
1 Semiparametric Single Index Models

The Semiparametric Single Index Model is

Y = g(Xβ0) + u,

where Y is the dependent variable, X ∈ Rq is the row vector of explanatory variables,
β0 is q× 1 vector of unknown parameters, and u is the error satisfying E[u|X] = 0. The
term Xβ0 is called a “single index” because it is a scalar (a single index) even though x

is a vector. Here the linear index is specified while the function g(·) is left unspecified.

Background: Parametric Estimation

1. Censored Regression Model: Yi = max{0, Y ∗i } = Y ∗i 1{Y ∗i > 0}, where Y ∗i =
Xiβ0+ ²i. E[²i|Xi] = 0. The density function of ² is f(·) with distribution function F (·).
Then the censored conditional expectation is

E[Yi|Xi] = 0× P (Yi = 0|Xi) +E[Yi|Yi > 0, Xi]P (Yi > 0|Xi)
= E[Y ∗i |Y ∗i > 0,Xi]P (Y ∗i > 0|Xi)
= E[Xiβ0 + ²i|²i > −Xiβ0,Xi]P (²i > −Xiβ0|Xi)

= Xiβ0P (²i > −Xiβ0|Xi) +
Z ∞

−Xiβ0
tf(t)dt

≡ g(Xiβ0).

The conditional expectation is a function of x only through the index xβ0. The function

g(·) maps the index into the response: Y = g(xβ0) + u, where E[u|x] = 0.
The parametric density function of ² is f(·; θ0) with distribution function F (·; θ0).

Since the density function of Y is

fY (y) =

(
f(y − xβ0; θ0) if y > 0

P (Y ∗ ≤ 0) if y = 0

=

(
f(y − xβ0; θ0) if y > 0

F (−xβ0; θ0) if y = 0

The log likelihood function of the censored model is given by

logL =
1

n

nX
i=1

[di log f(Yi −Xiβ; θ) + (1− di) log(F (−Xiβ; θ))] ,

where di = 1{Yi > 0}.
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2. Truncated Regression Model: Yi = Y ∗i only when Y ∗i > 0, where Y ∗i =

Xiβ0+ ²i and E[²i|Xi] = 0, but there is no information on Xi and Yi when Y ∗i ≤ 0. The
truncated conditional expectation given Xi is

E[Yi|Xi] = E[Y ∗i |Y ∗i > 0,Xi]
= E[Xiβ0 + ²i|²i > −Xiβ0,Xi]

= Xiβ0 +

R∞
−Xiβ0

²f(²)d²R∞
−Xiβ0

f(²)d²

≡ g(Xiβ0).

The parametric density of ² is f(·; θ0) with distribution function F (·; θ0). Since the
density function of Y is

fY |Y >0(y) =
f(y − xβ0)
P (Y > 0|x) =

f(y − xβ0)
1− F (−xβ0; θ0)

The log likelihood function of the trancated model is given by

logL =
1

n

nX
i=1

[log f(Yi −Xiβ; θ)− log(1− F (−Xiβ; θ))] .

3. Binary Choice Parametric Model: Consider

Yi =

(
1, if Y ∗i ≡ Xiβ0 − ²i > 0
0, if Y ∗i ≡ Xiβ0 − ²i ≤ 0,

or Yi = 1{Y ∗i > 0} = 1{Xiβ0− ²i > 0}, where E[²i|Xi] = 0. The parametric linear index
Xiβ0 governs the choices while the distribution of the error term ²i is not specified, i.e.

the distribution function F (·) is unknown. We can observe Y (0 or 1), but cannot observe
Y ∗. The model Y ∗i ≡ Xiβ0−²i is a latent variable model. We are mainly interested in
estimating β0 based on the data (Yi,Xi). This is a semiparametric estimation problem.

Note that ² = Y ∗ −E[Y ∗|X] 6= u = Y −E[Y |X] since Y ∗ 6= Y.
For example, Y ∗ denotes the difference between an individual’s market wage (ob-

servable) and reservation wage (generally unobservable). Y represents a labor force

participation decision. Y = 1 if and only if Y ∗ > 0. X contains a set of economic factors

that could influence the decision, such as age, education, marital status, work history,

and number of children.

