1 Nonparametric Estimation of Panel Data Models

Aim: to develop the nonparametric and semiparametric estimation of both the fixed and random effects panel data models which are robust to the misspecification in the functional form.

• Pooled Kernel Estimation

Consider the nonparametric panel data model

$$y_{it} = m(x_{it}) + u_{it}, \quad i = 1, 2, \dots, n; \quad t = 1, 2, \dots, T.$$
 (1)

where y_{it} is the dependent variable, $x_{it} \in R^q$ is the row vector of explanatory variables and u_{it} is the error term, i.i.d. and satisfying $E[u_{it}|x_{it}] = 0$, $V[u_{it}^2|x_{it}] = \sigma^2(x_{it})$. The data (y_{it}, x_{it}) are assumed to be i.i.d. The sample n is large and T is small. The function $m(\cdot)$ is left unspecified, which is to be estimated. $E[y_{it}|x_{it} = x] = m(x)$.

1) Local Constant Nonparametric Estimator By a Taylor expansion,

$$y_{it} = m(x) + u_{it} + O(|x_{it} - x|) = m(x) + u_{it} + O(|h|)$$
 with $\lim_{n \to \infty} h = 0$,

which still is denoted as

$$y_{it} = m(x) + u_{it},$$

that is, the term O(|h|) is added with u_{it} so that for large n it is still the case that the conditional expectation of the combined error is zero. In a matrix form,

$$Y = l_{nT}m(x) + u$$
,

where

$$Y = (y_{11}, \dots, y_{1T}, y_{21}, \dots, y_{2T}, \dots, y_{n1}, \dots, y_{nT})' = (y'_1, y'_2, \dots, y'_n)';$$

$$u = (u_{11}, \dots, u_{1T}, u_{21}, \dots, u_{2T}, \dots, u_{n1}, \dots, u_{nT})' = (u'_1, u'_2, \dots, u'_n)';$$

$$l_{nT} \text{ is an } nT \times 1 \text{ vector of unit elements.}$$

Minimize

$$\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - a)^2 k \left(\frac{x_{it} - x}{h} \right) = (Y - al_{nT})' K(x) (Y - al_{nT})$$

and obtain the local constant nonparametric estimator of m(x):

$$\hat{m}(x) = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} y_{it} k\left(\frac{x_{it} - x}{h}\right)}{\sum_{i=1}^{n} \sum_{t=1}^{T} k\left(\frac{x_{it} - x}{h}\right)} = (l'_{nT} K(x) l_{nT})^{-1} l'_{nT} K(x) Y,$$

where K(x) is the $nT \times nT$ diagonal matrix with the diagonal elements $K_{it} = k((x_{it} - x)/h)$, which is the kernel or weight function taking low values for x_{it} far away from x but high values for x_{it} close to x. Therefore, the nonparametric estimate $\hat{m}(x)$ is the smoothed average of y values which correspond to the x_{it} values in a small interval of x such that $(|x_{it} - x|) = O(|h|)$.

Give nonparametric estimation of **the derivatives of** m(x) and **the average derivatives**: for details see Pagan and Ullah (1999: P164-173), "Nonparametric Econometrics", Cambridge University Press.

The pointwise estimator of the partial derivative of m(x) with respect to the j-th regressor x_j :

(i) numerical derivative:

$$\tilde{\beta}_{i}(x) = [\hat{m}(x + e_{i}h) - \hat{m}(x - e_{i}h)]/(2h),$$

where $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ with the j-th element being 1;

(ii) analytical derivative:

$$\hat{\beta}_{i}(x) = \partial \hat{m}(x) / \partial x_{i} = \left[\partial \hat{g}(x) / \partial x_{i} - \hat{m}(x) \partial \hat{f}(x) / \partial x_{i} \right] / \hat{f}(x),$$

where

$$\hat{f}(x) = \frac{1}{nTh^q} \sum_{i=1}^n \sum_{t=1}^T k \left(\frac{x_{it} - x}{h}\right)$$

$$\partial \hat{f}(x) / \partial x_j = -\frac{1}{nTh^{q+1}} \sum_{i=1}^n \sum_{t=1}^T k_j^{(1)} \left(\frac{x_{it} - x}{h}\right)$$

