Chapter 1 Time Series Basis

 $\mathbf{v}_t = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{x}_{t1} + \ldots + \mathbf{\beta}_k \mathbf{x}_{tk} + \mathbf{u}_t$

1. Basic Regression Analysis

Time Series vs. Cross Sectional

- Time series data has a temporal ordering, unlike cross-section data.
- Will need to alter some of our assumptions to take into account that we no longer have a random sample of individuals.
- Instead, we have one realization of a stochastic (i.e. random) process.

Examples

♦ A static model relates contemporaneous variables: $y_t = β_0 + β_1 z_t + u_t$

- ♦ A finite distributed lag (FDL) model allows one or more variables to affect *y* with a lag: $y_t = \alpha_0 + \delta_0 Z_t + \delta_1 Z_{t-1} + \delta_2 Z_{t-2} + U_t$
- More generally, a finite distributed lag model of order q will include q lags of z.

Finite Distributed Lag Models

- We can call δ_0 the impact propensity it reflects the immediate change in *y*.
- ♦ We can call $\delta_0 + \delta_1 + ... + \delta_q$ the long-run propensity (LRP) – it reflects the long-run change in y after a permanent change.

Assumptions for Unbiasedness

- Still assume a model that is linear in parameters: y_t = β₀ + β₁x_{t1} + . . . + β_kx_{tk} + u_t
 Still need to make a zero conditional mean assumption: E(u_t | X) = 0, t = 1, 2, ..., n.
- Note that this implies the error term in any given period is uncorrelated with the explanatory variables in all time periods.

Assumptions (continued)

- This zero conditional mean assumption implies the x's are strictly exogenous.
- An alternative assumption, more parallel to the cross-sectional case, is E(u_t|x_t) = 0, which implies the x's are contemporaneously exogenous.
- Contemporaneous exogeneity will only be sufficient in large samples.

Assumptions (continued)

- Still need to assume that no x is constant, and that there is no perfect collinearity.
- Note we have skipped the assumption of a random sample.
- The key impact of the random sample assumption is that each u_i is independent.
- Our strict exogeneity assumption takes care of it in this case.

Unbiasedness of OLS

- Based on these 3 assumptions, when using time-series data, the OLS estimators are unbiased.
- Thus, just as was the case with crosssection data, under the appropriate conditions OLS is unbiased.
- Omitted variable bias can be analyzed in the same manner as in the cross-section case.

Variances of OLS Estimators

- Just as in the cross-section case, we need to add an assumption of homoskedasticity in order to be able to derive variances.
- Now we assume Var(u_t|X) = Var(u_t) = σ²
 i.e. the error variance is independent of all the x's, and it is constant over time.
- ♦ We also need the assumption of no serial correlation: Corr(u_t, u_s | X)=0 for $t \neq s$.

OLS Variances (continued)

- Under these 5 assumptions, the OLS variances in the time-series case are the same as in the cross-section case.
 Also, The estimator of σ² is the same.
- ♦ OLS remains BLUE.
- With the additional assumption of normal errors, inference is the same.

Trending Time Series

- Economic time series often have a trend.
- Just because 2 series are trending together, we can't assume that the relation is causal.
- Often, both will be trending because of other unobserved factors.
- Even if those factors are unobserved, we can control for them by directly controlling for the trend.

Trends (continued)

- ♦ One possibility is a linear trend, which can be modeled as $y_t = \alpha_0 + \alpha_1 t + e_t$, t = 1, 2, ...
- ♦ Another possibility is an exponential trend, which can be modeled as $log(y_t) = α_0 + α_1t + e_t$, t = 1, 2, …
- ♦ Another possibility is a quadratic trend, which can be modeled as $y_t = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + e_t$, t = 1, 2, ...

Detrending

- Adding a linear trend term to a regression is the same thing as using "detrended" series in a regression.
- Detrending a series involves regressing each variable in the model on t.
- The residuals form the detrended series.
- Basically, the trend has been partialled out.

Detrending (continued)

- An advantage to actually detrending the data (vs. adding a trend) involves the calculation of goodness of fit.
- Time-series regressions tend to have very high R², as the trend is well explained.
- The R² from a regression on detrended data better reflects how well the x_t's explain y_t.

