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Chap.3 Covariance Structure and Robust Covariance Estimation 
 
When assumption A1.1 is abandoned, what is a covariance structure in a panel data 
context? Two different types of correlation must be considered: correlation among 
cross-sections and serial correlation, as in traditional time series analysis. At the same 
time, two different types of heteroscedasticity also must be considered: cross-sectional 
heteroscedasticity and period heteroscedasticity. Moreover, fixed and random effects are 
two different alternative ways of considering covariance structures. They can not be 
combined. 
 
3.1 Heteroscedasticity and Cross-Sectional Correlation in fixed effects 

models 

1) General structure of disturbance Covariance Matrix 
First, recall (1.55), the specification organized as a set of individual-specific 

equations: 

( ) ( )nT n T n TY i X I i u i Iα β γ ε= + + ⊗ + ⊗ +  

where the general form of the disturbance covariance matrix is given by 
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If instead we treat the specification as a set of period-specific equations, the stacked 
(by period) representation is given by 

( ) ( )                       (3.2)nT n T n TY i X i I u I iα β γ ε= + + ⊗ + ⊗ +  

and its disturbance matrix is given by 
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2) Cross-sectional heteroscedasticity 
Cross-sectional heteroscedasticity allows for a different disturbance variance for each 

cross-section, constant over time with zero covariance, thus 

( )2 2, ,it i i iE X uε γ σ=  for all t , 1, ,i n= "                   (3.4) 

( ) 2, ,i i i i i TE X u Iε ε γ σ′ =                                   (3.5) 

and 
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( )2 2
1 , , n TV diag Iσ σ= ⊗…                                 (3.6) 

FGLS for this specification is straightforward. First we perform preliminary estimation 
of the within transformed model obtain individual-specific residual: 

( )ˆ w
it it ity Xε β∗ ∗ ∗′= −                                       (3.7) 

Then we use these residuals to form estimates of the cross-sectional variances: 

2 2

1

1 ˆˆ         ( 1, , )
T

i it
t

i n
T

σ ε ∗

=

= =∑ "                       (3.8) 

So that we have a weighted least squares procedure to form the FGLS estimates: 

( ) 11 1
2 2

1 1

1 1ˆ̂ ˆ ˆ
ˆ ˆ

n n

i i i i
i ii i

X V X X V Y X X X Yβ
σ σ

−
− −

= =

⎛ ⎞⎛ ⎞′ ′′ ′= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑           (3.9) 

3) Period heteroscedasticity 
Here we assume that the variances are different from one period to another but 

constant over cross-sections for a given period. Again zero covariances are assumed 
between different cross sections. Therefore: 

( )2 2, ,it t t tE X uε γ σ=  for all i , 1, ,t T= "                    (3.10) 

( ) 2, ,t t t t t nE X u Iε ε γ σ′ =                                    (3.11) 

Denote ( )2 2
1 , , Tdiag σ σΛ = … , we have 

( ), , , nV diag I= Λ Λ Λ = ⊗Λ…                            (3.12) 

We perform preliminary estimation to obtain period-specific residual itε
∗ , then we use 

these residuals to form estimates of the period variances: 

2 2

1

1 ˆˆ         ( 1, , )
n

t it
i

t T
n

σ ε ∗

=

= =∑ "                            (3.13) 

and form the FGLS estimates: 

( ) 11 1 1 1

1 1

ˆ̂ ˆ ˆ ˆ ˆ
n n

i i i i
i i

X V X X V Y X X X Yβ
−

− − − −

= =

⎛ ⎞⎛ ⎞′ ′′ ′= = Λ Λ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑            (3.14) 

4) Contemporaneous Correlation (Cross-Sectional Correlation) 
In this case, 

( )
( )

, ,                                             (3.15)

, , , , 0                                   (3.16)

it jt t t ij

is jt t s t s

E X u

E X X u

ε ε γ σ

ε ε γ γ

=

=
 

for all , ,i j s  and t with s t≠ . Note that the contemporaneous covariances do not vary 
over t . Using the period-specific disturbance vectors, we may rewrite this assumption as: 
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( ), ,t t t t nE X uε ε γ′ = Σ  for all t                    (3.17) 

where 
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                            (3.18) 

and  

( )ij T n TV I Iσ= = Σ ⊗                              (3.19) 

Since it involves covariances across cross-sections as in a seemingly unrelated 
regressions type framework discussed in Chap.2, we term it a cross-section SUR 
specification, the FGLS estimation for this specification is similar to that for SUR model we 
discussed in Chap.2. 

5) Period SUR (Period Heteroscedasticity and Serial Correlation) 
In this case, 

( )
( )

, ,                                            (3.20)

, , , , 0                                  (3.21)
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for all , ,i j s  and t with i j≠ . Note that the heteroscedasticity and serial correlation do 
not vary cross-sections. Using the individual-specific disturbance vectors, we may rewrite 
this assumption as: 

( ), ,i i i i TE X uε ε γ′ = Σ  for all i                     (3.22) 

where 
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                          (3.23) 

and 

n TV I= ⊗Σ                                       (3.24) 

We term this a period SUR specification since it involves covariances across periods 
within a given cross-section, as in a seemingly unrelated regressions framework with 
period specific equations. In estimating this specification, we employ residuals obtained 

form first stage estimates to form an estimate of TΣ . In the second stage, we perform 

FGLS, 

1 1
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ˆ̂ ˆ ˆ
n n

i T i i T i
i i

X X X Yβ − −

= =

⎛ ⎞⎛ ⎞′ ′= Σ Σ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑                        (3.25) 
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3.2 Cross-sectional heteroscedasticity and correlation tests in 

fixed model 

3.2.1 Testing for cross-sectional heteroscedasticity 
For testing the cross-sectional heteroscedasticity assumption in (3.5), the full set of the 
test strategies that we have used before is available. 

2 2
0 1: nH σ σ= ="  

i) LR Test 

We now assume ( )0,t X Nε Σ∼ , where ( )1, ,t t tnε ε ε ′= " , ( )2 2
1 , , ndiag σ σΣ = " . 

