF or PACF is within these bounds, it is not significantly

different from zero at (approximately) the 5% significance level.

• Two kinds of test: (1) t-test: From the sample ACF, construct t-ratio: t =

rs/
p
V ar(rs) for the significance of s-order autocorrelation for some s > 0 (H0 :

ρs = 0 or yt ∼ MA(s − 1)). From the sample PACF, construct t-ratio: t =√
T φ̂p+i,p+i for the significance of p-order autoregression (H0 : φp+i,p+i = 0 or

yt ∼ AR(p)). (2) Q-statistic (Box and Pierce (1970)): test whether a group of
autocorrelation is significantly different from zero. It shows that Q = T

Ps
k=1 r

2
k ∼

χ2(s) under the null hypothesis that all rk = 0 for k = 1, 2, ..., s. Rejecting the null

hypothesis means that at least one autocorrelation is not zero. For a white-noise

process, Q = 0. If the calculated value of Q exceeds the critical point of χ2(s),

reject the null hypothesis, meaning that at least one autocorrelation is not zero and

there are some autoregressive terms in the model. (this statistic works poorly).

Modified Q-statistic (Ljung and Box (1978)): Q = T (T +2)
Ps

k=1 r
2
k/(T −k) ∼

χ2(s). In EViews, the Ljung and Box Q-statistic and the P-values are presented.

• Q-statistic can be used to check if the residuals from an estimated ARMA(p, q)

model behave as a white-noise process. Note that in this case the degrees of

freedom is s − p − q, and hence Q ∼ χ2(s − p − q). If a constant is included in
ARMA(p, q), Q ∼ χ2(s− p− q − 1).

• There is a tradeoff between reducing the estimated SSR (from adding lags for p

and/or q) and increasing the degrees of freedom. In application, try to find a more

parsimonious model for the estimation.
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• Model Selection Criteria––select the most appropriate model by using
the AIC and the SBC:

AIC = T ln(SSR) + 2n

SBC = T ln(SSR) + n lnT

where n is the number of parameters in the estimation (p + q+ constant term),

T is the number of usable observations (fixed. Here, the same sample period for

different models should be used). In EViews,

AIC = (−2 lnL+ 2n) /T,
SBC = (−2 lnL+ n lnT ) /T.

The different methods of calculating the AIC or the SBC will necessarily select

the same model.

• The smaller the AIC and the SBC, the better is the selected model:
model A fits better than model B if the AIC or the SBC for model A is smaller

than for model B. Since lnT > 2, the SBC will always select a more parsimonious

model than the AIC. It is wonderful if both the AIC and the SBC select the same

model; if not, be cautious. The AIC can select an overparameterized model, so

t-test on all the coefficients should be significant when we estimate the model

selected from the AIC. See the examples about the estimation of AR(1), AR(2),

and ARMA(1,1) models on pages 70 through 75.

• Three-stage Model Selection Method (Box-Jenkins(1976)): Identification,
estimation, and diagnostic checking.

1. Identification: Examine the time plot of the series (data), the ACF, and the

PACF visually. Stationary or nonstationary? Nonstationary variables may

have a pronounced trend or appear to meander without a constant long-run

mean or variance (hence some test approaches for nonstationarity are neces-

sary). Standard practice was to first-difference nonstationary series and make

them stationary. Under stationarity, a comparison of the sample ACF and

PACF to those of various theoretical ARMA processes may suggest plausible

ARMA models.

2. Estimation: Fit the suggested models under stationarity and examine the

estimates of ai and βi in the ARMAmodels. Select the model with parsimony,

where Q-statistic, AIC, and SBC are used for model selection. There is a

16



tradeoff: more coefficients or more degrees of freedom? Three points to Note:

1) Parsimony of ARMR(p,q). A parsimonious model fits the data well
without incorporating any needless parameters. Avoid the common factor

problem (e.g. use AR(1) model yt = 0.5yt−1 + εt instead of AR(2, 1) model

yt = 0.25yt−2+εt+0.5εt−1). The coefficients should not be strongly correlated

with each other. Coefficient estimates in the model should be significant

(t-test or F-test). 2) Stationarity and Invertibility. Be cautious: the
estimated coefficient for AR(1)model is close to 1 and the characteristic roots

of the estimated polynomial 1−a1L− · · ·−apLp for AR(p) lie inside but close
to the unit circle. Invertibility of the moving average part is required for the

estimation of an ARMA(p, q) model even though there is nothing improper

about a non-invertible model. Consider the MLE of MA(1): yt = εt + βεt−1,

where {yt}Tt=1 is the observed series and ε0 = 0. Suppose that {εt} is a white-
noise sequence drawn from a normal distribution N(0,σ2), i.e. the likelihood

of εt is 1/
√
2π exp (−ε2t/(2σ2)) . The log likelihood of the joint realizations

{εt}Tt=1 is −T2 ln(2π)−
T
2
lnσ2 − 1

2σ2

PT
t=1 ε

2
t . If |β| < 1,

εt = yt/(1 + βL) =
∞X
i=0

(−β)iyt−i =
t−1X
i=0

(−β)iyt−i,

which shows that the values of εt represent a convergent process (the MA

process is invertible). The log likelihood function is

lnL =
−T
2
ln(2π)− T

2
lnσ2 − 1

2σ2

TX
t=1

Ã
t−1X
i=0

(−β)iyt−i

!2
.

It is possible for computers to use search algorithms to select the values of

β and σ2 that maximize the value of lnL. However, if |β| > 1, {εt} cannot
be represented in terms of the observed {yt} series, and the MA process

is not invertible. The MLE is invalid in this case. 3) Goodness of fit.
The AIC and/or SBC are more approprite measures of the overall fit of the

model. The common R2 and the average of the residual sum of squares

are not good goodness-of-fit measures in the estimation of ARMA models.

Two reasons: one is that the fit necessarily improves as more parameters are

included in the model; the other is that, in the nonlinear search algorithms

for the estimation of ARMA models, if the search fails to converge rapidly,

the estimated parameters may be unstable and adding one or two additional

observations can greatly alter the estimates.
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3. Diagnosis: Plot the residuals from the estimated model to look for outliers

and for evidence of periods in which the model does not fit the data well.

Construct the sample ACF and the PACF of the residuals and conduct the

t-test and Q-test (in the above) to see whether any one or all of the residual

autocorrelations or partial autocorrelation are statistically significant or not.

If several residual correlations are marginally significant (from the t-test) and

a Q-statistic test is not significant at 10% level, be wary: it is possible to

form a better performing model. If there are sufficient observations, fit the

same ARMA model to each of two subsamples (The standard F-test can be

applied to test whether the data-generating process is unchanging).

Notes: (1) if all the plausible ARMA models estimated above show evidence of a
poor fit during a reasonably long portion of the sample, consider multivariate estimation

methods; (2) if the variance of the residuals is increasing or has some tendency to change,

use a logarithmic transformation or ARCH techniques.

Forecast

• AR(1) : yt = a0 + a1yt−1 + εt. Given the actual data-generating process (i.e. a0
and a1 are known) and the current and past realizations of the {εt} and {yt}, by
forward iteration, (

yt+1 = a0 + a1yt + εt+1

Etyt+1 = a0 + a1yt,(
yt+2 = a0(1 + a1) + a

2
1yt + εt+2 + a1εt+1

Etyt+2 = a0(1 + a1) + a
2
1yt,

...(
yt+j = a0(1 + a1 + · · ·+ aj−11 ) + aj1yt + εt+j + a1εt+j−1 + · · ·+ aj−11 εt+1

Etyt+j = a0(1 + a1 + · · ·+ aj−11 ) + aj1yt.

The j-step-ahead forecast (forecast function) {Etyt+j}∞j=1 is a function of the
information set in period t, satisfying

lim
j→∞

Etyt+j =
a0

1− a1
if |a1| < 1.

For the stationary AR(1) process, the conditional forecast of yt+j converges to the

unconditional mean as j →∞. Note that the j-step-ahead forecast error is

et(j) = yt+j − Etyt+j = εt+j + a1εt+j−1 + · · ·+ aj−11 εt+1
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with Etet(j) = 0 and V ar[et(j)] = σ2[1+a21+· · ·+a
2(j−1)
1 ] = σ2(1−a2j1 )/(1−a21)→

σ2/(1−a21) as j →∞. The forecasts are unbiased, but the variance of the forecast
errors is an increasing function of j, implying that the quality of the forecasts

declines as we forecast further out into the future. If we assume that εt is normally

distributed, then the 95% confidence interval for the one-step-ahead forecast of yt+1
is a0 + a1yt ± 1.96σ and the 95% confidence interval for j-step-ahead forecast of

yt+j is

a0(1− aj1)
1− a1

+ aj1yt ± 1.96σ
Ã
1− a2j1
1− a21

!1/2
.