$$\partial \hat{g}(x) / \partial x_j = -\frac{1}{nTh^{q+1}} \sum_{i=1}^n \sum_{t=1}^T y_{it} k_j^{(1)} \left(\frac{x_{it} - x}{h}\right)$$

and $k_j^{(1)}(v) = \partial k(v)/\partial v_j$ with $v = (v_1, v_2, ..., v_q)$. The two estimators are approximately the same, i.e. $\hat{\beta}_j(x) \approx \hat{\beta}_j(x)$, since

$$\hat{m}(x \pm e_j h) = \hat{m}(x) \pm h \frac{\partial \hat{m}(x)}{\partial x_j} + O(h^2) = \hat{m}(x) \pm h \hat{\beta}_j(x) + O(h^2).$$

The estimator of the average derivative $\beta = E\beta(x)$:

- (i) A direct estimator for β : $\hat{\beta} = \frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{\beta}(x_{it})$ or $\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \hat{\beta}(x_{it})$;
- (ii) A average-based estimator by $\beta = E\beta(x) = -E[yf'(x)/f(x)]$:

$$\hat{\beta} = -\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} y_{it} \frac{\hat{f}'(x_{it})}{\hat{f}(x_{it})}.$$

The two average derivative estimators have the following asymptotic property:

$$\sqrt{n}(\hat{\beta} - \beta) \to N(0, \Sigma/T),$$

where

$$\Sigma = E \left[\sigma_u^2(x) \left(\frac{f'(x)}{f(x)} \right)^2 \right] + V(\beta(x))$$

which can be estimated by

$$\hat{\Sigma} = \frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \left[\hat{\sigma}_{u}^{2}(x_{it}) \left(\frac{\hat{f}'(x_{it})}{\hat{f}(x_{it})} \right)^{2} + \left(\hat{\beta}(x_{it}) - \frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T} \hat{\beta}(x_{it}) \right)^{2} \right].$$

Optimal bandwidth for estimating m(x) and $\beta(x)$: Note that

$$E(\hat{m}(x)|x_{it}) = (l'_{nT}K(x)l_{nT})^{-1}l'_{nT}K(x)m^*,$$

$$V(\hat{m}(x)|x_{it}) = (l'_{nT}K(x)l_{nT})^{-1}l'_{nT}\Omega(x)l_{nT}(l'_{nT}K(x)l_{nT})^{-1},$$

where $m^* = (m(x_{11}), \dots, m(x_{nT}))'$, $\Omega(x) = K(x)\Sigma_1K(x)$ and Σ_1 is a diagonal matrix with the diagonal elements $\sigma_u^2(x_{it}) = E[u_{it}^2|x_{it}]$. A similar argument to that in Chapter 2 (on the nonparametric estimation of regression function in cross-section case) can deduce that

$$E(\hat{m}(x)) - m(x) = \frac{h^2}{2} \kappa_2 \left[m''(x) + 2m'(x) \frac{f'(x)}{f(x)} \right] + o(h^2)$$
$$V(\hat{m}(x)) = \frac{1}{nh^q} \kappa \frac{\sigma_u^2(x)}{Tf(x)} + o\left(\frac{1}{nh^q}\right)$$

and

$$E(\hat{\beta}(x)) - \beta(x) = \frac{h^2}{2} \kappa_2 \left[m^{(4)}(x) - 2\beta(x) \left(\frac{f'^2(x)}{f^2(x)} - \frac{f^{(2)}(x)}{f(x)} \right) + 2 \frac{m^{(3)}(x)f'(x)}{f(x)} \right] + o(h^2)$$

$$V(\hat{\beta}(x)|x_{it}) = \frac{1}{nh^{q+2}} \frac{\sigma_u^2(x)}{Tf(x)} \int k'^2(v) dv + o\left(\frac{1}{nh^{q+2}} \right)$$

for any given $x \in Supp(X)$. Therefore, the optimal bandwidth that minimize the integrated MSE of $\hat{m}(x)$ and $\hat{\beta}(x)$, respectively, are

$$h_0 = O(n^{-1/(q+4)})$$
 and $h_1 = O(n^{-1/(q+6)})$.

