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Chapter 1 Time Series Basis

yt = β0 + β1xt1 + . . .+ βkxtk + ut

1. Basic Regression Analysis
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Time Series vs. Cross Sectional
Time series data has a temporal ordering, 
unlike cross-section data.
Will need to alter some of our 
assumptions to take into account that we 
no longer have a random sample of 
individuals.
Instead, we have one realization of a 
stochastic (i.e. random) process.
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Examples

A static model relates contemporaneous 
variables:  yt = β0 + β1zt + ut

A finite distributed lag (FDL) model allows 
one or more variables to affect y with a lag: 
yt = α0 + δ0zt + δ1zt-1 + δ2zt-2 + ut

More generally, a finite distributed lag 
model of order q will include q lags of z.
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Finite Distributed Lag Models

We can call δ0 the impact propensity – it 
reflects the immediate change in y.
We can call δ0 + δ1 +…+ δq the long-run 
propensity (LRP) – it reflects the long-run 
change in y after a permanent change.
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Assumptions for Unbiasedness

Still assume a model that is linear in 
parameters: yt = β0 + β1xt1 + . . .+ βkxtk + ut

Still need to make a zero conditional 
mean assumption: E(ut|X) = 0, t = 1, 2, …, 
n.
Note that this implies the error term in any 
given period is uncorrelated with the 
explanatory variables in all time periods.
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Assumptions (continued)
This zero conditional mean assumption 
implies the x’s are strictly exogenous.
An alternative assumption, more parallel to 
the cross-sectional case, is E(ut|xt) = 0, 
which implies the x’s are contemporaneously 
exogenous.
Contemporaneous exogeneity will only be 
sufficient in large samples.
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Assumptions (continued)

Still need to assume that no x is constant, 
and that there is no perfect collinearity.
Note we have skipped the assumption of 
a random sample.
The key impact of the random sample 
assumption is that each ui is independent.
Our strict exogeneity assumption takes 
care of it in this case.
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Unbiasedness of OLS

Based on these 3 assumptions, when 
using time-series data, the OLS estimators 
are unbiased.
Thus, just as was the case with cross-
section data, under the appropriate 
conditions OLS is unbiased.
Omitted variable bias can be analyzed in 
the same manner as in the cross-section 
case.
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Variances of OLS Estimators

Just as in the cross-section case, we 
need to add an assumption of 
homoskedasticity in order to be able to 
derive variances.
Now we assume Var(ut|X) = Var(ut) = σ2

i.e. the error variance is independent of all 
the x’s, and it is constant over time.
We also need the assumption of no serial 
correlation: Corr(ut,us| X)=0 for t ≠ s.
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OLS Variances (continued)

Under these 5 assumptions, the OLS 
variances in the time-series case are the 
same as in the cross-section case.  
Also,The estimator of σ2 is the same.
OLS remains BLUE.
With the additional assumption of normal 
errors, inference is the same.
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Trending Time Series
Economic time series often have a trend.
Just because 2 series are trending 
together, we can’t assume that the relation 
is causal.
Often, both will be trending because of 
other unobserved factors.
Even if those factors are unobserved, we 
can control for them by directly controlling 
for the trend.
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Trends (continued)
One possibility is a linear trend, which can 

be modeled as yt = α0 + α1t + et, t = 1, 
2, …
Another possibility is an exponential trend, 
which can be modeled as log(yt) = α0 + α1t 
+ et, t = 1, 2, …
Another possibility is a quadratic trend, 
which can be modeled as yt = α0 + α1t + 
α2t2 + et, t = 1, 2, …
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Detrending
Adding a linear trend term to a regression 

is the same thing as using “detrended”
series in a regression.
Detrending a series involves regressing 
each variable in the model on t.
The residuals form the detrended series.
Basically, the trend has been partialled 
out.
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Detrending (continued)