Let E[Y ∗i |x] = H(x) and Y ∗ = H(x) − ².If Y ∗ were observable, H can be nonpara-

metrically estimated. The population distribution of (Y ∗, X) would identify H if H is a
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continuous function of X. The distribution function F (·) of ² is also identified because
² = H(x)− Y ∗i is identified.
However, Y ∗ is unobservable since the market wage is observable only for employed

individuals and the reservation wage is never observable. But G(x) ≡ E[Y |x] can be
nonparametrically estimated. From Y ∗ = H(x)− ²,

G(x) ≡ E[Y |x] = P (Y ∗ > 0|x) = P (² < H(x)|x) = F (H(x)). (1)

Therefore, H and F are identified and nonparametrically estimatable only if (1) has a

unique solution for H and F in terms of G.Whether H and F are identified and
estimated nonparametrically? No unless H is restricted! For example, suppose that

x is a scalar and G(x) = ex/(1 + ex). One solution to (1) is(
H(x) = x

F (u) = eu/(1 + eu), −∞ ≤ u ≤ ∞.

Another solution is (
H(x) = ex/(1 + ex)

F (u) = u, 0 ≤ u ≤ 1.

Assume that H has the single-index structure H(x) = xβ0 and that F (·) is
known.
Compare

E[Y ∗|x] = E[Xβ0 − ²|X = x] = xβ0

and

E[Y |x] = 1× P (Y = 1|x) + 0× P (Y = 0|x)
= P (Y = 1|x) ≡ p(x)
= P (Xβ0 − ² > 0|X = x)

= P (² < xβ0)

= F (xβ0) (2)

= g(xβ0)

The probability P (Y = 1|x) is a function of x only through the index xβ0. The function
g(·) maps the index into the response probability. Y = g(xβ0) + u, where E[u|x] = 0.
The parameter β0 reflects the impact of changes in X on the probability of participating

in the labor market. Since

∂p(x)/∂xk = g
0(xβ0)β0k = f(xβ0)β0k,
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the partial effect of xk on p(x) depends on x through f(xβ0).

Note: 1) If F (·) is strictly increasing, f(z) > 0 for all z > 0 and the sign of the

effect of xk is given by the sign of β0k, i.e. the direction of the effects of xk on E[Y
∗|x]

and E[Y |x] are identical.
2) The relative effects do not depend on x since

∂p(x)/∂xj
∂p(x)/∂xk

=
β0j
β0k

is a constant.

3) If ² has a symmetric distribution about zero, with unique mode at zero, the largest

effect of xk on the probability p(x) is f(0)β0k when xβ0 = 0. For example, in the probit

case it is 1/
√
2πβ0k ≈ 0.399β0k; in the logit case it is 0.25β0k.This implies that the logit

estimates can be expected to be larger by a factor of about 0.4/0.25 = 1.6 than the

probit estimates. Or, multiply the logit estimates by 0.625 to make them comparable to

the probit estimates.

Special Specification Examples:

• Probit Model: ² ∼ N(0, 1) with the density φ(u) = 1√
2π
exp(−u2/2). The condi-

tional expectation is

E[Y |x] = P (Y = 1|x) = Φ(xβ0),

where Φ(t) =
R t
−∞ φ(v)dv is the CDF of a standard normal variable.

• Logistic Model: ² ∼ Logistic with the density function f(u) = exp(−u)
(1+exp(−u))2 .The

conditional expectation is

E[Y |x] = P (Y = 1|x) = exp(xβ0)

1 + exp(xβ0)
.

Maximum Likelihood Estimation of Parametric Binary Response Index
Models: Suppose that the distribution of ² is known. The conditional density of y
given x is

f(y|x; β0) ≡ F (xβ0)y(1− F (xβ0))1−y, y = 0, 1.

Identification can be guaranteed by the conditional Kullback-Leibler information in-

equality: Z
y

log

µ
f(y|x;β0)
f(y|x; β)

¶
f(y|x;β0)v(dy) ≥ 0
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for all nonnegative functions f(y|x;β) such that
R
y
f(y|x;β)v(dy) = 1 for all possible

values of x. The logarithm of the conditional likelihood function of the binary choice

model is

logL(β) ≡
nX
i=1

log f(yi|xi; β) =
nX
i=1

[yi logF (xiβ) + (1− yi) log(1− F (xiβ))] .

