1 Nonparametric Estimation of Panel Data Models

Aim: to develop the nonparametric and semiparametric estimation of both the fixed
and random effects panel data models which are robust to the misspecification in the

functional form.

e Pooled Kernel Estimation

Consider the nonparametric panel data model
yit:m(xit)+uita 221727777': t:1727"'7T' (1)

where y;; is the dependent variable, x; € R? is the row vector of explanatory variables
and u; is the error term, i.i.d. and satisfying Fluy|ry] = 0, V[u}|zy] = 0?(zy). The
data (y;, x;) are assumed to be i.i.d. The sample n is large and 7" is small. The function

m(-) is left unspecified, which is to be estimated. Ely;|zy = 2] = m(x).

1) Local Constant Nonparametric Estimator By a Taylor expansion,

Yie = m(z) + uy + O(|xy — x|) = m(x) + uy + O(|h])  with lim h =0,

which still is denoted as
Yir = m(x) + uq,
that is, the term O(|h|) is added with u; so that for large n it is still the case that the

conditional expectation of the combined error is zero. In a matrix form,

Y = lyrm(z) + u,

where
— ! __ / / /
Y = (yll,"' y Y1, Y21, Y21y 5 Ynly 7ynT) - (?prga"' 7yn>a
_ A O A /AY
U_(ull,"'7U1T7u217"'7u2T7"'7un17"'7unT) _<u17u27"'7 n)?

l,7 1s an nT x 1 vector of unit elements.

Minimize

n T
Tit — X
S (i —a)k ( = ) = (Y — aluy) K (2)(Y — alyr)
and obtain the local constant nonparametric estimator of m(z) :

D e 12:{19%]{ (w _x)
S i b (P57E)
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m(z) = = (b K (2)lr) " L K (2)Y,



where K () is the nT'xnT diagonal matrix with the diagonal elements K;; = k ((z — z)/h),
which is the kernel or weight function taking low values for z;; far away from x but high
values for z;; close to x. Therefore, the nonparametric estimate m(x) is the smoothed
average of y values which correspond to the x;; values in a small interval of = such that
(i = 2]) = O(lA).

Give nonparametric estimation of the derivatives of m(z) and the average deriv-
atives: ...... for details see Pagan and Ullah (1999: P164-173), “Nonparametric Econo-
metrics”, Cambridge University Press.

The pointwise estimator of the partial derivative of m(x) with respect to the
J-th regressor x;:

(i) numerical derivative:

B;(@) = [m(z + e;h) — m(x — e;h)]/(2h),

where e; = (0,---,0,1,0,---,0) with the j-th element being 1;
(ii) analytical derivative:

B,(x) = di(z)/0; = [09(x) /0x; —1n(2)d ] (x) 0,/ (),

where

= ok ()

i=1 t=1

T
0f (x)/0z; = nTth Z Z ky(l (xth >

=1 t=1
1 " T x
~ 1 it T
99(x)/0x; = o Thal Zzyitk](‘ ) (T)
=1 t=1

and krj(-l) (v) = 0k(v)/0v; with v = (vq,vs, ..., v,). The two estimators are approximately

the same, i.e. Bj(x) ~ Bj (x), since

om(z)

m(x £ejh) =m(xz)£h o

+ O(h?) = 1(z) £ hpB;(z) + O(h?).

The estimator of the average derivative B = Epf(x):

(i) A direct estimator for 8: § = > ST Blxy) or 4> ST Blay);
(ii) A average-based estimator by 0 = Ef(x) = —E[yf'(x)/f(z)]:

’ f
ﬂ:_nTZZ it

i=1 t=1
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The two average derivative estimators have the following asymptotic property:

Vi3 B) — N(0,2/T),

where

A_lnT o fl(xit)2 A 1nTA 2
Y= EZZ |:O'u($it) (m) + (ﬁ(xzt) — ﬁZZﬁ(iﬁ@) ] )

i=1 t=1
Optimal bandwidth for estimating m(x) and §(x): Note that

E((@)lza) = (oK (@)lr) LK (@)m”,

n

Vin(a)lza) = (LK @)he) ™ Q@) (G K (@)lr)

where m* = (m(z11),- -+ ,m(z,r))), Q(z) = K(x)X;K(z) and ¥, is a diagonal matrix
with the diagonal elements 02 (z;;) = E[u?|z;]. A similar argument to that in Chapter 2
(on the nonparametric estimation of regression function in cross-section case) can deduce
that

h2

E(m(z)) — m(x) = 5 h [m//(m) +om(z) f(x)

f(z)

} + o(h?)