Seasonality

- Often time-series data exhibits some periodicity, referred to seasonality.
- Example: Quarterly data on retail sales will tend to jump up in the 4th quarter.
- Seasonality can be dealt with by adding a set of seasonal dummies.
- As with trends, the series can be seasonally adjusted before running the regression.

2. Large sample properties

Problems

Strict exogeneity assumption

 Allow the observations to be correlated across time

Law of Large Number Theorem and CLT?

Stationary Stochastic Process

- ★ A stochastic process is stationary if for every collection of time indices $1 \le t_1 < ... < t_m$ the joint distribution of $(x_{t1}, ..., x_{tm})$ is the same as that of $(x_{t1+h}, ..., x_{tm+h})$ for $h \ge 1$.
- Thus, stationarity implies that the x_t's are identically distributed and that the nature of any correlation between adjacent terms is the same across all periods.

Covariance Stationary Process

- ★ A stochastic process is covariance stationary if E(x_t) is constant, Var(x_t) is constant and for any t, h ≥ 1, Cov(x_t, x_{t+h}) depends only on h and not on t.
- Thus, this weaker form of stationarity requires only that the mean and variance are constant across time, and the covariance just depends on the distance across time.

19

Weakly Dependent Time Series

- A stationary time series is weakly dependent if x_t and x_{t+h} are "almost independent" as h increases.
- ✤ If for a covariance stationary process Corr(x_t, x_{t+h}) → 0 as $h \rightarrow \infty$, we'll say this covariance stationary process is weakly dependent.
- We want to still use law of large numbers.

An MA(1) Process

- ★ A moving average process of order one [MA(1)] can be characterized : $x_t = e_t + \alpha_1 e_{t-1}, t = 1, 2, ...$ with e_t being an i.i.d. sequence with mean 0 and variance σ^{2} .
- This is a stationary, weakly dependent sequence as variables 1 period apart are correlated, but 2 periods apart they are not.

An AR(1) Process

- ★ An autoregressive process of order one [AR(1)] can be characterized as one where $y_t = \rho y_{t-1} + e_t$, t = 1, 2, ... with e_t being an i.i.d. sequence with mean 0 and variance σ_e^2 .
- ✤ For this process to be weakly dependent, it must be the case that $|\rho| < 1$.
- Corr $(y_t, y_{t+h}) = Cov(y_t, y_{t+h})/(\sigma_y \sigma_y) = \rho_1^h$ which becomes small as *h* increases.

Trends Revisited

- A trending series cannot be stationary, since the mean is changing over time.
- A trending series can be weakly dependent.
- If a series is weakly dependent and is stationary about its trend, we will call it a trend-stationary process.

Assumptions for Consistency

- Linearity and Weak Dependence.
- ✤ A weaker zero conditional mean assumption: $E(u_t | \mathbf{x}_t) = 0$, for each *t*.
- No Perfect Collinearity.
- Thus, for asymptotic unbiasedness (consistency), we can weaken the exogeneity assumptions somewhat relative to those for unbiasedness.

Large-Sample Inference

- Weaker assumption of homoskedasticity: Var $(u_t | \mathbf{x}_t) = \sigma^2$, for each *t*
- ♦ Weaker assumption of no serial correlation: $E(u_t u_s | \mathbf{x}_t, \mathbf{x}_s) = 0$ for $t \neq s$.
- With these assumptions, we have asymptotic normality and the usual standard errors, *t* statistics, *F* statistics and *LM* statistics are valid.

Random Walks

A random walk is an AR(1) model:

 $y_{t} = \rho y_{t-1} + e_{t}$

where $\rho = 1$. Assume $y_0 = 0$. The series is not weakly dependent.

- With a random walk, the expected value of y_t is always y₀ – it doesn't depend on t.
- Var(y_t) = $\sigma_e^2 t$, so it increases with *t*.
- ♦ We say a random walk is highly persistent since $E(y_{t+h}|y_t) = y_t$ for all $h \ge 1$ since

 $y_{t+h} = e_{t+h} + e_{t+h-1} + \dots + e_{t+1} + y_t$

Random Walks (continued)

- A random walk is a special case of what's known as a unit root process.
- Note that trending and persistence are different things – a series can be trending but weakly dependent, or a series can be highly persistent without any trend.
- A random walk with drift is an example of a highly persistent series that is trending.