Taking logs and summing over the T periods gives the log-likelihood for the sample 

1

1

1ln ln 2 ln
2 2 2

T

t t
t

nT TL π ε ε−

=

′= − − Σ − Σ∑                  (3.26) 

in which,       1, ,it it ity X i nε β′= − = " . 

We can also carry out a likelihood ratio test discussed in cross-sectional 

heteroscedasticity (section 7.5 last term). Using ( )2 2
1 , , n TV diag Iσ σ= ⊗" , the 

log-likelihood function is 

2
2

1 1

1ln ln 2 ln
2 2 2

n n
i i

i
i i i

nT TL ε επ σ
σ= =

′
= − − −∑ ∑                  (3.27) 

and its concentrated form is 

2
1

1

ln ln 2 ln
2 2 2

n

c i
i

nT T nTL π σ
=

= − − −∑  

Under 0H , its concentrated form is 

2
10ln ln 2 ln

2 2 2
nT nT nTL π σ= − − −  

So 

( ) ( )2 2 2
1

1

ˆ ˆ ˆ ˆ2 ln ln ln ln 1
n a

oc c i
i

LR L L T n nσ σ χ
=

⎛ ⎞= − − = − −⎜ ⎟
⎝ ⎠

∑ ∼          (3.28) 

where 2 ˆ ˆˆ i i
i T

ε εσ
′

=  and 2 ˆ ˆˆ
nT
ε εσ
′

= , with all residuals computed using ML estimators. 

ii) LM Test 

( ) 1
LM g E H g

−
′= −⎡ ⎤⎣ ⎦                                     (3.29) 
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Under the null hypothesis ( )2 2 1, ,i i nσ σ= = " , the first derivative of the 

log-likelihood function with respect to this common 2σ  is 

2 2 4
1

ln 1
2 2

n
R

i i
i

L nT ε ε
σ σ σ =

∂ ′= − +
∂ ∑                           (3.33) 

Equating (3.33) to zero, we have 

2 2

1 1

1 1n n

i i i
i inT n

σ ε ε σ
= =

′= ==∑ ∑                            (3.34) 

Under the null hypothesis of equal variances, regardless of what the common restricted 

estimator of 2
iσ is, the first-order condition for equating ln L β∂ ∂  to zero will be the 

OLS normal equations. So we can use the LS residuals at the restricted solution to obtain 

2 1ˆ e e
nT

σ ′=  and 2 1ˆi i ie e
T

σ ′= . With these results in hand and using the estimate of the 

( )E H− , the LM statistic reduces to 
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⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞
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⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∑ ∼                 (3.35) 

Iii) Wald Test and Modified Wald Statistic 
With the unrestricted estimates, we may use the Wald statistic. If we assume normality, 

then we have ( )
4

2 2ˆvar i
iA

T
σσ = and the variances are asymptotically uncorrelated. 

Therefore , using 2ˆiσ to estimate 2
iσ  produces the sample statistic 

( )
1422 2

1

ˆ2ˆ
n

i
i

i
W

T
σσ σ

−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑                          (3.36) 

22

2
1

1
ˆ2

n

i i

TW σ
σ=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑                                 (3.37)                 

where the estimator of the common variance would be the pooled estimator from the first 
least squares. 

If the assumption of normally distributed disturbances is inappropriate, then neither 
the LM nor the LR test is usable. Moreover the Wald statistic defined aboved is also 
incorrect. It remains possible to construct a usable Wald statistic as below. 

Under the null hypothesis, the Wald statistic is 

( )
( )

22 2

2
1

ˆ

ˆ

n
i

i i

W
Var

σ σ

σ=

−
=∑                           (3.38) 

If the null hypothesis is correct,  

( )2 1
a

W nχ −∼ .                             (3.39) 

By hypothesis, 

2 2ˆlimp σ σ=                               (3.40) 

where 2σ̂  is the disturbance variance estimator from the pooled regression. Now we 

must reconsider ( )2ˆvar iσ , since 

2 2

1

1ˆ
T

i it
t

e
T

σ
=

= ∑                             (3.41) 
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It is a mean of T observations, as such, we can use 

( )22 2

1

1 1 ˆ
1

T

i it i
t

V e
T T

σ
=

= −
− ∑                      (3.42) 

to estimate ( )2ˆvar iσ . The modified Wald statistic is then 

( ) ( )
22 2

2

1

ˆ
1

n ai

i i

W n
V

σ σ
χ

=

−
= −∑ ∼                        (3.43) 

3.2.2 Testing for contemporaneous correlation 
For testing the hypothesis that the off-diagonal elements of Σ  are zero, there are 

three approaches. The likelihood ratio test is based on the statistic 

( ) ( )
2 2

. 11 2

ˆ ˆ ˆˆln ln ln ln
n a

hetero general i n ni

LR T T σ χ
−=

⎛ ⎞= Σ − Σ = − Σ⎜ ⎟
⎝ ⎠
∑ ∼         (3.44) 

where 2ˆiσ  are the estimates of 2
iσ  obtained from MLE of the cross-sectional 

heterosecdastic model and Σ̂  is the MLE in the unrestricted model. We can obtain the 

MLE from the iterating FGLS. 
The LM statistic is 

1
2

2 1

n i

ij
i j

LM T r
−

= =

= ∑∑                                      (3.45) 

where ijr  is the ij-th residual correlation coefficient. Here the appropriate basis for 

computing the correlations is the residuals from the iterating FGLS estimator in the 
cross-sectional heteroscedastic model. 
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3.3 Fixed and random-effects models with an AR(1) disturbance 

3.3.1 Balanced panels and AR(1) Process  

1) Fixed-effects models 

① Autocorrelation 
The preceding discussion deal with heteroscedasticity and cross-sectional correlation. 