For example, for q = 1, $h_0 = O(n^{-1/5})$ and $h_1 = O(n^{-1/7})$. The asymptotic properties of the local constant nonparametric estimator $\hat{m}(x)$ requires that $x \in (Supp(X))^o$,

which behaves in the same way as in the cross-section case in Chapter 2. That is, the estimator has a boundary effect. Hence necessity of the local linear estimator below.

2) Local Linear Nonparametric Estimator By a Taylor expansion,

$$y_{it} = m(x) + (x_{it} - x)\beta(x) + u_{it} + O((x_{it} - x)^2)$$

= $m(x) + (x_{it} - x)\beta(x) + u_{it} + O(h^2)$ with $\lim_{n \to \infty} h = 0$,

which still is denoted as

$$y_{it} = m(x) + (x_{it} - x)\beta(x) + u_{it},$$

that is, the term $O(h^2)$ is added with u_{it} so that for large n it is still the case that the conditional expectation of the combined error is zero. In a matrix form,

$$Y = Z(x)\delta(x) + u,$$

where

Z(x) is an $nT \times (q+1)$ matrix with it-th element $z_{it} = (1, x_{it} - x);$ $\delta(x) = (m(x), \beta(x)')'$ is a $(q+1) \times 1$ parametric vector. Minimize

$$\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - a - (x_{it} - x)b)^{2} k \left(\frac{x_{it} - x}{h}\right)$$

$$= [Y - al_{nT} - (X - l_{nT} \otimes x)b]' K(x) [Y - al_{nT} - (X - l_{nT} \otimes x)b]$$

$$= \left(Y - Z(x) \begin{pmatrix} a \\ b \end{pmatrix}\right)' K(x) \left(Y - Z(x) \begin{pmatrix} a \\ b \end{pmatrix}\right)$$

with respect to a and b, and obtain the local linear nonparametric estimator of $\delta(x) = (m(x), \beta(x)')'$:

$$\tilde{\delta}(x) = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} z'_{it} z_{it} k \left(\frac{x_{it} - x}{h} \right) \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} z'_{it} y_{it} k \left(\frac{x_{it} - x}{h} \right) \\
= (Z'(x) K(x) Z(x))^{-1} Z'(x) K(x) Y,$$

where K(x) is defined as above. This amounts to doing LS of $\sqrt{K_{it}}y_{it}$ on $\sqrt{K_{it}}$ and $\sqrt{K_{it}}(x_{it}-x)$. Then

$$\tilde{m}(x) = (1, \mathbf{0}_q)\tilde{\delta}(x), \quad \tilde{\beta}(x) = (0, \mathbf{I}_q)\tilde{\delta}(x).$$

For the poolablity of the panel data, see Badi H. Baltagi, Javier Hidalgo and Qi Li (1996), "A nonparametric test for poolability using panel data" Journal of Econometrics 75: 345-367.

• A Nonparametric Fixed Effects Estimator

The nonparametric panel data model is

$$y_{it} = \alpha_i + m(x_{it}) + u_{it}, \tag{2}$$

where y_{it} is the dependent variable, $x_{it} \in R^q$ is the row vector of explanatory variables, α_i is the individual fixed effects, and u_{it} is the error term, i.i.d. and satisfying E[u|x] = 0, $V[u^2|x] = \sigma^2$. $i = 1, 2, \dots, n$; $t = 1, 2, \dots, T$. The function $m(\cdot)$ is left unspecified, which is to be estimated.

Denote $\beta(x) = \nabla m(x)$. By a Taylor expansion in (2),

$$y_{it} = \alpha_i + m(x) + (x_{it} - x)\beta(x) + u_{it}.$$
 (3)

Denote $\bar{y}_{i.} = \frac{1}{T} \sum_{t=1}^{T} y_{it}$, $\bar{x}_{i.} = \frac{1}{T} \sum_{t=1}^{T} x_{it}$ and $\bar{u}_{i.} = \frac{1}{T} \sum_{t=1}^{T} u_{it}$. From (3),

$$\bar{y}_{i.} = \alpha_i + m(x) + (\bar{x}_{i.} - x)\beta(x) + \bar{u}_{i.} \tag{4}$$

which gives

$$y_{it} - \bar{y}_{i\cdot} = (x_{it} - \bar{x}_{i\cdot})\beta(x) + u_{it} - \bar{u}_{i\cdot}$$
 (5)