The MLE β̂ is a solution (if it exists) of ∂ logL(β)/∂β = 0, where

∂ logL(β)/∂β =
nX
i=1

yi − F (xiβ)
F (xiβ)(1− F (xiβ))

f(xiβ)x
0
i.

By a Taylor expansion,

0 =
∂ logL(β)

∂β

¯̄̄
β̂ =

∂ logL(β)

∂β

¯̄
β0 +

∂2 logL(β)

∂β∂β0
|β∗ (β̂ − β0),

where β∗ lies between β̂ and β0, and

∂2 logL(β)

∂β∂β0
= −

nX
i=1

µ
yi − F (xiβ)

F (xiβ)(1− F (xiβ))

¶2
f2(xiβ)x

0
ixi

+
nX
i=1

yi − F (xiβ)
F (xiβ)(1− F (xiβ))

f 0(xiβ)x
0
ixi.

Therefore,
√
n(β̂ − β0) = −

µ
∂2 logL(β)

∂β∂β0
|β∗
¶−1

∂ logL(β)

∂β

¯̄
β0 .

For Probit model and Logistic models, we can show (see Amemiya (1984), “Advanced

Econometrics”, P273-274) that ∂2 logL(β)/∂β∂β0 < 0 for β ∈ B (an open bounded sub-
set of Rq,β0 ∈ B) which justifies the conditional MLE, and when limn→∞ n−1

Pn
i=1 x

0
ixi

is a finite nonsingular matrix, the MLE estimator is root-n consistent and asymptotically

normal: √
n(β̂MLE − β0)→ N(0, A−10 ),

where A0 = −E [∂2L(β0)/∂β∂β0] = E
h

f2(xiβ0)
F (xiβ0)(1−F (xiβ0))

x0ixi
i
. The parameters in Probit

and Logit models can be estimated in EViews or Stata.

The disadvantage of the parametric method is that different distributional assump-
tion for ² lead to different functional forms for the conditional probability of Y = 1 (see
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(2)). The consistent parametric estimation of E[Y |x] above requires the correct distrib-
utional specification of ².Misspecification of the distribution of ² will lead to inconsistent

parametric estimation.

The advantages of a semiparametric single index model (not specify F (·) a prior):
It can avoid the problem of error distribution misspecification. It is more general than

the binary choice model since Y is not necessarily binary: Y can be continuous or discrete

in semiparametric single index model. Also, it is an alternative approach designed to

mitigate effects arising from the curse of dimensionality.

Why Single-Index Models Y = g(Xβ0) + u Are Useful?
1) A Single-Index Model does not assume that g(·) is known, and hence it is more

flexible and less restrictive than are parametric models for conditional mean functions,

such as linear models and binary probit models. Use of a semiparametric single-index

model reduces the risk of obtaining misleading results.

2) Although nonparametric estimation of a conditional mean function maximizes flex-

ibility and minimizes (but does not eliminate) the risk of specification error, the price

of this flexibility can be high for several reasons: (i) Nonparametric estimation preci-

sion decreases rapidly as the dimension of X increases. To obtain acceptable estimation

precision if X is multidimensional (as it often is in economic application), impracticably

large samples may be needed. However, a single index model avoids the curse of dimen-

sionality because the index Xβ aggregates the dimensions of X. At the same time β can

be estimated with the same rate of convergence, n−1/2, that is achieved in a parametric

model. (ii) Nonparametric estimation results (usually without simple analytic forms)

can be difficult to display and interpret whenX is multidimensional. (iii) Nonparametric

estimation does not permit extrapolation: it does not provide predictions of E[Y |x] at
points x that are not in the support of X. This is a serious drawback in policy analysis

and forecasting. A single-index model, by contrast, permits extrapolation within limits:

it yields predictions of E[Y |x] at values of x that are not in the support of X but are in

the support of Xβ.

Identification Condition:

β0 and g(·) must be uniquely determined by the population distribution
of (Y,X).

• g(·) cannot be a constant function; otherwise, β0 is not identified.

• Perfect multicollinearity is not allowed in different components of x.
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• β0 cannot contain a location parameter. It only is identifiable up to a scale.

Compare

E[Y |x] = g(xβ0),

E[Y |x] = g∗(γ + xβ0δ).