Now we relax the assumption of nonautocorrelation and assume that 

( ), , , 0it js i j i jE X X u uε ε ′ =   if i j≠                         (3.46) 

In addition, we allow for autocorrelation within the cross-sectional units, That is 

1it i it itvε ρ ε −= +       1iρ <                          (3.47) 

where itv is a white noise with variance 2
viσ . 

( )
2

2
2var ,

1
vi

it i i i
i

X u σε σ
ρ

= =
−

                            (3.48) 

In such a case, 

( )
( )

( )

2

2 2
1 1

,                                                         (3.49)

, , , 0                                                   (3.50)

, ,                           

i i i i i i

i j i j i j

n n

E X u

E X X u u

V diag

ε ε σ

ε ε

σ σ

′ = Ω

′ =

= Ω Ω"                       (3.51)

For FGLS estimation of the model, suppose that ˆiρ  is a consistent estimator of iρ , then 

we can transformed the data using the Prais-Winsten transformation: 
2

1

ˆ1       1
ˆ       2

it i

it i it

Y t
Y Y t

ρ
ρ

∗

−

= − =

= − ≥
                                (3.52) 

and similarly for each explanatory variable. The transformation has now removed the 
autocorrelation. As such, the cross-section heteroscedastic model applies to the 
transformed data, as described earlier, we have 

2 ˆ ˆ
ˆ i i

vi T
ε εσ
∗ ∗′

=                                          (3.53) 

2
2

2

ˆˆ
ˆ1

vi
i

i

σσ
ρ

=
−

 

where îε
∗  is the residual vector of unit i  in this regression. Now the remaining question 

is how to obtain the estimates ˆiρ . The model is first estimated by the standard 

covariance method (within transformation), from the residuals ie∗ , a conventional 
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estimator of iρ  is given by 

2
1

2 1

ˆ
T T

i it it it
t t

e e eρ ∗ ∗ ∗
−

= =

=∑ ∑                                (3.54) 

If the disturbances have a common stochastic process with the same iρ , then several 

estimators of the common ρ  are available. One of them is 

2
1

1 2 1 2

ˆ
n T n T

it it it
i t i t

e e eρ ∗ ∗ ∗
−

= = = =

= ∑∑ ∑∑                           (3.55) 

 

② Autocorrelation and cross-sectional correlation 
According to (3.26), if we wish to allow for cross-sectional correlation across units, 

then the variance matrix in (3.1) would be ( ) ( )ij ijE Xεε σ′ = Ω . 

We may further assume that (for convenience sake, the conditions are omitted) 

( ),
ijit jt vCov v v σ= , therefore we have 

( ) ( )( )
( ) ( )

1 1

1 1              

it jt i it it j jt jt

i j it jt it jt

E E v v

E E v v

ε ε ρ ε ρ ε

ρ ρ ε ε

− −

− −

⎡ ⎤= + +⎣ ⎦

= +
                    (3.56) 

We can get the diagonal elements of matrix ij ijσ Ω , that is 
1

ijv

i j

σ

ρ ρ−
. At the same 

time, we have 

( ) ( )( )
( ) ( )

1 2 1 1

2 1 1 1                

it jt i it it j jt jt

i j it jt j it jt

E E v v

E E v v

ε ε ρ ε ρ ε

ρ ρ ε ε ρ

− − − −

− − − −

⎡ ⎤= + +⎣ ⎦

= +
                (3.57) 

And We can get the off-diagonal elements of matrix ij ijσ Ω , that is 
1

ijv
j

i j

σ
ρ

ρ ρ−
. On 

the analogy of this, we have  

2 1

2

1 2 3

1               

     1           
1               

     1

ij

T
j j j

T
v i j j

ij ij
i j

T T T
i i i

ρ ρ ρ
σ ρ ρ ρ

σ
ρ ρ

ρ ρ ρ

−

−

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟

Ω = ⎜ ⎟− ⎜ ⎟
⎜ ⎟
⎝ ⎠

"

"
# "

"

                  (3.58) 

The Parks method is FGLS for panel data models where the disturbances show 

heteroscedasticity、autocorrelation and cross-sectional correlation .Initial estimates of iρ  
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are required, as before. The Prais-Winsten transformation renders all the block in 
V diagonal. Therefore, the model of cross-sectional correlation in (3.24) applies to the 

transformed data. Estimates of 
ijε

σ  can be obtained from the least squares residual 

covariances obtained from the transformed data: 

ˆ
ˆ

ˆ ˆ1
ij

ij

v

i j
ε

σ
σ

ρ ρ
=

−
                               (3.59) 

where , ˆ
ijv i je e Tσ ∗ ∗′= . ie∗ and je∗  are respectively the least squares residual vectors of 

unit i and j . 
The Parks method consists of two sequential FGLS transformations, first eliminating 

serial correlation of the disturbances then eliminating contemporaneous correlation of the 
disturbances. This is done by initially estimating within model by OLS. The residuals from 
this estimation are used to estimate the individual serial correlation of the disturbances, 
which are then used to transform the model into one with serially independent 
disturbances. Residuals from this estimation are then used to estimate the 
contemporaneous correlation of the disturbances, and the data is once again transformed 
to allow for OLS estimation with now spherical disturbances. 