V() = nzqﬂ';zfi?) o (nzq

R 2 2 @)(y m® () (2
Bli(a) - 8(e) = rn (o) - 2000) (L0 - L)) 4 2o

V@) = ;jf(?) [ 1w +o (nhlm)

for any given € Supp(X). Therefore, the optimal bandwidth that minimize the inte-
grated MSE of 1(z) and 3(x), respectively, are

ho = O(n~ Yy and  hy = O(n V@9,

For example, for ¢ = 1, hg = O(n™/?) and  h; = O(n~Y7). The asymptotic prop-

erties of the local constant nonparametric estimator m(x) requires that x € (Supp(X))?,



which behaves in the same way as in the cross-section case in Chapter 2. That is, the

estimator has a boundary effect. Hence necessity of the local linear estimator below.

2) Local Linear Nonparametric Estimator By a Taylor expansion,

Yir — m(x) + (xit — SC)B(SC) + Ui + O ((Q?lt — .'E)2)
= m(z) + (zi — 2)B(x) +uy + O(h*) with lim h =0,

n—oo

which still is denoted as

Yir = m(z) + (24 — z)B(x) + g,
that is, the term O(h?) is added with u; so that for large n it is still the case that the
conditional expectation of the combined error is zero. In a matrix form,

Y = Z(2)6(z) + u,

where
Z(x) is an nT x (¢ + 1) matrix with it-th element z; = (1, z; — x);
6(z) = (m(z),B(z)") is a (¢ + 1) x 1 parametric vector.
Minimize

= [ 'nT - (X - lnT ® x)b] K(x) {Y - alnT - <X - l”T ® :L‘)b]

: <Y_Z<x>(;>)'m(y_m(;))

with respect to a and b, and obtain the local linear nonparametric estimator of
5(z) = (m(x), Blx))":

n

S % (%)) S (57)

i=1 1

6(z) =

t=
= (Z'(2)K(2)Z(x))" 2 (2) K (2)Y,
where K (z) is defined as above. This amounts to doing LS of /K;y;; on /K;; and
VKii(xy — x). Then
m(z) = (1,0)6(z), PBlx) = (0,15)b(x).

For the poolablity of the panel data, see Badi H. Baltagi, Javier Hidalgo and Qi Li
(1996), “A nonparametric test for poolability using panel data”®Journal of Econometrics
75: 345-367.



e A Nonparametric Fixed Effects Estimator
The nonparametric panel data model is
Yir = @ + m(Ti) + Wi, (2)

where y;; is the dependent variable, z;; € R? is the row vector of explanatory variables,
«; is the individual fixed effects, and u; is the error term, i.i.d. and satisfying Flu|z] = 0,
Vullz) = 0% i=1,2,--- ,n;t=1,2,--- ,T. The function m(-) is left unspecified, which
is to be estimated.
Denote f(z) = Vm(z).By a Taylor expansion in (2),

Vi = o + m(z) + (24 — ) B(x) + wyy. (3)
Denote ;. = 7 Zt VYits Ti. = 7 Zt , Ty and U;. = % Zt L Wit From (3),

Ui = ai + m(z) + (T — 2)B(z) + (4)
which gives

Yie — Yi. = (T — 20.) B(x) + wip — Us. (5)
The local fixed effects estimator of #(x) can then be obtained by minimizing

z”: XT: (9 = 9. = (e = 20)B(2))" b (xt_h—x)

i=1 t=1

or in a matrix form
When ¢ = 1, the estimator is

D i Zthl (yit — ¥i) (@i — 23 )k (%) ‘

Bra(e) = =55
FE(m) Zi:l Z?:l(xit )Qk (Jht :c)
When ¢ > 1,
BFE<33)
- - it T - - d A
ZZ Lit — x” —Ti)k (thh I)] Zz<xit_.fi.>/ (Yir — 9i) k (xlth m)
i=1 t=1 i—1 i—1

or in a matrix form
Bpp(x) = (X' MpK (2)MpX) ™" X' MpK (z)MpY,
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where

X is an nT' X ¢ matrix;

D =1, ®Ir is an nT X n matrix, l7 is a T' x 1 vector of unit elements;

Mp =1—DD'/T, I is an nT x nT identity matrix;

K (z)is the nT' xnT diagonal matrix with the diagonal elements K;; = k ((x;; — x)/h),
which is the kernel or weight function taking low values for z;; far away from x but high
values for x; close to x.

The estimator BFE(l') is essentially the LS of /Ky (yir — %) on VKy(wy — 7).
If h = oo, then K;; = K(0) and the estimator becomes the parametric fixed effect

estimator. Conditional on z;, for any given x € Supp(X),
E(Bpp(x) = (X' MpK (2)MpX) ™' X'MpK (z) Mpm*
V(Brp(r)) = 02 (X'MpK (2)MpX) ™" (X' MpK*(z)MpX) (X'MpK (z)MpX) ™

where m* = (m(z11), -+ ,m(z,r))). A feasible estimator of V(35(x)) is obtained by
replacing o2 with s2 = S S°7 42 /(nT), where @, is the residual from the regression
in (5). By a Taylor expansion of m* with large n, we can get the asymptotic bias and
variance of B (). However, this, along with the asymptotic normality, still is an open
problem.