The local fixed effects estimator of $\beta(x)$ can then be obtained by minimizing

$$\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - \bar{y}_{i\cdot} - (x_{it} - \bar{x}_{i\cdot})\beta(x))^2 k \left(\frac{x_{it} - x}{h}\right)$$

or in a matrix form

$$(M_DY - M_DX\beta(x))'K(x)(M_DY - M_DX\beta(x)).$$

When q = 1, the estimator is

$$\hat{\beta}_{FE}(x) = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - \bar{y}_{i.}) (x_{it} - \bar{x}_{i.}) k \left(\frac{x_{it} - x_{i.}}{h}\right)}{\sum_{i=1}^{n} \sum_{t=1}^{T} (x_{it} - \bar{x}_{i.})^{2} k \left(\frac{x_{it} - x_{i.}}{h}\right)}.$$

When $q \geq 1$,

$$\hat{\beta}_{FE}(x) = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} (x_{it} - \bar{x}_{i\cdot})'(x_{it} - \bar{x}_{i\cdot})k \left(\frac{x_{it} - x}{h} \right) \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} (x_{it} - \bar{x}_{i\cdot})' (y_{it} - \bar{y}_{i\cdot}) k \left(\frac{x_{it} - x}{h} \right)$$

or in a matrix form

$$\hat{\beta}_{FE}(x) = (X'M_DK(x)M_DX)^{-1}X'M_DK(x)M_DY,$$

where

X is an $nT \times q$ matrix;

 $D = I_n \otimes I_T$ is an $nT \times n$ matrix, I_T is a $T \times 1$ vector of unit elements;

 $M_D = I - DD'/T$, I is an $nT \times nT$ identity matrix;

K(x) is the $nT \times nT$ diagonal matrix with the diagonal elements $K_{it} = k((x_{it} - x)/h)$, which is the kernel or weight function taking low values for x_{it} far away from x but high values for x_{it} close to x.

The estimator $\hat{\beta}_{FE}(x)$ is essentially the LS of $\sqrt{K_{it}}(y_{it} - \bar{y}_{i\cdot})$ on $\sqrt{K_{it}}(x_{it} - \bar{x}_{i\cdot})$. If $h = \infty$, then $K_{it} = K(0)$ and the estimator becomes the parametric fixed effect estimator. Conditional on x_{it} , for any given $x \in Supp(X)$,

$$E(\hat{\beta}_{FE}(x)) = (X'M_DK(x)M_DX)^{-1}X'M_DK(x)M_Dm^*$$

$$V(\hat{\beta}_{FE}(x)) = \sigma_u^2 (X' M_D K(x) M_D X)^{-1} (X' M_D K^2(x) M_D X) (X' M_D K(x) M_D X)^{-1}$$

where $m^* = (m(x_{11}), \dots, m(x_{nT}))'$. A feasible estimator of $V(\hat{\beta}_{FE}(x))$ is obtained by replacing σ_u^2 with $s_u^2 = \sum_{i=1}^n \sum_{t=1}^T \hat{u}_{it}^{*2}/(nT)$, where \hat{u}_{it}^* is the residual from the regression in (5). By a Taylor expansion of m^* with large n, we can get the asymptotic bias and variance of $\hat{\beta}_{FE}(x)$. However, this, along with the asymptotic normality, still is an open problem.

Note: Assume that the fixed effects satisfy $\sum_{i=1}^{n} \alpha_i = 0$. Once $\hat{\beta}(x)$ is estimated, from (4), the function m(x) can be estimated by $\hat{m}(x) = \bar{y} - (\bar{x} - x)\hat{\beta}(x)$, where \bar{y} and \bar{x} are the pooled sample averages of $\{y_{it}\}$ and $\{x_{it}\}$, respectively. And then the fixed effect of i is obtained: $\hat{\alpha}_i = \bar{y}_i - \hat{m}(x) + (\bar{x}_i - x)\hat{\beta}(x)$, which may change in x, implying that the fixed effects may be different in different levels of the regressors.

• A Nonparametric Random Effects Estimator

The nonparametric panel data model with random effects is

$$y_{it} = m(x_{it}) + v_i + u_{it}, \tag{6}$$

where y_{it} is the dependent variable, $x_{it} \in R^q$ is the row vector of explanatory variables, v_i is (i.i.d.) the individual random effects with mean zero and variance σ_v^2 , and u_{it} is the error term, i.i.d. and satisfying E[u|x] = 0, $V[u^2|x] = \sigma_u^2$. v_i and u_{jt} are not correlated, $\forall i, j$ and t. And $E[v_i + u_{it}|x_{it}] = 0$.