• ARMA(2, 1) : yt = a0+a1yt−1+a2yt−2+εt+β1εt−1. Assume that all the coefficients

are known, all the variables subscripted t, t−1, · · · are known at t, and Etεt+j = 0
for j > 0. (

yt+1 = a0 + a1yt + a2yt−1 + εt+1 + β1εt.

Etyt+1 = a0 + a1yt + a2yt−1 + β1εt,⎧⎪⎨⎪⎩
yt+2 = a0 + a1yt+1 + a2yt + εt+2 + β1εt+1

Etyt+2 = a0 + a1Etyt+1 + a2yt

= a0(1 + a1) + (a
2
1 + a2)yt + a1a2yt−1 + a1β1εt(

yt+3 = a0 + a1yt+2 + a2yt+1 + εt+3 + β1εt+2

Etyt+3 = a0 + a1Etyt+2 + a2Etyt+1

...(
yt+j = a0 + a1yt+j−1 + a2yt+j−2 + εt+j + β1εt+j−1

Etyt+j = a0 + a1Etyt+j−1 + a2Etyt+j−2, j ≥ 2.

Given the sample size T and the estimated coefficients â0, â1, â2 and β̂1, the esti-

mated ARMA(2,1) model is

yt = â0 + â1yt−1 + â2yt−2 + ε̂t + β̂1ε̂t−1.

The out-of-sample forecasts can be easily constructed as follows:

ETyT+1 = â0 + â1yT + â2yT−1 + β̂1ε̂T.

ETyT+2 = â0 + â1ETyT+1 + â2yT

ETyT+3 = â0 + â1ETyT+2 + â2ETyT+1

ETyT+j = â0 + â1ETyT+j−1 + â2ETyT+j−2, j ≥ 2.

However, the confidence intervals for the forecasts are difficult to construct.
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• ARMA(p, q) : yt = a0 + a1yt−1 + · · ·+ apyt−p + εt + β1εt−1 + · · ·+ βqεt−q.

Etyt+1 = a0 + a1yt + · · ·+ apyt+1−p + β1εt + · · ·+ βqεt+1−q

Etyt+2 = a0 + a1Etyt+1 + · · ·+ apyt+2−p + β2εt + · · ·+ βqεt+2−q

...

Etyt+q = a0 + a1Etyt+q−1 + · · ·+ apEtyt+q−p + βqεt

Etyt+j = a0 + a1Etyt+j−1 + · · ·+ apEtyt+j−p, j > q.

The same argument as in ARMA(2,1) can be applied to construct the out-of-sample

forecasts.

• Forecast Evaluation: Fit the best 6= Forecast the best. Two aspects of uncer-
tainty: the forecast error and the estimated coefficients result in bad forecasts.

How to know the model with the best forecasting performance? Need enough

observations. Some methods:

1. Regression-based method: (1) Apart the sample {yt}Tt=1 into two parts {yt}T0t=1
and {yt}Tt=T0+1, the first of which is used for estimation and the second for
forecasts; (2) Construct one-step-ahead or j-step-ahead forecasts {ft}Tt=T0+1;
(3) Regress yt on a constant and ft for t = T0+1, · · · , T, i.e. yt = a0+a1ft+vt,
and apply the F-test to test the null a0 = 0 and a1 = 1. Rejecting the null

means that the forecast is poor. If the significance levels from the F-tests

of different models are similar, select the model with the smallest residual

variance V ar(vt).

2. MSPE-based method: Construct MSPE =
PH

i=1 e
2
i for different models,

where H is the number of observations in the holdback period (the second

part of the sample), ei is the forecast error. Take the larger MSPE of the two

models in the numerator and construct the F-test

F ≡ MSPE1
MSPE2

=

PH
i=1 e

2
1iPH

i=1 e
2
2i

∼ F (H,H).