They are observationally equivalent. They could not be distinguished empirically

even if the population distribution of (Y,X) were known. β0 and g(·) are not
identified unless restrictions are imposed that uniquely specify γ and δ. Therefore,

β0 should be location normalized and scale normalized: x does not contain a

constant and β has unit length |β| = 1 or the first component of x has a unit

coefficient (and is continuous).

• x should contain at least one continuous random variable. Otherwise, there exist an
infinite number of different choices of g(·) and β that satisfy the finite set of restric-
tions imposed by E[Y |x] = g(xβ). Give an example to illustrate this.... Suppose
that (X1, X2) is two-dimensional and discrete with support: (0, 0), (0, 1), (1, 0), (1, 1).

The coefficient of x1 is normalized to be 1. Then

E[Y |x] = g(x1 + β2x2).

The left hand is identified while the right hand is not.

The identification conditions of a single index model are summarized in the following:

(i) x should not contain a constant (intercept), and x must contain at least one

continuous variable. Moreover, |β0| = 1.
(ii) g(·) is differentiable and is not a constant function on the support of xβ0.
(iii) For the discrete components of x, varying the values of the discrete variables will

not divide the support of xβ0 into disjoint subsets.

Estimation:

If g(·) were known, use the nonlinear LS method to estimate β0:

β̂ = argmin
β

nX
i=1

(Yi − g(Xiβ))2w(Xi), (3)

where w(·) is an appropriate weight function for possible heteroscedasticity. Suppose
that g(·) is unknown. The kernel method can not be used to estimate g(Xiβ) directly
because g(·) and β0 are both unknown. However, for a given value of β, since Yi =

g(Xiβ0) + ui and E[ui|Xi] = 0, we can estimate

G(Xiβ) ≡ E[Yi|Xiβ] = E[g(Xiβ0)|Xiβ]
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by the kernel method.

(Recall: E(y|h(x)) = E[E(y|h(x))|x] and E(y|h(x)) = E[E(y|x)|h(x)], where h(x) is
a random vector that is a function of x).

Note that when β = β0, G(Xiβ) = g(Xiβ0),while in general, G(Xiβ) 6= g(Xiβ0) if

β 6= β0. A leave-one-out nonparametric kernel estimator of g(Xiβ) is given by

Ĝ−i(Xiβ) ≡ Ê−i[Yi|Xiβ]

=
(nh)−1

Pn
j 6=i Yjk

³
Xjβ−Xiβ

h

´
w(Xj)1{Xi ∈ An}

(nh)−1
Pn

j 6=i k
³
Xjβ−Xiβ

h

´
w(Xj)1{Xi ∈ An}

≡
(nh)−1

Pn
j 6=i Yjk

³
Xjβ−Xiβ

h

´
w(Xj)1{Xi ∈ An}

p̂−i(Xiβ)
,

where p̂−i(Xiβ) = (nh)−1
Pn

j 6=i k
³
Xjβ−Xiβ

h

´
w(Xj)1{Xi ∈ An} is the leave-one-out esti-

mator of the PDF p(·) of Xβ at Xiβ, and 1{Xi ∈ An} is a trimming function to trim
out small values of p̂−i(Xiβ), defined below.

1) Ichimura (1993)’s Estimator: Replace g(Xiβ) in (3) with Ĝ−i(Xiβ) and use
a trimming function to trim out small values of p̂−i(Xiβ). Let

Aδ = {x : p(xβ) ≥ δ,∀β ∈ B},
An = {x : |x− x∗| ≤ 2hn for some x∗ ∈ Aδ},

where δ > 0 is a constant, B is a compact subset in Rq, Aδ ⊂ An, and as n → ∞,
hn → 0 and An shrinks to Aδ. Ichimura (1993)’s estimator is

β̂I = argmin
β

nX
i=1

h
Yi − Ĝ−i(Xiβ)

i2
w(Xi)1{Xi ∈ Aδ},

where w(Xi) is a positive weight function which is bounded in Aδ. The trimming func-

tion ensures that the random denominator in the kernel estimator is positive with

high probability so as to simplify the asymptotic analysis. Under some regularity

conditions about g(·), p(·) and the kernel k(·), and E|Y |m < ∞ for some m ≥ 3,

limn→∞ ln(h)/[nh
3+3/(m−1)] = 0 and limn→∞ nh8 = 0, the estimator β̂I is root-n consis-

tent and asymptotically normal:
√
n(β̂I − β0)→ N(0,ΩI),

where ΩI = V −1ΣV −1, and

Σ = E
h
w(Xi)σ

2(Xi) (g
0(Xiβ0))