As before, expand m around $x_{it} = x$ and use the combined error still denoted as u_{it} :

$$y_{it} = m(x) + (x_{it} - x)\beta(x) + v_i + u_{it}$$

$$= (1, (x_{it} - x))(m(x), \beta'(x))' + v_i + u_{it}$$

$$\equiv z_{it}\delta(x) + \varepsilon_{it},$$
(7)

where

$$\varepsilon_{it} = v_i + u_{it}$$

$$z_{it} = (1, (x_{it} - x))$$

$$\delta(x) = (m(x), \beta'(x))'.$$

Denote

$$y_i = (y_{i1}, y_{i2}, \cdots, y_{iT})', z_i = (z'_{i1}, z'_{i2}, \cdots, z'_{iT})', \quad \varepsilon_i = (\varepsilon_{i1}, \varepsilon_{i2}, \cdots, \varepsilon_{iT})'$$

and

$$Y = (y_1', y_2', \cdots, y_n')', \quad Z(x) = (z_1', z_2', \cdots, z_n')', \quad \varepsilon = (\varepsilon_1', \varepsilon_2', \cdots, \varepsilon_n')'.$$

Then the matrix form of the model (7) is

$$Y = Z(x)\delta(x) + \varepsilon. \tag{8}$$

Since

$$V \equiv E\varepsilon_i \varepsilon_i' = \begin{pmatrix} \sigma_v^2 + \sigma_u^2 & \sigma_v^2 & \cdots & \sigma_v^2 \\ \sigma_v^2 & \sigma_v^2 + \sigma_u^2 & \cdots & \sigma_v^2 \\ \vdots & \vdots & & \vdots \\ \sigma_v^2 & \sigma_v^2 & \cdots & \sigma_v^2 + \sigma_u^2 \end{pmatrix} = \sigma_v^2 J_T + \sigma_u^2 I_T$$

and

$$E\varepsilon_i\varepsilon_j' = 0_{T\times T} \quad (i\neq j)$$

the variance-covariance matrix of ε is

$$\Omega \equiv E\varepsilon\varepsilon' = \begin{pmatrix} \sigma_v^2 J_T + \sigma_u^2 I_T & 0 & \cdots & 0 \\ 0 & \sigma_v^2 J_T + \sigma_u^2 I_T & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sigma_v^2 J_T + \sigma_u^2 I_T \end{pmatrix}$$
$$= I_n \otimes V.$$

where $J_T = l_T l_T'$. Then $\Omega^{-1} = I_n \otimes V^{-1}$, where $V^{-1} = \frac{1}{\sigma_u^2} [I_T - (1 - \lambda) l_T l_T' / T]$ and $\lambda = \frac{\sigma_u^2}{(\sigma_u^2 + T \sigma_v^2)}$. Since $V^{-1/2} = I_T - (1 - \lambda^{1/2}) l_T l_T' / T$, we have

$$\Omega^{-1/2} = I_n \otimes V^{-1/2} = I_n \otimes \left(I_T - (1 - \lambda^{1/2}) l_T l_T' / T \right)$$

$$= I_{nT} - (1 - \lambda^{1/2}) \left[I_n \otimes (l_T l_T') \right] / T$$

$$= I_{nT} - (1 - \lambda^{1/2}) (I_n \otimes l_T) (I_n \otimes l_T') / T$$

$$\equiv I_{nT} - (1 - \lambda^{1/2}) DD' / T,$$

where $D = I_n \otimes l_T$ and $\Omega^{-1/2}\Omega^{-1/2} = \Omega^{-1}$. Then from (8),

$$\Omega^{-1/2}Y = \Omega^{-1/2}Z(x)\delta(x) + \Omega^{-1/2}\varepsilon$$

denoted as

$$Y^* = Z^*(x)\delta(x) + \varepsilon^* \tag{9}$$

satisfying $E(\varepsilon^*\varepsilon^{*'}) = E\left[\Omega^{-1/2}\varepsilon\left(\Omega^{-1/2}\varepsilon\right)'\right] = \Omega^{-1/2}E\left[\varepsilon\varepsilon'\right]\Omega^{-1/2} = I_{nT}$. The matrix form (9) can be also written as