Transforming Persistent Series

- In order to use a highly persistent series and get meaningful estimates and make correct inferences, we want to transform it into a weakly dependent process.
- We refer to a weakly dependent process as being integrated of order zero, [I(0)].
- A random walk is integrated of order one, [I(1)], meaning a first difference will be I(0).

Testing for AR(1) Serial Correlation

- Want to be able to test for whether the errors are serially correlated or not.
- ♦ Want to test the null that $\rho = 0$ in $u_t = \rho u_{t-1} + e_t$, t = 2, ..., n, where u_t is the model error term and e_t is i.i.d.
- With strictly exogenous regressors, the test is very straightforward – simply regress the residuals on lagged residuals and use a t-test.

Testing for AR(1) Serial Correlation (continued)

- An alternative is the Durbin-Watson (DW) statistic, which is calculated by many packages.
- If the DW statistic is around 2, then we can reject serial correlation, while if it is significantly < 2 we cannot reject.</p>
- Critical values are difficult to calculate, making the t test easier to work with.

Testing for AR(1) Serial Correlation (continued)

- If the regressors are not strictly exogenous, then neither the t or DW test will work.
- Regress the residual (or y) on the lagged residual and all of the x's.
- The inclusion of the x's allows each x_{tj} to be correlated with u_{t-1}, so don't need assumption of strict exogeneity.

Testing for Higher Order S.C.

- Can test for AR(q) serial correlation in the same manner as AR(1).
- Just include q lags of the residuals in the regression and test for joint significance.
- Can use F test or LM test, where the LM version is called a Breusch-Godfrey test and is (*n-q*)*R*² using *R*² from residual regression.
- Can also test for seasonal forms.

Correcting for Serial Correlation

- Start with case of strictly exogenous regressors, and maintain all G-M assumptions except no serial correlation.
- Assume errors follow AR(1) so $u_t = \rho u_{t-1} + e_t$, t = 2, ..., n.
- $Var(u_t) = \sigma_e^2/(1-\rho^2).$
- We need to try and transform the equation so we have no serial correlation in the errors.

Correcting for S.C. (continued)

- Consider that since $y_t = \beta_0 + \beta_1 x_t + u_t$, then $y_{t-1} = \beta_0 + \beta_1 x_{t-1} + u_{t-1}$.
- If you multiply the second equation by ρ , and subtract if from the first you get:

 $y_t - \rho y_{t-1} = (1 - \rho)\beta_0 + \beta_1(x_t - \rho x_{t-1}) + e_t,$ since $e_t = u_t - \rho u_{t-1}$.

 This quasi-differencing results in a model without serial correlation.

Feasible GLS Estimation

- Problem with this method is that we don't know ρ, so we need to get an estimate first.
- Can just use the estimate obtained from regressing residuals on lagged residuals.
- Depending on how we deal with the first observation, this is either called Cochrane-Orcutt or Prais-Winsten estimation.

Feasible GLS (continued)

- Often both Cochrane-Orcutt and Prais-Winsten are implemented iteratively.
- This basic method can be extended to allow for higher order serial correlation, AR(q).
- Most statistical packages will automatically allow for estimation of AR models without having to do the quasidifferencing by hand.

Serial Correlation-Robust Standard Errors

- What happens if we don't think that the regressors are all strictly exogenous?
- It's possible to calculate serial correlationrobust standard errors, along the same lines as heteroskedasticity robust standard errors.
- Idea is that want to scale the OLS standard errors to take into account serial correlation.

Serial Correlation-Robust Standard Errors (continued)

Estimate normal OLS to get residuals, root MSE.
Run the auxiliary regression of x_{t1} on x_{t2}, ..., x_{tk.}
Form â_t by multiplying these residuals with û_{t.}
Choose g – say 1 to 3 for annual data, then

$$\hat{v} = \sum_{t=1}^{n} \hat{a}_{t}^{2} + 2\sum_{h=1}^{g} \left[1 - h / (g+1) \left(\sum_{t=h+1}^{n} \hat{a}_{t} \hat{a}_{t-h} \right) \right]$$

and $se(\hat{\beta}_{1}) = \left[SE / \hat{\sigma} \right]^{2} \sqrt{\hat{v}}$, where *SE* is the usual OLS standard error of $\hat{\beta}_{i}$