2) Random-effects models   

The variance components model we discussed in Chap.1 assume that the only 
correlation over time is due to the presence in the panel of the same individual over 
several periods. This equicorrelation coefficient is given by 

( ) ( )2 2 2,it is u ucorr εη η σ σ σ= +  for t s≠ . Note that it is the same no matter how far t is 

from s. This may be a restrictive assumption for economic relationships. Lillard andWillis 
(1978) generalized the error component model to the serially correlated case, by 

assuming that the remainder disturbances (the itε ) in model (1.34) follow an AR(1) 

process: 

it it i itY X uδ β ε′= + + +  , it i ituη ε= +               (3.60) 

, 1it i t itvε ρε −= +                                  (3.60’) 

 

where 1ρ < , ),0(~ 2
vit IIDv σ ; The ),0(~ 2

ui IIDu σ , iu  are independent of the itε  

and ( ))1,0(~ 22
0 ρσε −vi IID . Baltagi and Li (1991a) derived the corresponding Fuller 

and Battese (1974) transformation for this model. First, one applies the Prais–Winsten 
(PW) transformation matrix: 
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( )1 221 0 0 0 0 0

1 0 0 0 0

0 0 0 1 0
0 0 0 0 1

C

ρ

ρ

ρ
ρ

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎣ ⎦

"

"
# # # " # # #

"
"

 

to transform the remainder AR(1) disturbances into serially uncorrelated classical errors. 
For panel data, this has to be applied for n individuals. The transformed regression 
disturbances are in vector form 

( ) ( ) ( )*
n n T nI C I Ci u I Cη η ε= ⊗ = ⊗ + ⊗              (3.61) 

Using the fact that ( )1T TCi iαρ= − , where ( )1,T Ti iα α′
−′= and ( ) ( )1 1α ρ ρ= + − , one 

can rewrite (3.61) as 

( )( ) ( )1 n T nI i u I Cαη ρ ε∗ = − ⊗ + ⊗                (3.62) 

Since ( ) 2
i i v TE C C Iε ε σ′ ′ ＝  , ( ) ( )n nE I C I Cεε ′ ′⊗ ⊗⎡ ⎤⎣ ⎦  = 2

v nTIσ ;The variance–covariance 

matrix of the transformed disturbances is 

( ) ( )2* 2 21u n T T v nTE I i i Iα αη η σ ρ σ′∗ ∗′ ⎡ ⎤Ω = = − ⊗ +⎣ ⎦  

 Alternatively, this can be rewritten as 

( )2* 2 2 2 21u n T T v nTd I i i d Iα ασ ρ σ′⎡ ⎤Ω = − ⊗ +⎣ ⎦                (3.63) 

where ( )2 2 1T Td i i Tα α α′= = + − . This replaces T T TJ i iα α α′= by 2
Td J α , its idempotent coun- 

terpart, where 2
T T TJ i i dα α α′= . Extending the Wansbeek and Kapteyn trick, we replace 

TI  by T TE Jα α+ , where T T TE I Jα α= − . Collecting terms with the same matrices, one 

obtains the spectral decomposition of *Ω , 

( ) ( )* 2 2
n T v n TI J I Eα α

ασ σΩ = ⊗ + ⊗                     (3.64) 

where ( )22 2 2 21u vdασ σ ρ σ= − + . Therefore 

( )( ) ( ) ( )1 2
v v n T n T nT n TI J I E I I Jα α α

α ασ σ σ θ∗−Ω = ⊗ + ⊗ = − ⊗            (3.65) 

where ( )1 vα αθ σ σ= − . 

Premultiplying the PW transformed observations ( )nY I C Y∗ = ⊗  by 1 2
vσ

∗−Ω  one 

gets 1 2
vY Yσ∗∗ ∗− ∗= Ω . The typical elements of 1 2

vY Yσ∗∗ ∗− ∗= Ω  are given by 
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( )* * *
1 2, , ,i i i i iT iY b Y b Y bα α αθ α θ θ ′− − −"                    (3.66) 

where ( )* * 2
1 2

T
i i itb Y Y dα⎡ ⎤= +⎢ ⎥⎣ ⎦∑ for 1, ,i n= " . The first observation gets special 

attention in the AR(1) error component model. First, the PW transformation gives it a 

special weight 21 ρ− in *Y . Second, the Fuller and Battese transformation gives it a 

special weight ( ) ( )1 1α ρ ρ= + −  in computing the weighted average ib  and the 

pseudo-difference in (3.66). Note that (i) if 0ρ = , then 2 2 2 21, , ud T Tα εα σ σ σ= = = + and 

αθ θ= . Therefore, the typical element of itY ∗∗  reverts to the familiar 

( )it iY Yθ− transformation for the one-way error component model with no serial 

correlation. (ii) If 2 0uσ =
 
 then 2 2

vασ σ= and 0αθ = . Therefore, the typical element of 

**
itY reverts to the PW transformation *

itY . 

The above estimators of the variance components arise naturally from the spectral 

decomposition of *Ω . In fact, ( ) ( )* 2~ 0,n T v n TI E I Eα αη σ ⎡ ⎤⊗ ⊗⎣ ⎦ and 

( ) ( )* 2~ 0,n T n TI J I Jα α
αη σ ⎡ ⎤⊗ ⊗⎣ ⎦  and 

( ) ( )2 * *ˆ 1v n TI E n Tασ η η′= ⊗ −  and ( )2 * *ˆ n TI J nα
ασ η η′= ⊗        (3.67) 

provide the above estimators of 2
vσ  and 2

ασ , respectively. Baltagi and Li (1991a) 

suggest estimating ρ from Within residuals itε�  as 

2
, 1 , 11 1 1 2

n T n T
it i t i ti t i t

ρ ε ε ε− −= = = =
= ∑ ∑ ∑ ∑� � � � . Then, 2ˆvσ  and 2ˆασ  are estimated from (3.67) by 

substituting OLS residuals *η̂  from the PW transformed equation using ρ� . Using Monte 

Carlo experiments, Baltagi and Li (1997) found that ρ�  performs poorly for small T and 

recommended an alternative estimator of ρ  which is based on the autocovariance 

function ( ),s it i t sQ E η η −= . For the AR(1) model given in (3.60), it is easy to show that 

( ) ( )0 2 0 11 Q Q Q Qρ + = − − . Hence, a consistent estimator of ρ  (for large n ) is given 

by 

0 2 1 2

0 1 0 1

ˆ 1Q Q Q Q
Q Q Q Q

ρ − −
= − =

− −

� � � �
� � � �  



6 

where ( ),1 1
ˆ ˆn T

s it i t si t s
Q n T sη η −= = +

= −∑ ∑� and ˆitη denotes the OLS residuals on (3.60). 

2ˆvσ  and 2ˆασ  are estimated from (3.67) by substituting OLS residuals *η̂ from the PW  

transformed equation using ρ̂  rather than ρ� . 