Note: Assume that the fixed effects satisfy >, a; = 0. Once B(x) is estimated,
from (4), the function m(z) can be estimated by m(z) = § — (z — 2)3(x), where § and z
are the pooled sample averages of {y;; } and {z; },respectively. And then the fixed effect

of 7 is obtained: &; = y;. — m(x) + (Z;. — x)F(x), which may change in z, implying that

the fixed effects may be different in different levels of the regressors.
e A Nonparametric Random Effects Estimator
The nonparametric panel data model with random effects is
Yir = m(Tar) + Vi + U, (6)

where y;; is the dependent variable, x; € R? is the row vector of explanatory variables,
v; is (i.i.d.) the individual random effects with mean zero and variance o2, and w;; is the
error term, i.i.d. and satisfying Elu|z] = 0, V[u®|z] = 02. v; and u;; are not correlated,
Vi, 7 and t. And E[v; + uy|zi] = 0.

As before, expand m around x; = x and use the combined error still denoted as wu;;:

Y = m(x)+ (zi — 2)B(x) + v + ui

= (L (zi — 2))(m(x), B (2))" + vi + wit
= 2;0(2) + e, (7)



where
Eit = Uit Ui
s = (1, (z — @)
b(x) = (m(z),0 ()"
Denote

/ / /

Yi = (yz‘layi% T ayiT)lvzi = (Zilyzim T ang) y &= (5i175iQa s

and
! ! !

Y = (yivyév T 7:9;)/7 Z(:C) = (21,22, T 7Zn)/7 €= (8,175,27 T

Then the matrix form of the model (7) is

Y = Z(2)6(x) +¢.

Since
2 2 2 2
O-’U + Uu O-’U O-’U
, o? o2+ o2 o?
V = Ef':if':i - . . .
2 2 2 2
O-’U O-’U O-’U + Uu
and

Eé‘ié';- = OT><T (Z 75 ])

the variance-covariance matrix of ¢ is

75iT)/

751 )/'

n

= 0'12)JT + O’i[T

O'%JT—FO'ZIT 0 0
Q0 E , 0 U%JT—FO'?LI'T 0
= Lee = . X
0 0 oo 02 Jp + 02y
= [,V

where Jr = Ipl}. Then Q' = I, @ V!, where V™! = % [Ip — (1 — A)lpl;/T) and

A =02/(02 +To?). Since V12 = Iy — (1 — A\V?)ipl, /T, we have

971/2 _ ]—n ® V71/2 — In ® (IT _ (1 _ Al/Z)lTl,T/T>

= Ly — 1=\, ® (13 /T
= Lo— 1=\, @), @l)/T
= ILr—(1-\"*)DD/T,
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where D = I, ® I and Q71/2Q7Y2 = Q~!. Then from (8),
Q VY = Q7 V27(2)6(z) + QY%
denoted as
Y*=Z%(x)b(z) + € 9)
satisfying E(e*e") = E [9_1/25 (9_1/25)/} = O"V2E [ee'] QY2 = I,,r. The matrix form
(9) can be also written as
Yir = 20(x) + &5

The local nonparametric random effector estimator of m(x) and B(x) in (9) is defined

by minimizing

3

T Tit — X
Z yzt zt k ( lth )
=1 t=1

= (V"= Z"(2)8(x)) K(2) (V" = Z"(x)é(x))
(Y = Z(2)b(2)) Q2K ()72 (Y — Z(2)é(x))

where
Y* = Q V¥, Z%x)=Q V2 Z(x),
y:t = Yi — (1 - )‘1/2)3712, ZZ} = Zit — (1 - )‘1/2)522
and
os
02 +To?
Therefore,

[@%2%
—~
&
S~—
I

n T n T
Zzzgkt/z;k (xzth— x)] Z 2k (%t $> (10)
t=1

= (Z"(2)K(2)Z*(z))"" Z"(2)K (2)Y™.
= [Z@QVK@Q 1 2@)] (2@ K@ Y] ()