2
(Xi − EA(Xi|Xiβ0))0(Xi −EA(Xi|Xiβ0))

i
,

V = E
h
w(Xi) (g

0(Xiβ0))
2
(Xi − EA(Xi|Xiβ0))0(Xi −EA(Xi|Xiβ0))

i
,

8



where EA(Xi|v) = E(Xi|xAβ0 = v) with xA having the distribution of Xi conditional

on Xi ∈ Aδ. A consistent estimator for ΩI is Ω̂I = V̂ −1Σ̂V̂ −1, where

Σ̂ =
1

n

nX
i=1

w(Xi)û
2
i

³
ĝ0(Xiβ̂I)

´2
(Xi − Ê(Xi|Xiβ))0(Xi − Ê(Xi|Xiβ)),

V̂ =
1

n

nX
i=1

w(Xi)
³
ĝ0(Xiβ̂I)

´2
(Xi − Ê(Xi|Xiβ))0(Xi − Ê(Xi|Xiβ))

with ûi = Yi − ĝ(Xiβ̂I) and

Ê(Xi|Xiβ) =
nX
j=1

Xjk
³
(Xj −Xi)β̂I/h

´
/

nX
j=1

k
³
(Xj −Xi)β̂I/h

´
.

It shows that β̂I can be computationally costly in practice. For the Bandwidth
Choice, since limn→∞ ln(h)/[nh3+3/(m−1)] = 0 for some m ≥ 3 and limn→∞ nh8 = 0, the
range of permissible smoothing parameters allows for optimal smoothing: h = O(n−1/5).

And alternatively we can choose h and β simultaneously by minimizing

nX
i=1

h
Yi − Ĝ−i(Xiβ, h)

i2
w(Xi)1{Xi ∈ Aδ},

where Ĝ−i(Xiβ, h) = Ĝ−i(Xiβ).

2) Direct Semiparametric Estimator:
From E[Y |x] = g(xβ0), we get

E

∙
∂E[Y |x]

∂x

¸
= E[g0(xβ0)β0] = E[g

0(xβ0)]β0 ≡ Cβ0 (4)

and

E

∙
w(x)

∂E[Y |x]
∂x

¸
= E[w(x)g0(xβ0)β0] = E[w(x)g

0(xβ0)]β0 ≡ C2β0, (5)

both of which are proportional to β0. Then one can estimate β0 by estimating (4) and

(5), respectively, in the following ways:

1. The average derivative-based estimator:

β̂ave ≡
1

n

nX
i=1

∂Ê[Yi|Xi]
∂Xi

,

where Ê[Yi|Xi] =
Pn
j=1 YjK((Xi−Xj)/a)Pn
j=1K((Xi−Xj)/a)

, K((Xi−Xj)/a) is a product kernel function,
a is the vector of smoothing parameter. If one uses |β| = 1 as the normalization
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rule, the scale normalization is β̂ave/|β̂ave|; if one chooses to normalize the coeffi-
cient of the first regressor to be one, the scale normalization is β̂ave/β̂ave,1.(Use a

trimming function to avoid the “small denominator problem”).

2. The weighted average derivative estimator (see Powell, Stock and Stoker
(1989), “Semiparametric Estimation of Index Coefficients”, Econometrica Vol 57,

No 6, P1403-1430): If f(x) = 0 at the boundary of the support of X (e.g. X has

unbounded support), choose the weight w(x) = f(x) in (5). Then

E

∙
f(X)

∂E[Y |X]
∂X

¸
=

Z
∂E[Y |X]

∂X
f2(X)dX

= 0− 2
Z
E[Y |X]f(X)∂f(X)

∂X
dX

= −2E
∙
g(Xβ0)

∂f(X)

∂X

¸
= −2E

∙
Y
∂f(X)

∂X

¸
≡ δ,

which can be estimated by

δ̂ = −2
n

nX
i=1

Yif̂
(1)(Xi),

where f̂ (1)(Xi) (a q × 1 vector) is the first-order partial derivative of the kernel
estimator

f̂(Xi) =
1

na1 · · · aq

nX
j=1

k

µ
X1i −X1j

a1

¶
· · · k

µ
Xqi −Xqj

aq

¶
.