    Therefore, the estimation of an AR(1) serially correlated error component model is 
considerably simplified by (i) applying the PW transformation in the first step, as is usually 
done in the time-series literature, and (ii) subtracting a pseudo-average from these 
transformed data as in (3.66) in the second step. 

3 ) The Durbin–Watson Statistic for Balanced Panel Data 

For the fixed effects model described in (1.22) with itε  following an AR(1) process, 

Bhargava, Franzini and Narendranathan (1982), hereafter BFN, suggested testing for 

0 : 0H ρ =  against the alternative that 1ρ < , using the Durbin–Watson statistic only 

based on the Within residuals (the ite ) rather than OLS residuals: 

( )2 2
, 1

1 2 1 1

n T N T

p it i t it
i t i t

d e e e−
= = = =

= −∑∑ ∑∑                    (3.68) 

BFN showed that for arbitrary regressors, pd is a locally most powerful invariant test in 

the neighborhood of 0ρ = . They argued that exact critical values are both impractical 

and unnecessary for panel data since they involve the computation of the nonzero 
eigenvalues of a large nT nT× matrix. Instead, BFN show how one can easily compute 

upper and lower bounds of pd , and they tabulate the 5% levels for n = 50, 100, 150, 250, 

500, 1000, T = 6, 10 and k = 1, 3, 5, 7, 9, 11, 13, 15. BFN remark that pd  would rarely be 

inconclusive since the bounds will be very tight even for moderate values of N. Also, for 
very large n, BFN argue that it is not necessary to compute these bounds, but simply test 

whether pd  is less than two when testing against positive serial correlation. 

3.3.2 Unbalanced panels and AR(1) Process  

Consider a linear panel-data model described as follows.  

it it i itY X uα β ε′= + + +  1, ,i n= " ; 1, , it T= "                            （3.69） 

1it it itvε ρε −= +  

The data can be unbalanced and unequally spaced. Specifically, the dataset contains 
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observations on individual i  at times ijt for 1, , ij n= " .The difference 1ij ijt t −− plays an 

integral role, for instance if you have quarterly data, the  “time” difference between the 
third and fourth quarter must be 1 month not 3. 

1) Estimating ρ  

The estimate of ρ is always obtained after removing the group means. Let 

ij ijit it iY Y Y= −� , .ij i jit it iX X X= −�  , and 
ij ijit it iε ε ε= −� �  

where .
1 1 1

1 1 1, , ,
i i i

ij ij ij

n n n

i it i it i it
t t ti i i

Y Y X X
n n n

ε ε
= = =

= = =∑ ∑ ∑  

We can get the estimates of ρ  by running  a regression  on 

                     it it itY X β ε′= +� � �                                   （3.70） 

 After estimating ρ , Baltagi and Wu(1999) derive a transformation of the data remove 

the AR(1) component. The transformed 
ijitY can be written as 

( )

( ) ( )

( )

( )

, 1

, 1, 1 , 1

1 22

1 21 2 2
1 22

, ,2 2

1 1

11 1
1 1

ij

ij i j
ij

ij i jij i j ij i j

it ij

t t
it

i t i t ijt t t t

Y if t

Y
Y Y if t

ρ

ρρ
ρ ρ

−

−− −

∗ −

− −

⎧ − =
⎪
⎪ ⎡ ⎤= ⎧ ⎫⎧ ⎫⎨ ⎪ ⎪ ⎪ ⎪⎢ ⎥− − >⎪ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ − −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦⎩

 

                                                                     （3.71） 
Using the analogous transform on the independent variables generates transformed 

data without the AR(1) component. Performing simple OLS on the transformed data 

leaves behind the residuals *v . 

2) The within estimator of the fixed-effects model 
To obtain the within estimator, we must transform the data come from the AR(1) 

transform. For the within transform to remove the fixed effects, the first observation of 
each panel must be dropped. Specifically, let 

.

1

. 1

1

ij ij

ij ij

ij ij

it it i

it it i

it it i

Y Y Y Y j

X X X X j

jε η ε ε

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

= − + ∀ >

= − + ∀ >

= − + ∀ >

�

�

�
                                      （3.72） 

where 2

1

i

ij

n
itj

i
i

Y
Y

n

∗
=∗ =
−

∑
 ,

( )
1 2

1
1

i

ij

n n
iti j

n
ii

Y
Y

n

∗
= =∗

=

=
−

∑ ∑
∑

 

      2
. 1

i

ij

n
itj

i
i

X
X

n

∗
=∗ =
−

∑
, 

( )
1 2

1

.
1

i

ij

n n
iti j

n
ii

X
X

n

∗
= =∗

=

=
−

∑ ∑
∑
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2

1

i

ij

n
itj

i
in

ε
ε

∗
=∗ =
−

∑
,  

( )
1 2

1
1

i

ij

n n
iti j

n
ii

n

ε
ε

∗
= =∗

=

=
−

∑ ∑
∑

 

The within estimator of the fixed-effects model is then obtained by running OLS on 

ij ij ijit it itY Xα β ε′= + +
� � �

                                 (3.73) 

3)The Baltagi-Wu GLS estimator of the random-effects model 

The residuals *v  can be used to estimate the variance components. Translating the 

matrix formulas given in Baltagi and Wu(1999) into summations yields the following 
variance-components estimators: 

( )
( )

( ) ( )
( )

( )

2
*

2

1

2
*

* *
1 1

2

1

ˆ

ˆ
1

n i i

i i i

i in n
i ii i

i i

n
ii

v g

g g

v g
v v

g g

n

ω

ε

σ

σ

=

= =

=

′
=

′

⎡ ⎤⎧ ⎫′⎢ ⎥⎪ ⎪′ − ⎨ ⎬⎢ ⎥′⎪ ⎪⎢ ⎥
⎩ ⎭⎣ ⎦=

−

∑

∑ ∑

∑

 

( )
( )

( )