$$y_{it}^* = z_{it}^* \delta(x) + \varepsilon_{it}^*.$$

The local nonparametric random effector estimator of m(x) and $\beta(x)$ in (9) is defined by minimizing

$$\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it}^* - z_{it}^* \delta(x))^2 k \left(\frac{x_{it} - x}{h}\right)$$

$$= (Y^* - Z^*(x)\delta(x))' K(x) (Y^* - Z^*(x)\delta(x))$$

$$= (Y - Z(x)\delta(x))' \Omega^{-1/2} K(x)\Omega^{-1/2} (Y - Z(x)\delta(x))$$

where

$$Y^* = \Omega^{-1/2}Y, \quad Z^*(x) = \Omega^{-1/2}Z(x),$$

$$y_{it}^* = y_{it} - (1 - \lambda^{1/2})\bar{y}_{i\cdot}, \quad z_{it}^* = z_{it} - (1 - \lambda^{1/2})\bar{z}_{i\cdot}$$

and

$$\lambda = \frac{\sigma_u^2}{\sigma_u^2 + T\sigma_v^2}.$$

Therefore,

$$\hat{\delta}(x) = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} z_{it}^{*'} z_{it}^{*} k \left(\frac{x_{it} - x}{h} \right) \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} z_{it}^{*'} y_{it}^{*} k \left(\frac{x_{it} - x}{h} \right)$$

$$= (Z^{*'}(x) K(x) Z^{*}(x))^{-1} Z^{*'}(x) K(x) Y^{*}.$$

$$= \left[Z'(x) \Omega^{-1/2} K(x) \Omega^{-1/2} Z(x) \right]^{-1} \left[Z'(x) \Omega^{-1/2} K(x) \Omega^{-1/2} Y \right]$$
(11)

To obtain a feasible estimator of $\delta(x)$, we replace λ with its estimator

$$\hat{\lambda} = \frac{\hat{\sigma}_u^2}{\hat{\sigma}_u^2 + T\hat{\sigma}_v^2},$$

where $\hat{\sigma}_u^2$ is estimated by

$$\hat{\sigma}_u^2 = \frac{1}{n(T-1)} \sum_{i=1}^n \sum_{t=1}^T \left[y_{it} - \bar{y}_{i\cdot} - (x_{it} - \bar{x}_{i\cdot}) \hat{\beta}_{FE}(x) \right]^2$$

from the regression model

$$y_{it} - \bar{y}_{i\cdot} = (x_{it} - \bar{x}_{i\cdot})\beta(x) + u_{it} - \bar{u}_{i\cdot}$$

while $\hat{\sigma}_v^2$ is defined as $\hat{\sigma}_v^2 \equiv \hat{\sigma}_\eta^2 - \hat{\sigma}_u^2/T$, where $\hat{\sigma}_\eta^2 = \sum_{i=1}^n (\bar{y}_{i\cdot} - \tilde{m}(\bar{x}_{i\cdot}))^2/n$ and $\tilde{m}(x)$ is obtained by performing local LS estimation on the model

$$\bar{y}_{i\cdot} = m(x) + (\bar{x}_{i\cdot} - x)\beta(x) + v_i + \bar{u}_{i\cdot}$$

Conditional on x_{it} , for any given $x \in Supp(x)$,

$$V(\hat{\delta}(x)) = (Z^{*\prime}(x)K(x)Z^{*\prime}(x))^{-1}Z^{*\prime}(x)K^{2}(x)Z^{*\prime}(x)(Z^{*\prime}(x)K(x)Z^{*\prime}(x))^{-1}.$$

Then the nonparametric random effects estimators of m(x) and $\beta(x)$, respectively, are

$$\hat{m}_{RE}(x) = (1, 0'_q)\hat{\delta}(x),$$

$$\hat{\beta}_{RE}(x) = (0, 1'_q)\hat{\delta}(x).$$

• Semiparametric FE and RE Estimators

The semiparametric panel data model is

$$y_{it} = x_{it}\beta + m(z_{it}) + v_i + u_{it},$$
 (12)

where y_{it} is the dependent variable, $x_{it} \in R^q$ and $z_{it} \in R^p$ are two row vectors of regressors. $E[v_i + u_{it}|x_{it}, z_{it}] = 0$.