The sth component in f̂ (1)(Xi) is

∂f̂(Xi)

∂Xsi
=
1

n

nX
j=1

a−2s k
(1)

µ
Xsi −Xsj

as

¶Y
t6=s
a−1t k

µ
Xti −Xtj

at

¶
.

The PSS’s estimator δ̂ does not have a random denominator, and therefore, one

does not need to introduce a trimming nuisance parameter. Under some smooth-

ness and moments conditions, PSS prove that

√
n(δ̂ − δ)→ N(0,ΩPSS),
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where ΩPSS = 4E[σ2(X)f (1)(X)f (1)(X)0] + 4var(f(X)g(1)(Xβ0)). A normalized

vector β can be obtained via δ̂/|δ̂|. For the Bandwidth Choice, choose h to

minimize E[|δ̂ − δ|2] : the optimal bandwidth is of the form hs = csn
−2/(2q+v+2),

where q is the dimension of x and v is the order of the kernel, and cs is a constant.

When v = 2, the optimal bandwidth is hs = csn−1/(q+2), s = 1, 2, · · · , q.

3. Choose w(x) = 1 in (5),

E

∙
∂E[Y |X]

∂X

¸
=

Z
∂E[Y |X]

∂X
f(X)dX

= 0− 2
Z
E[Y |X]∂f(X)

∂X
dX

= −2E
∙
g(Xβ0)

∂f(X)

∂X
/f(X)

¸
= −2E

∙
Y
∂f(X)

∂X
/f(X)

¸
≡ σ,

which can be estimated by

σ̂ = −2
n

nX
i=1

Yi
f̂ (1)(Xi)

f̂(Xi)
1{f̂(Xi) ≥ bn},

where bn > 0 satisfies limn→∞ bn = 0. A normalized vector β can be obtained via

σ̂/|σ̂|.

The disadvantage of the direct average derivative estimation method is that it is

applicable only when x is a q-vector of continuous variables since the derivative with

respect to discrete variables is not defined. Also, the first-stage nonparametric estimation

suffers from the curse of dimensionality which gives rise to a potential finite-sample

problem.

The advantage of the direct average derivative estimation method is the computa-

tional simplicity in that β0 and g(xβ0) can be directly estimated without using nonlinear

iteration procedures. In large sample setting, symptotically, the curse of dimensionality

problem disappears because the second stage estimate has a parametric root-n-rate of

convergence and the dimension of x does not affect the rate of convergence of the average

derivative estimator obtained at the second stage.

However, in small-sample application, the iterative method of Ichimura (1993) is more

appealing as it avoids having to conduct high-dimensional nonparametric estimation.
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Estimation of Nonparametric Function g(·) : Suppose that βn is one of the

estimators, e.g. β̂I , β̂ave, δ̂ or σ̂. With βn, we can estimate E[Y |x] = g(xβ0) by

ĝ(xβn) =

Pn
j=1 YjK

³
(Xj−x)βn

h

´
Pn

j=1K
³
(Xj−x)βn

h

´ .

Since βn−β0 = Op(n
−1/2) converges to zero faster than standard nonparametric estima-

tors, the asymptotic distribution of ĝ(xβn) is the same as the case with βn being replaced

by β0. Hence, from the asymptotic normality result in Chapter 2 (the case q = 1, since

xβ0 is a scalar), we have

√
nh(ĝ(xβn)− g(xβ0)− h2B(xβ0))→ N(0,κσ2(xβ0)/f(xβ0)),

where B(xβ0) =
κ2
2
{2f 0(xβ0)g0(xβ0) + f(xβ0)g00(xβ0)}/f(xβ0), and the other notations

are defined in the same way as before.

Testing the Single Index Model:

H0 : E[Y |X = x] = G(xβ0)

H1 : E[Y |X = x] = g(xβ0)

where G(·) is a known function while g(·) is an unspecified function. The test statistic
is

T =
√
h

nX
i=1

w(Xiβ̂)
h
Yi −G(Xiβ̂)

i h
Ĝ−i(Xiβ̂)−G(Xiβ̂)

i
→ N(0,σ2T ),

where w(·) is a weight function that downweights extreme observations, often defined in
practice as 90% or 95% of the central range of the index values of Xiβ̂ with β̂ being the

estimate under H0, and Ĝ−i(Xiβ̂) is the leave-one-out nonparametric estimate.