2
*

2
1

2

1

ˆ

ˆ

i in

i
i i

u n
i ii

v g
n

g g

g g

εσ

σ

=

=

⎡ ⎤⎧ ⎫′⎢ ⎥⎪ ⎪
−⎨ ⎬⎢ ⎥′⎪ ⎪⎢ ⎥

⎩ ⎭⎣ ⎦=
′

∑

∑
 

where  

( ){ }
( ){ }

( ){ }
( ){ }

, , 1,2 ,1

,2 ,1 , , 1

1 1
2 22 2

11
1, , ,

1 1

i n i ni ii i

i i i n i ni i

t tt t

i
t t t t

g
ρρ

ρ ρ

−

−

−−

− −

′⎡ ⎤
⎢ ⎥−−
⎢ ⎥=
⎢ ⎥
⎢ ⎥− −
⎣ ⎦

"  

and iv∗  is the 1in ×  vector of residuals from v∗  that correspond to person i . 

Then 

                              
ˆˆ 1
ˆ

u
i

iw
σθ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

                           （3.74） 

where  

2 2 2ˆ ˆ ˆi i i uw g g εσ σ′= +  

With these estimated in hand, we can transform the data via 
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*
** * 1

2
1

ˆ
i

is

ij ij i

n
is its

it it i ij n
iss

g z
z z g

g
θ =

=

= − ∑
∑

 

for { },z Y X∈ . 

 
4) The test statistics 

The Baltagi-Wu LBI is the sum of terms 

                       * 1 2 3 4d d d d d= + + +                            （3.75） 

where 

( ){ }

( ){ }

, 1 ,

, 1

1

2

, 11 1
1 2

1 1

21 2
, 11 1

2 2
1 1

2
1

3 2
1 1

1

1 1

i

i j i j

i

ij

i

i j

i

ij

i

i

ij

n n
it it ij i ji j

n n
iti j

n n
it ij i ji j

n n
iti j

n
iti

n n
iti j

z z I t t
d

z

z I t t
d

z

z
d

z

−

−

−= =

= =

−

−= =

= =

=

= =

− − =
=

− − =
=

=

∑ ∑
∑ ∑

∑ ∑
∑ ∑

∑
∑ ∑

� �

�

�

�

�

�

 

2
1

4 2
1 1

ini

i

ij

n
iti

n n
iti j

z
d

z
=

= =

=
∑

∑ ∑
�

�
 

( )I is the indicator function that takes the value of 1 if the condition is true and 0 

otherwise. The 
ijitz� are residuals from the within estimator. 

Baltagi and Wu(1999) also show that 1d  is the Bhargava et al. Durbin-Watson 

statistic modified to handle eases of unbalanced panels and unequally spaced data. 
 

3.4 Heteroscedasticity in the RE Model 
In this section, we relax the assumption of homoscedasticity of the disturbances and 

introduce heteroscedasticity through the iu  as first suggested by Mazodier and Trognon 

(1978). Next, we suggest an alternative heteroscedastic variance components 

specification, where only the itε  are heteroscedastic. 

3.4.1 The iu  are heteroscedastic 

For  model (1.34), we assume: 

( )20,i uiu σ∼  for 1, ,i n= " , ( )20,it iid εε σ∼ for 1, ,i n= " , 1, ,t T= "  
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In vector form ( )0, uu Σ∼ ,where ( )2
u uidiag σΣ =  is a diagonal of n n× , and 

( )20, nTIεε σ∼ .Using ( )n TI i uη ε= ⊗ + ,the resulting variance matrix of the 

disturbances is given by 

( ) ( ) ( )2 2
ui T TV E diag J diag Iεηη σ σ′= = ⊗ + ⊗               (3.76) 

where ( )2diag εσ is also of dimension n n× , T T TJ i i′= . (3.76) can be rewritten as  

( ) ( )2 2 1
i T T TV diag J T diag I J

Tετ σ ⎛ ⎞= ⊗ + ⊗ −⎜ ⎟
⎝ ⎠

            (3.77) 

with 2 2 2
i uiT ετ σ σ= + . Thus, we have 

( )
1
2 1 1

i T n T TV diag J I I J
T Tε εσ σ τ

− ⎛ ⎞= ⊗ + ⊗ −⎜ ⎟
⎝ ⎠

             (3.78) 

Hence, 
1
2Y V Yεσ

−∗ = has a typical element it it i iy y yθ∗ = − ,where ( )1i iεθ σ τ= −  for 

1, ,i n= " . 

3.4.2 The itε  are heteroscedasticity 

For  model (1.34), we assume: 

( )20,i uu iid σ∼ , ( )20,it iεε σ∼ , using ( )n TI i uη ε= ⊗ +  we get  

( ) ( ) ( )2 2
u T i TV E diag J diag Iεηη σ σ′= = ⊗ + ⊗                     (3.79) 

which can be rewritten as 

( ) ( )2 2 21 1
u i T i TV diag T J diag I J

T Tε εσ σ σ ⎛ ⎞= + ⊗ + ⊗ −⎜ ⎟
⎝ ⎠

             (3.80) 

and 

( ) ( )
1
2 1 11 1i T i T TV diag J diag I J

T Tετ σ
− ⎛ ⎞= ⊗ + ⊗ −⎜ ⎟

⎝ ⎠
              (3.81) 

and 
1
2Y V Y

−∗ =  has a typical element 

( ) ( )it i i it i iy y y y ετ σ∗ = + −                         (3.82) 

upon rearranging terms, we get 

( )1
it it i i

i

y y y
ε

θ
σ

∗ = −                                (3.83) 
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where 1i i iεθ σ τ= − . 