(i) For $v_i = 0$, we have

$$y_{it} - E[y_{it}|z_{it}] = (x_{it} - E[x_{it}|z_{it}])\beta + u_{it}$$

and β is estimated (with pooled data) by

$$\hat{\beta} = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} (x_{it} - \hat{x}_{it})' (x_{it} - \hat{x}_{it}) \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} (x_{it} - \hat{x}_{it})' (y_{it} - \hat{y}_{it}) 1\{\hat{f}(z_{it}) \ge b\}.$$

Then m(z) can be estimated by analyzing the model $y_{it}^* = m(z_{it}) + u_{it}$ as in the pooled model case, where $y_{it}^* = y_{it} - x_{it}\hat{\beta}$.

(ii) For $v_i \neq 0$ and fixed, the estimator $\hat{\beta}$ above is not affected. Once $\hat{\beta}$ is estimated the estimation of $\nabla m(z)$ can be carried out by analyzing the fixed effects model $y_{it}^* = m(z_{it}) + v_i + u_{it}$, where $y_{it}^* = y_{it} - x_{it}\hat{\beta}$.

When p = 1, the estimator of $\nabla m(z)$ is

$$\hat{\gamma}_{SFE}(z) = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it}^* - \bar{y}_{i\cdot}^*) (z_{it} - \bar{z}_{i\cdot}) k ((z_{it} - z)/h)}{\sum_{i=1}^{n} \sum_{t=1}^{T} (z_{it} - \bar{z}_{i\cdot})^2 k ((z_{it} - z)/h)}.$$

When $p \ge 1$,

$$\hat{\gamma}_{SFE}(z) = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} (z_{it} - \bar{z}_{i\cdot})'(z_{it} - \bar{z}_{i\cdot}) k \left(\frac{x_{it} - x}{h} \right) \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} (z_{it} - \bar{z}_{i\cdot})' (y_{it}^* - \bar{y}_{i\cdot}^*) k \left(\frac{x_{it} - x}{h} \right)$$

or in a matrix form

$$\hat{\gamma}_{SFE}(z) = (Z'M_DK(z)M_DZ)^{-1}Z'M_DK(z)M_DY^*.$$

(iii) For $v_i \neq 0$ and random, by

$$y_{it} - E[y_{it}|z_{it}] = (x_{it} - E[x_{it}|z_{it}])\beta + v_i + u_{it}$$

or

$$R_{it}^{yz} = R_{it}^{xz}\beta + v_i + u_{it}, \tag{13}$$

we have

$$\hat{\beta}_{SRE} = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} R_{it}^{xz*'} R_{it}^{xz*} \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} R_{it}^{xz*'} R_{it}^{yz*}$$

where $R_{it}^{xz*} = R_{it}^{xz} - (1 - \lambda^{1/2})\bar{R}_{i\cdot}^{xz}$, $R_{it}^{yz*} = R_{it}^{yz} - (1 - \lambda^{1/2})\bar{R}_{i\cdot}^{yz}$ and $\lambda = \sigma_u^2/(\sigma_u^2 + T\sigma_v^2)$, and $E[y_{it}|z_{it}]$ and $E[x_{it}|z_{it}]$ are replaced by their kernel estimators $\hat{E}[y_{it}|z_{it}]$ and $\hat{E}[x_{it}|z_{it}]$. Denote $y_{it}^* = y_{it} - x_{it}\hat{\beta}_{SRE}$. Then use the following random effects model

$$y_{it}^* = m(z_{it}) + v_i + u_{it}$$

to estimate $\delta(z) = (m(z), \gamma'(z))'$, the same way as in (10), where $\gamma(z) = \nabla m(z)$. Specifically, write

$$y_{it}^{*} = m(z) + (z_{it} - z)\nabla m(z) + v_{i} + u_{it}$$

$$= (1, z_{it} - z)\delta(z) + v_{i} + u_{it}$$

$$\equiv r_{it}^{*}(z)\delta(z) + v_{i} + u_{it}, \qquad (14)$$

where $r_{it}^*(z) = (1, z_{it} - z)$ and $\delta(z) = (m(z), \gamma'(z))'$. This gives the estimators of $\delta(z)$:

$$\hat{\delta}_{SRE}(z) = \left[\sum_{i=1}^{n} \sum_{t=1}^{T} r_{it}^{**'} r_{it}^{**} k \left(\frac{z_{it} - z}{h} \right) \right]^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} r_{it}^{**'} y_{it}^{**} k \left(\frac{z_{it} - z}{h} \right)$$

$$= (R^{**'}(z) K(z) R^{**}(z))^{-1} R^{**'}(z) K(z) Y^{**}$$

where

$$\begin{split} Y^{**} &=& \Omega^{-1/2} Y^*, \quad R^{**}(z) = \Omega^{-1/2} R^*(z), \\ y^{**}_{it} &=& y^*_{it} - (1 - \lambda^{1/2}) \bar{y}^*_{i\cdot}, \quad r^{**}_{it} = r^*_{it} - (1 - \lambda^{1/2}) \bar{r}^*_{i\cdot} \end{split}$$

and

$$\lambda = \frac{\sigma_u^2}{\sigma_u^2 + T\sigma_u^2}.$$

Then the semiparametric random effects estimators of m(z) and $\nabla m(z)$, respectively, are

$$\begin{split} \hat{m}_{\scriptscriptstyle SRE}(z) &= (1,0'_p) \hat{\delta}_{\scriptscriptstyle SRE}(z), \\ \hat{\gamma}_{\scriptscriptstyle SRE}(x) &= (0,1'_p) \hat{\delta}_{\scriptscriptstyle SRE}(z). \end{split}$$

There are two methods to estimate λ :

a) Based on (13): Estimate $\tilde{\sigma}_u^2$ by

$$\tilde{\sigma}_{u}^{2} = \frac{1}{n(T-1)} \sum_{i=1}^{n} \sum_{t=1}^{T} \left[R_{it}^{yz} - \bar{R}_{i\cdot}^{yz} - (R_{it}^{xz} - \bar{R}_{i\cdot}^{xz}) \hat{\beta}_{FE} \right]^{2}$$

from the regression model

$$R_{it}^{yz} - \bar{R}_{i.}^{yz} = (R_{it}^{xz} - \bar{R}_{i.}^{xz})\beta + u_{it} - \bar{u}_{i.}$$

and estimate $\tilde{\sigma}_v^2$ from $\tilde{\sigma}_v^2 \equiv \tilde{\sigma}_\eta^2 - \tilde{\sigma}_u^2/T$, where $\tilde{\sigma}_\eta^2 = \sum_{i=1}^n (\bar{R}_{i\cdot}^{yz} - \bar{R}_{i\cdot}^{xz}\hat{\beta}_B)^2/n$ and $\hat{\beta}_B$ is the between estimator obtained by performing the LS estimation on the model

$$\bar{R}_{i\cdot}^{yz} = \bar{R}_{i\cdot}^{xz}\beta + v_i + \bar{u}_{i\cdot}.$$

b) Based on (14): Estimate $\hat{\sigma}_u^2$ by

$$\hat{\sigma}_u^2 = \frac{1}{n(T-1)} \sum_{i=1}^n \sum_{t=1}^T \left[y_{it}^* - \bar{y}_{i\cdot}^* - (z_{it} - \bar{z}_{i\cdot}) \hat{\gamma}_{SFE}(z) \right]^2$$

from the regression model

$$y_{it}^* - \bar{y}_{i\cdot}^* = (z_{it} - \bar{z}_{i\cdot})\gamma_{SFE}(z) + u_{it} - \bar{u}_{i\cdot}$$

and estimate $\hat{\sigma}_v^2$ from $\hat{\sigma}_v^2 \equiv \hat{\sigma}_\eta^2 - \hat{\sigma}_u^2/T$, where $\hat{\sigma}_\eta^2 = \sum_{i=1}^n (\bar{y}_{i\cdot}^* - \tilde{m}(\bar{z}_{i\cdot}))^2/n$ and $\tilde{m}(z)$ is obtained by performing local LS estimation on the model

$$\bar{y}_{i.}^* = m(z) + (z_{it} - \bar{z}_{i.})\gamma(z) + v_i + \bar{u}_{i.}$$