Other Estimators of β0 in the Binary Choice Model:

Klein and Spady (1993)’s Estimator:

β̂KS = argmax
β

nX
i=1

[(1− Yi) ln(1− ĝ(Xiβ)) + Yi ln(ĝ(Xiβ))] ,

where

ĝ(Xiβ) =

Pn
j 6=i Yjk

³
Xjβ−Xiβ

h

´
Pn

j 6=i k
³
Xjβ−Xiβ

h

´ .
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Lewbel (2000)’s Estimator: The model is of the form:

Yi = 1{vi +Xiβ0 + ²i > 0},

where vi is a special continuous regressor whose coefficient is normalized to be one and

Xi is of dimension q.Let f(v|x) denote the conditional density of vi given Xi, and let
F²(²|v, x) be the conditional CDF of ²i given (vi,X). Suppose that F²(²|v, x) = F²(²|x)
and that E[Xi²i] = 0. Let s = −Xβ0− ². Denote Ỹi = [Yi− 1{vi > 0}]/f(vi|Xi). L2 and
−L1 are positive and sufficiently large. Supp(v) = (L1, L2). Simple calculation shows

that

E[Ỹ |X] = E
∙
Y − 1{v > 0}
f(v|X) |X

¸
= E

∙
E[Y − 1{v > 0}|v,X]

f(v|X) |X
¸

=

Z L2

L1

E[Y − 1{v > 0}|v,X]
f(v|X) f(v|X)dv

=

Z L2

L1

E[1{v +Xβ0 + ² > 0}− 1{v > 0}|v,X]dv

=

Z L2

L1

Z
Ω²|X

[1{v +Xβ0 + ² > 0}− 1{v > 0}f²(²|X)d²dv

=

Z L2

L1

Z
Ω²|X

[1{v − s > 0}− 1{v > 0}f²(²|X)d²dv

=

Z
Ω²|X

µZ L2

L1

[1{v > s}− 1{v > 0}]dv
¶
f²(²|X)d²

=

Z
Ω²|X

µ
−1{s > 0}

Z s

0

1dv + 1{s < 0}
Z 0

s

1dv]dv

¶
f²(²|X)d²

=

Z
Ω²|X

(−s) f²(²|X)d² = E[Xβ0 + ²|X]

= Xβ0 +E[²|X]

and

X 0E[Ỹ |X] = X 0(Xβ0 +E[²|X]) = X 0Xβ0 +X
0E[²|X].

Hence

E[X 0Ỹ ] = E[X 0E[Ỹ |X]] = E[X 0X]β0 +E[X
0E[²|X]]

= E[X 0X]β0 +E[X
0²]

= E[X 0X]β0.

13



That is,

β0 = (E[X
0X])

−1
E[X 0Ỹ ]. (6)

Denote Ŷi = [Yi − 1{vi > 0}]/f̂(vi|Xi), where f̂(vi|Xi) is the nonparametric kernel
conditional density estimator of f(vi|Xi). The sample analog of (6) gives a feasible
estimator of β0 :

β̂L =

Ã
nX
i=1

X 0
iXi

!−1 nX
i=1

X 0
iŶi,

which is obtained by regressing Ŷi on Xi. Lewbel (2000) proved that this estimator is√
n-consistent and asymptotically normal.

Han (1987)’s Maximum Rank Correlation (MRC) Estimator: For binary
choice model y = 1{xβ0 − ² > 0} with the independence of x and ²,

E[Y |x] = P (Y = 1|x) = P (Xβ0 − ² > 0|X = x) = F (xβ0),

where F (·) is the distribution function of ². The monotonicity of F (·) ensures that

E[Yi − Yj|Xi,Xj] = E[Yi|Xi]−E[Yj|Xj] = F (Xiβ0)− F (Xjβ0) ≥ 0

whenever Xiβ0 > Xjβ0. Note that Yi − Yj can be valued 1, 0,−1. Hence,

E[Yi − Yj|Xi,Xj] = 1× P (Yi − Yj > 0|Xi, Xj)− 1× P (Yi − Yj < 0|Xi,Xj) ≥ 0,

i.e.

P (Yi > Yj|Xi, Xj) ≥ P (Yi < Yj|Xi,Xj) whenever Xiβ0 > Xjβ0
or

when Xiβ0 > Xjβ0, more likely than not Yi > Yj.