The assumptions for the F-distribution are: et ∼ N(0, δ2), Eetet−s = 0(s 6= 0)
and Ee1te2t = 0. The violation of any one of the assumptions will lead to the

failure of the F-distribution.
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3. The Granger-Newbold(1976) test: (Ee1te2t = 0 is violated). Set

xt = e1t + e2t, zt = e1t − e2t

ρxz = Extzt = Ee
2
1t − Ee22t

⎧⎪⎨⎪⎩
> 0, model 1 has a larger MSPE

< 0, model 2 has a larger MSPE

= 0, models 1,2 have the same MSPE

Under the null of equal forecast accuracy for the two models, ρxz = Ee
2
1t −

Ee22t = 0, i.e. xt and zt are uncorrelated. Let rxz is the sample version of ρxz,

then rxz/
p
(1− r2xz)/(H − 1) ∼ t(H− 1). Examine the sign of this t-statistic

and the significance of the t-test.

4. The Diebold-Mariano(1995) test: (Even the first two assumptions et ∼ N(0, δ2)
and Eetet−s = 0(s 6= 0) are not required). Use a more general loss function
of the forecast error g(ei) instead of the quadratic one e2i . Let

d̄ =
1

H

HX
i=1

di =
1

H

HX
i=1

(g(e1i)− g(e2i)),

which fromCLT is asymptotically normally distributed: d̄/
p
var(d̄) ∼ N(0, 1)

under the hypothsis that there is equal forecast accuracy. If {di} is serially
uncorrelated (conduct CDF, PACF and Q-statistic test to {di}),

d̄
√
γ0
≡ d̄qPH

i=1(di − d̄)2/(H − 1)
∼ t(H − 1).

If {di} is serially correlated and (γ1, · · · , γq) 6= 0, where γi is the i-th sample
autocovariance of {dt}, then (Harvey et al (1998))

DM ≡ d̄/
q
(γ0 + 2γ1 + · · ·+ 2γq)/(H − 1) ∼ t(H − 1), (1-step-ahead)

DM ≡ d̄/
q
(γ0 + 2γ1 + · · ·+ 2γq)/(H + 1− 2j +H−1j(j − 1)) ∼ t(H − 1)

∼ t(H − 1), (j-step-ahead).

• Seasonality: Forecasts that ignore seasonality will have a high variance, even
in using the deseasonalized or seasonally adjusted data. In practice, the seasonal

pattern will interact with the nonseasonal pattern in the data, making identifica-

tion difficult. The ACF and PACF for a combined seasonal/nonseasonal process
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will reflect both elements. There are two methods to introduce the seasonal effect:

additive seasonality and multiplicative seasonality. For example, the followings are

additive specifications

yt = a1yt−1 + εt + β1εt−1 + β4εt−4

yt = a1yt−1 + a4yt−4 + εt + β1εt−1

while

(1− a1L)yt = (1 + β1L)(1 + β4L
4)εt

(1− a1L)(1− a4L4)yt = (1 + β1L)εt

are multiplicative specifications. Oftentimes strong seasonality and nonstationarity

are found in the economic data. The ACF for the data is similar to that with no

seasonality, but the spikes at lags s, 2s, ...do not exhibit rapid decay.

1. First, seasonally difference the data and check the ACF of the resultant se-

ries. If the ACF shows a nonstationary process, the seasonally differenced

data need to be further first differenced, i.e. apply the first difference to the

seasonally differenced data, e.g.

(1− L)(1− L4)yt = (1− L)(yt − yt−4) = (yt − yt−4)− (yt−1 − yt−5).

2. Second, use the ACF and PACF to identify potential models. Try to estimate

models with low-order nonseasonal ARMA coefficients. Allow the appropri-

ate form of seasonality (additive or multiplicative) to be determined by the

various diagnostic statistics.

• ARIMA(p, d, q)(P,D,Q)s : p, q =the order of the nonseasonal ARMA coefficients,

d = number of nonseasonal differences

P = number of multiplicative autoregressive coefficients

D = number of seasonal difference

Q = number of multiplicative moving-average coefficients

s = seasonal period

e.g. mt = a0+a1mt−1+(1+β1L)(1+β4L
4)εt is an ARIMA(1, 1, 0)(0, 1, 1)4 about

yt; mt = (1 + β1L)(1 + β4L
4)εt is an ARIMA(0, 1, 1)(0, 1, 1)4 about yt, where

mt = yt − yt−1.

An empirical example: ARMA Model Selection for the Producer Price Index

(you are required to finish exercises 11 and 12 in Walter Enders(Chapter 2)) (see ex3 in

notes).
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