An advantage to actually detrending the 
data (vs. adding a trend) involves the 
calculation of goodness of fit.
Time-series regressions tend to have very 
high R2, as the trend is well explained.
The R2 from a regression on detrended 
data better reflects how well the xt’s 
explain yt.
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Seasonality
Often time-series data exhibits some 

periodicity, referred to seasonality.
Example:  Quarterly data on retail sales 
will tend to jump up in the 4th quarter.
Seasonality can be dealt with by adding a 
set of seasonal dummies.
As with trends, the series can be 
seasonally adjusted before running the 
regression.
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2.  Large sample properties
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Problems
Strict exogeneity assumption

Allow the observations to be correlated 
across time

Law of Large Number Theorem and CLT?
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Stationary Stochastic Process
A stochastic process is stationary if for 

every collection of time indices 1 ≤ t1 < …< 
tm the joint distribution of (xt1, …, xtm) is the 
same as that of (xt1+h, … xtm+h) for h ≥ 1.
Thus, stationarity implies that the xt’s are 
identically distributed and that the nature 
of any correlation between adjacent terms 
is the same across all periods.
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Covariance Stationary Process
A stochastic process is covariance 

stationary if E(xt) is constant, Var(xt) is 
constant and for any t, h ≥ 1, Cov(xt, xt+h) 
depends only on h and not on t.
Thus, this weaker form of stationarity 
requires only that the mean and variance 
are constant across time, and the 
covariance just depends on the distance 
across time.
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Weakly Dependent Time Series
A stationary time series is weakly 
dependent if xt and xt+h are “almost 
independent” as h increases .
If for a covariance stationary process 
Corr(xt, xt+h) → 0 as h → ∞, we’ll say this 
covariance stationary process is weakly 
dependent.
We want to still use law of large numbers.
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An MA(1) Process
A moving average process of order one 

[MA(1)] can be characterized : xt = et + 
α1et-1, t = 1, 2, … with et being an i.i.d. 
sequence with mean 0 and variance σ2 .

This is a stationary, weakly dependent 
sequence as variables 1 period apart are 
correlated, but 2 periods apart they are 
not.
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An AR(1) Process
An autoregressive process of order one 

[AR(1)] can be characterized as one 
where yt = ρyt-1 + et , t = 1, 2,… with et
being an i.i.d. sequence with mean 0 and 
variance σe

2.
For this process to be weakly dependent, 
it must be the case that |ρ| < 1.
Corr(yt ,yt+h) = Cov(yt ,yt+h)/(σyσy) = ρ1

h

which becomes small as h increases.
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Trends Revisited

A trending series cannot be stationary, 
since the mean is changing over time.
A trending series can be weakly 
dependent.
If a series is weakly dependent and is 
stationary about its trend, we will call it a 
trend-stationary process.
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Assumptions for Consistency
Linearity and Weak Dependence.
A weaker zero conditional mean 
assumption:  E(ut|xt) = 0, for each t.
No Perfect Collinearity.
Thus, for asymptotic unbiasedness 
(consistency), we can weaken the 
exogeneity assumptions somewhat 
relative to those for unbiasedness.
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Large-Sample Inference
Weaker assumption of homoskedasticity: 

Var (ut|xt) = σ2, for each t
Weaker assumption of no serial 
correlation: E(utus| xt, xs) = 0 for t ≠ s.
With these assumptions, we have 
asymptotic normality and the usual 
standard errors, t statistics, F statistics 
and LM statistics are valid.
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Random Walks
A random walk is an AR(1) model: 

yt = ρ yt-1 + et
where ρ = 1. Assume y0 = 0. The series is 
not weakly dependent. 
With a random walk, the expected value of 
yt is always y0 – it doesn’t depend on t.
Var(yt) = σe

2t, so it increases with t.
We say a random walk is highly persistent   
since E(yt+h|yt) = yt for all h ≥ 1 since 

yt+h = et+h + et+h-1 +…+ et+1 + yt
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Random Walks (continued)
A random walk is a special case of what’s 
known as a unit root process.
Note that trending and persistence are 
different things – a series can be trending 
but weakly dependent, or a series can be 
highly persistent without any trend.
A random walk with drift is an example of 
a highly persistent series that is trending.
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In order to use a highly persistent series 
and get meaningful estimates and make 
correct inferences, we want to transform it 
into a weakly dependent process.
We refer to a weakly dependent process 
as being integrated of order zero, [I(0)].
A random walk is integrated of order one, 
[I(1)], meaning a first difference will be I(0).