The intuition is that given an inequality Xiβ0 > Xjβ0 for a pair of samples, it is more

likely that Yi > Yj, i.e. the rankings of the Yi and the rankings of the Xiβ0 would

be positively correlated. The idea of the MRC estimator is to maximize with
respect to β the rank correlation between the Yi and the Xiβ0. The MRC
estimator β̂H = argmaxβ SH(β), where

SH(β) =
2

n(n− 1)

nX
i=1

nX
j 6=i
[1{Yi > Yj}1{Xiβ > Xjβ}]

or

SH(β) =
2

n(n− 1)

nX
i=1

nX
j>i

[1{Yi > Yj}1{Xiβ > Xjβ}+ 1{Yi < Yj}1{Xiβ < Xjβ}] .

14



Han proves the strong consistency of his MRC estimator. Sherman (1993) shows that

the MRC estimator is
√
n-consistent and has an asymptotic normal distribution by the

U-statistic decomposition theory.

Example 6 (Semiparametric Single Index Model, see ex6) The data generating
process is

Yi = 1 + (2Xi + 5Zi + 1)
2 + ui, i = 1, 2, · · · , n,

where Xi ∼ U [0, 1] and Zi ∼ N(0, 1), ui ∼ N(0,Xi);
In the design, the dependent variable Y is a continuous random variable, g(v) =

1+ (2v+1)2 and the parameter β0 = 2.5 (after scale normalization). The sample size is

n = 400. The sample are independent. In the nonparametric estimation, the bandwidth

is chosen as h = an−1/5, where a = 0.4. Use Ichimura Method.

Example 7 (Binary Choice Model, see ex7) The data generating process is Yi =
1{Y ∗i > 0}, and the latent variable

Y ∗i = 1 + 2Xi + 5Zi + ²i, i = 1, 2, · · · , n,

where Xi ∼ U [−1, 1] and Zi ∼ N(0, 1), ²i ∼ N(0, 1).
In the design, the dependent variable Y is a binary choice variable, and its conditional

expectation given X and Z is

E[Y |X,Z] = P (² > −1− 2X − 5Z) = Φ(1 + 2X + 5Z)

= Φ(1 + 2(X + 2.5Z)).

The nonparametric function g(v) = Φ(1 + 2v), where Φ(·) is the distribution function
of N(0, 1), and the parameter β0 = 2.5 (after scale normalization). The sample size is

n = 400. The sample are independent. In the nonparametric estimation, the bandwidth

is chosen as h = an−1/5, where a = 0.4. Use Ichimura Method.

Exercises

1. Consider the following model

Y =

(
1, if Xβ0 − ² > 0
0, if Xβ0 − ² ≤ 0,

where E[²|X] = 0. Show that P (Y = 1|X) = E[Y |X] = F (Xβ0), where F (·) is
the cdf of ². Explain that, if ² and X are not independent (for instance, let ² =
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ω(Xβ0)ε, where ω(·) is an unknown function, ε ∼ Logistic, and ε is independent

of X), E[Y |X] also has a single-index form, that is, E[Y |X] = g(Xβ0), where g(·)
is some link function.

2. Repeat the work in Example 6 by using the weighted average derivative estimation

(GAUSS program is required).

3. Repeat the work in Example 7 by using the weighted average derivative estimation

and the Lewbel’s approach (GAUSS program is required).

4. Consider the following binary choice model

Y = 1{v +Xβ0 − ² > 0},

where v is a continuous regressor, X is a random row vector of regressors with

dimension q, E[X²] = 0, EXX 0 exists and is nonsingular. Let g(v|x) be the
conditional density of v given X = x, f(²|·) the conditional density function of
the error term ² with f(²|v, x) = f(²|x), and the conditional distribution of v given
X has support (−L,L), where L is some positive number. Denote Ỹ = [Y −1{v >
0}]/f(v|X). Prove that β0 = (E[X 0X])−1E[X 0Ỹ ] and provide a feasible estimator

of β0.

5. (1) Suppose that Y is a {0, 1} binary variable. Show that P (Y = 1|x) = E(Y |x);
(2) If Y is a binary variable taking values in {1, 2}, is it true that P (Y = 1|x) =
E(Y |x)?
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