To obtain a feasible estimator of §(x), we replace A with its estimator

~2
o

5\ . u
D) ~2
o, +1To,
where &2 is estimated by

n

i [y“f — i — (Tt — T )BFE(‘T>:|2

=1 t=1



from the regression model

Yie — Yi. = (T — 20.) B(x) + wip — Us.
while 62 is defined as 62 = 62 — 62 /T, where 62 = >."" (§. — m(Z.))?/n and m(z) is
obtained by performing local LS estimation on the model

gi. = m(z) + (;. — z)B(x) + v; + 4.
Conditional on z;, for any given x € Supp(z),
V(8(z)) = (2" (@)K (2)Z"(2)) " 27 (2)K*(2) 2" (x) (2" (0) K (2) Z"(2)) "
Then the nonparametric random effects estimators of m(z) and 3(x), respectively, are
mep(z) = (1, 0;>3($);
Bre(x) = (0,1)8(z).
e Semiparametric FE and RE Estimators
The semiparametric panel data model is
Yit = T+ m(zie) + Vi + Ui, (12)

where y;; is the dependent variable, z;; € R? and z; € RP are two row vectors of
regressors. E[v; + wi| Ty, zi] = 0.

(i) For v; = 0, we have
Yie — Elyicl 2] = (Tir — Elxic]2id]) B + wit
and [ is estimated (with pooled data) by

n T Loaor
B = Z Z (xit - :Eit)' (xit - jit) Z (xit - ffity (yz‘t - fgzt) ]-{f(zzt) > b}-
=1 t=1 =1 t=1
Then m(z) can be estimated by analyzing the model vy}, = m(z;;) + u; as in the pooled
model case, where v}, = y;; — xitB .

(i) For v; # 0 and fixed, the estimator (3 above is not affected. Once 3 is estimated
the estimation of Vm(z) can be carried out by analyzing the fixed effects model v,
= m(zy) + v; + uy, where y, = yi — xitﬁ.

When p = 1, the estimator of Vm(z) is

_ 2 Sy (s = 72 (2 — Z)k (20 — 2)/h)
S S (zie — Z)%k (20 — 2) /h)

9
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When p > 1,

Vorp(?)

n T -1 o7
Ty — T — \/ * —% Lig — T
1 (zit — 2i) (21t — Zi )k ( th )] ZZ(ZZt —z.) (Y — Vi) k ( th >

i=1 t=

or in a matrix form
A on(2) = (ZMpK (2)MpZ) ™ Z'MpK (2) MpY™.
(iii) For v; # 0 and random, by
Yit = Elyalzi] = (za — Elzalza]) f + vi + ua

or
R = Ri7 B+ vi + ua, (13)

we have

n

T
T2k T Z*
> > RiTR
i=1

=1 t=1

-1 5 7
E :E : T2kl DYZF
Rit Rit

i=1 t=1

BSRE -

where RZ* = R% —(1—-AY?)R**, RY* = RV —(1—-AY*)RY* and A = 02 /(62 +T0?), and
Elyit|zi] and E[zy|zy) are replaced by their kernel estimators E [Yit|zie] and E[mzt|zzt]
Denote 4% = yi — Zifggrg. Then use the following random effects model

Yir = m(zit) + Vi + iy
to estimate 6(z) = (m(z),7/(2))’, the same way as in (10), where v(z) = Vm(z).

Specifically, write

vy = m(z)+ (2w — 2)Vm(z) + v; + uy
= (1,20 — 2)0(2) +v; + uy
= 1;3(2)0(2) + vi + ui, (14)

where 7,(z) = (1, z;z — z) and 6(z) = (m(z),7'(z))’". This gives the estimators of 6(z):

3SRE(2) =

n T
7’**/7’**]{7 Zit — Z) T**/ ok Lo ( Z)
>3 ik (4 Y

i=1 t=1

= (R**'(Z)K (Z)R**(z))_l R™(2)K(2)Y™
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where

) - 971/2}/* R**( ):Qfl/2R*( )
v = yz—(1 >‘1/2)yza ri =71y — (1- )‘1/2)

and

2

Ou

- 2 2"
o2+ To?

Then the semiparametric random effects estimators of m(z) and Vm(z), respectively,
are

mSRE(’Z) = (1702)351@(2)7
P}SRE(:E) = (07 ]‘;))8SRE (Z)

There are two methods to estimate ) :
a) Based on (13): Estimate > by

2

Qz

s S [ R (R R

i=1 t=1
from the regression model
R — R = (Rif — R")B + uy — ;.

and estimate 7, from &, = 6, — &, /T, where 6, = > | (RY* — R¥(35)?/n and By is

the between estimator obtalned by performing the LS estimation on the model
RY* = RY*B + v; + ;..
b) Based on (14): Estimate 62 by
n T

i —1 ZZ Yie = Yi. — (2 — ")/?SFE(Z)F

=1 t=1

Q>

from the regression model

Yir — Ur. = (2 — Zil)’YSFE (2) + wip — Uy
and estimate 6, from 62 = 62 — 65,/T, where 6, = Y1 (; — m(%.))?/n and 7 (2) is

obtained by performing local LS estimation on the model

gr. = m(z) + (2 — 2.)7(2) + vi + ..
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