How to implement the FGLS estimation? When 2
iεσ  and 2

uiσ  are unknown, by 

replacing the unknown true values with their estimates, a feasible GLS estimator can be 

implemented. Unfortunately, with a single realization of iu , there is no way one can get a 

consistent estimator for 2
uiσ  even when T →∞ . The conventional formula 

2 2 21ˆˆ ˆ ,        1, ,ui i i i n
T εσ η σ= − = "                          (3.84) 

where îtη  is the initial estimate of itη  (say, the least-square or LSDV estimated residual 

of (1.34), the 2ˆuiσ converges to 2
iu , not 2

uiσ . However, 2
iεσ  can be consistently 

estimated by 

( )22

1

1 ˆ ˆˆ
1

T

i it i
tTεσ η η
=

= −
− ∑                                (3.85) 

as T →∞ . In the event that 2 2
ui uσ σ=  for all i, we can estimate 2

uσ  by taking the 

average of (3.84) across i as their estimates. 
It should be noted that when T is finite, there is no way we can get consistent 

estimates of 2
iεσ  and 2

uiσ  even when n →∞ . Phillips(2003) argues that this model 

suffers from the incidental parameters problem and the variance estimates of iu (the 2
uiσ ) 

cannot be estimated consistently. So there is no guarantee that FGLS and true GLS will 

have the same asymptotic distributions. However, if 2 2
ui uσ σ=  for all i, then we can get 

consistent estimates of 2
iεσ  and 2

uσ  when both n and T tend to infinity. Substituting 2ˆ iεσ  

and 2ˆuσ  for 2
iεσ  and 2

uσ  in (3.79), we obtain its estimation V̂ . 

Alternatively, one may assume that the conditional variance of iu  conditional on iX  

has the same functional form across individuals, ( ) ( )2
i i iVar u X Xσ= , to allow for the 

consistent estimation of heteroscedastic variance, 2
uiσ . The FGLS estimator of β  is 

asymptotically equivalent to the GLS estimator when both n and T approach to infinity. LI 
and Stengos(1994) considered the regression model given by (1.34) and (1.35) with 

( )20,i uu iid σ∼  and ( ) 0it itE Xε =  with ( ) ( )var it it it itX r X rε = = . Therefore 
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( )2 2
it it u itE X rη σ= + , and the proposed estimator of 2

uσ  is given by 

( )
2 1

ˆ ˆ
ˆ

1

n T

it is
i t s

u nT T

η η
σ = ≠=

−

∑∑
 

where îtη  denotes the OLS residual.  Also 

,
1 1 2

,
1 1

ˆ
ˆ ˆ

n T

is it js
j s

it un T

it js
j s

k
r

k

η
σ= =

= =

= −
∑∑

∑∑
 

where the kernel function is given by ,
it js

it js

X X
k K

h
′ ′−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 and h is the smoothing 

parameter. These estimators of the variance components are used to construct a feasible 

adaptive GLS estimator of β  which they denote by GLSAD. 
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3.5 Robust Estimators 
3.5.1 Robust Coefficient Covariances Estimators 

   In this section, we describe the basic features of the various robust estimators, for 
clarity focusing on the simple cases where we compute robust covariance for models 
estimated by standard OLS without cross-section or period effects. The extensions to 
models estimated using instrumental variables, fixed or random effects, and GLS 
weighted least squares are straight forward. 
1) White Robust Covariance 

The generic pooled model as follows: 

it it itY X β ε′= + , 1, ,i n= ; 1, ,t T=                       （3..86） 

where β  now includes the constant. We assume that the data are stacked by individual: 

i i iY X β ε= +    ( 1, ,i n= )                                  (3.87) 

    The ordinary least squares estimator of β  is  

( )

( )

1

1

1 1

1

1 1

1

1 1

ˆ

   

   

   

n n

i i i i
i i

n n

i i i i i
i i

n n

i i i i
i i

X X X Y

X X X Y

X X X X

X X X

β

β ε

β ε

−

−

= =

−

= =

−

= =

′ ′=

⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦

⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦

⎡ ⎤′ ′= + ⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

∑ ∑

 

            ( ) ( ) ( )( )1 1ˆvar X X XVX X Xβ − −′ ′=                               (3.88) 

The true asymptotic covariance matrixes 

( )
1 1

1 1

1 1 1

1ˆvar lim lim lim

1 1 1 1               lim lim lim
n n n

i i i i i i i
i i i

X X X VX X XA p p p
nT nT nT nT

p X X p X X p X X
nT nT nT nT

β
− −

− −

= = =

′ ′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′= Ω⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑
 

                                                           （3.89） 
As before, the center matrix must be estimated by an appropriate method, so as to 

obtain consistent covariance estimator .  
i) White Period Method 
    Suppose there are arbitrary serial correlation and time-varying variances in the 
disturbances. The White period robust  coefficient covariance estimator is: 

1 1

1 1 1

ˆ ˆ
n n n

i i i i i i i i
i i i

n X X X X X X
n k

ε ε
− −∗

∗ ∗
= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′ ′⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑              (3.90) 
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The White period robust coefficient variance estimator obtains from the regression that 

allows the unconditional variance matrix ( )i i TE ε ε ′ = Σ  to be unrestricted, and the 

conditional variance matrix ( )i i iE Xε ε ′  may depend on iX  in general fashion.For 

instance. we can estimate this matrix with   

1 1

1 1 1 ˆ ˆlim lim
n n

i i i i i i i
i i

p X X p X X
nT n T

ε ε
= =

⎛ ⎞′ ′ ′Ω =⎜ ⎟
⎝ ⎠

∑ ∑          

1 1 1

1 1 ˆ ˆ
n T T

it is it is
i t s

X X
n T

ε ε
= = =

⎛ ⎞′= ⎜ ⎟
⎝ ⎠
∑ ∑∑                           

   The results is a combination of the White and Newey-West estimator. In (3.90),the 
leading term is a degree of freedom adjustment depending on the total number of 

observations in the stacked data, n∗  is the total number of stacked observations, and 

k∗ , the total number of estimated parameters.  

ii) White cross-section method 
1 1

1 1 1

ˆ ˆ
T T T

t t t t t t t t
t t t

n X X X X X X
n k

ε ε
− −∗

∗ ∗
= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′ ′⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑              (3.91) 

This estimator is robust to contemporaneous correlation as well as different 
disturbance variances in each cross-section. Specifically, the unconditional 

contemporaneous variance matrix ( )t t nE ε ε ′ = Σ  is unrestricted, and the conditional 

variance matrix ( )t t tE Xε ε ′  can depend on tX  in arbitrary unknown fashion. 

iii) White diagonal method 
1 1

2

, , ,

ˆit it it it it it it
i t i t i t

n X X X X X X
n k

ε
− −∗

∗ ∗

⎛ ⎞ ⎛ ⎞⎛ ⎞
′ ′ ′⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑              (3.92) 

This method allows the unconditional variance matrix ( )E Vεε ′ =  to be an 

unrestricted diagonal matrix, and the conditional variance ( )2
it itE Xε  to depend on 

itX in general fashion. 

iv) The cluster estimator of the VCE (for Stata only) 

Stata has implemented an estimator of the VCE that is robust to the correlation of 
disturbances within groups and to not identically distributed disturbances. It is commonly 
refered to as the cluster-robust-VCE estimator, because these groups are known as 
clusters. Within-cluster correlation allows the matrix V in (3.88) to be block-diagonal,i.e, 
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1( , , )nV diag= Ω Ω , it allows the disturbances within each clusters to be with each 

other but requires that the disturbances from difference clusters be uncorrelated. 

  The cluster robust VCE estimator is: 

              ( ) ( )1 1

1

1
1

M

i i
i

n M X X X X
n k M

ωω
∗

− −

∗ ∗
=

⎛ ⎞− ′ ′ ′⎜ ⎟− − ⎝ ⎠
∑                       (3.93) 

Where M  is the number of clusters, 
1

ˆ
iT

i it it
t

Xω ε
=

=∑ , iT  is the number of observations in 

the i th cluster, îtε  is the t th residual from the  i th cluster,and itX is the column 

vector of regressors from the t th observation in the i th cluster. 

3.5.2. Ordinary Least Squares with Panel-Corrected Standard Errors. 

1) Assess Parks Method  

    The Parks method is FGLS for panel data models where the disturbances show panel 
heteroscedasticity, contemporaneous correlation, and individual specific serial correlation. 
The correlation for contemporaneous correlation of the disturbances automatically 
corrects for any panel heteroscedasticity, so we need only consider the corrections for 
contemporaneous and serial correlation of the disturbances here. 
    The Parks method consists of two sequential FGLS transformations, first eliminating 
serial correlation of the disturbances then eliminating contemporaneous correlation of the 
disturbances. This is done by initially estimating model (3.86) by OLS. We now consider 
the consequences of the two corrections separately. 
    The Parks correction for contemporaneously correlated disturbances cannot be used 
unless T is at least as big as n (Beck et al. 1993). But even when T is greater than n, so 
that FGLS can be used, estimation of standard errors is problematic unless T is 
considerably larger than n. Each element of the matrix of contemporaneous covariances 

of the covariances of the disturbances is estimated using, on average, 2T n  

observations. Many cross-national panel studies have ratios of T to n very close to 1, so 
covariances are being estimated with only slightly more than two observations per 
estimate!  

On the other hand, the FGLS correction for individual-specific serially correlated 
disturbances, used by Parks, is likely to cause serious underestimates of variability. The 

essence of the problem is that each iρ  is estimated using an autoregression based on 

only T observations. It is well known that such estimates are biased downward (Hurwicz  
1950). As a consequence, the Parks estimates, which correct based on these inaccurate 

autoregressions, may be inferior to OLS estimates. The underestimates of the iρ , when 
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combined with trending data, can cause the Parks estimates of standard errors to 
misestimate variability substantially. 
2) Panel-corrected standard errors (PCSE) 

If the disturbances in model (3.86) are not spherical ,then OLS estimates of β  will 

be consistent but inefficient; the degree of inefficiency depends on the data and the exact 
form of the disturbance process. The OLS standard errors will also be inaccurate, but they 
can be corrected so that they provide accurate estimated of the variability of the OLS 

estimates of β . This correction takes into account the contemporaneous correlation of 

the disturbances (and perforce heteroscedasticity). Any serial correlation of the 
disturbances must be eliminated before the panel-corrected standard errors are 
calculated.  

The correct formula for the sampling variability of the OLS estimated is given by the 
square roots of the diagonal terms of (3.88). If the disturbances obey the spherical 
assumption, this simplifies to the usual OLS formula, where the OLS standard errors are 

the square roots of the diagonal terms of ( ) 12ˆ X Xσ −′ , and 2σ̂  is the usual OLS 

estimator . If the disturbances obey the panel structure, then this formula provides 
incorrect standard errors. However,expression (3.79), can still be used, in combination 
with that panel structure of the disturbances, to provide accurate, panel-corrected 
standard errors (PCSEs). 
    For example, the Cross-section SUR (PCSE) method replaces the outer product of 
the cross-section residuals in equation (3.86) with an estimate of the cross-section 

residual (contemporaneous) covariance matrix nΣ : 

1 1

1 1 1

T T T

t t t n t t t
t t t

n X X X X X X
n k

− −∗

∗ ∗
= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′Σ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑          (3.94) 

Analogously, the Period SUR (PCSE) replaces the outer product of the period residuals in 

equation (3.77) with an estimate of the period covariance TΣ : 

1 1

1 1 1

n n n

i i i T i i i
i i i

n X X X X X X
n k

− −∗

∗ ∗
= = =

⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′Σ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑          (3.95) 

The two diagonal forms of these estimators, Cross-section weights (PCSE), and Period 

weights (PCSE), use only the diagonal elements of the relevant ˆ
nΣ and ˆ

TΣ . These 

covariance estimators are robust to heteroskedasticity across-sections or periods, 
respectively, but not to general correlation of residuals. 

We can compute either nondegree of freedom corrected version or 
n

n k

∗

∗ ∗−
 degree 

of freedom corrected versions of all the robust coefficient covariance estimators.  
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