Transforming Persistent Series
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Testing for AR(1) Serial Correlation

Want to be able to test for whether the 
errors are serially correlated or not.
Want to test the null that ρ = 0 in ut = ρut-1
+ et, t =2,…, n, where ut is the model error 
term and et is i.i.d.
With strictly exogenous regressors, the 
test is very straightforward – simply 
regress the residuals on lagged residuals 
and use a t-test.
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Testing for AR(1) Serial Correlation 
(continued)

An alternative is the Durbin-Watson (DW) 
statistic, which is calculated by many 
packages.
If the DW statistic is around 2, then we 
can reject serial correlation, while if it is 
significantly < 2 we cannot reject.
Critical values are difficult to calculate, 
making the t test easier to work with.
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Testing for AR(1) Serial Correlation 
(continued)

If the regressors are not strictly 
exogenous, then neither the t or DW test 
will work.
Regress the residual (or y) on the lagged 
residual and all of the x’s.  
The inclusion of the x’s allows each xtj to 
be correlated with ut-1, so don’t need 
assumption of strict exogeneity.



32

Testing for Higher Order S.C.
Can test for AR(q) serial correlation in the 

same manner as AR(1).
Just include q lags of the residuals in the 
regression and test for joint significance.
Can use F test or LM test, where the LM 
version is called a Breusch-Godfrey test 
and is (n-q)R2 using R2 from residual 
regression.
Can also test for seasonal forms.
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Correcting for Serial Correlation
Start with case of strictly exogenous 

regressors, and maintain all G-M 
assumptions except no serial correlation.
Assume errors follow AR(1) so ut = ρut-1 + 
et, t =2,…, n.
Var(ut) = σ2

e/(1-ρ2).
We need to try and transform the equation 
so we have no serial correlation in the 
errors.
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Correcting for S.C. (continued)

Consider that since yt = β0 + β1xt + ut , 
then yt-1 = β0 + β1xt-1 + ut-1 .
If you multiply the second equation by ρ, 
and subtract if from the first you get:
yt – ρ yt-1 = (1 – ρ)β0 + β1(xt – ρ xt-1) + et , 
since et = ut – ρ ut-1 .
This quasi-differencing results in a model 
without serial correlation.
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Feasible GLS Estimation

Problem with this method is that we don’t 
know ρ, so we need to get an estimate first.
Can just use the estimate obtained from 
regressing residuals on lagged residuals.
Depending on how we deal with the first 
observation, this is either called Cochrane-
Orcutt or Prais-Winsten estimation.
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Feasible GLS (continued)
Often both Cochrane-Orcutt and Prais-

Winsten are implemented iteratively.
This basic method can be extended to 
allow for higher order serial correlation, 
AR(q).
Most statistical packages will 
automatically allow for estimation of AR 
models without having to do the quasi-
differencing by hand.
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Serial Correlation-Robust 
Standard Errors

What happens if we don’t think that the 
regressors are all strictly exogenous?
It’s possible to calculate serial correlation-
robust standard errors, along the same 
lines as heteroskedasticity robust standard 
errors.
Idea is that want to scale the OLS 
standard errors to take into account serial 
correlation.
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Serial Correlation-Robust 
Standard Errors (continued)

Estimate normal OLS to get residuals, root MSE.
Run the auxiliary regression of xt1 on xt2, … , xtk.
Form ât by multiplying these residuals with ût.
Choose g – say 1 to 3 for annual data, then
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