1 Semiparametric Partially Linear Models

Consider the semiparametric partially linear model

$$
Y_{i}=X_{i} \beta+g\left(Z_{i}\right)+u_{i}, i=1,2, \cdots, n,
$$

where X_{i} is a $1 \times p$ vector, β is a $p \times 1$ vector of unknown parameters, and $Z_{i} \in R^{q}$. The data is i.i.d. with $E\left[u_{i} \mid X_{i}, Z_{i}\right]=0$ and $E\left[u_{i}^{2} \mid X_{i}, Z_{i}\right]=\sigma^{2}\left(X_{i}, Z_{i}\right)$. The motivation is to obtain a root-n consistent estimator of β and an estimator of $g(x)$.

In the model, some components (i.e. $X_{i} \beta$) are parametric while the remailing components (i.e. $g(\cdot)$ and the distribution of u) are left unspecified.

Partially linear models have many applications. Engle, Granger, Rice and Weiss (1986) were among the frst to consider the partially linear model. They analyzed the relationship between temperature and electricity usage. They used data based on the monthly electricity sales y_{i} for four cities, the monthly price of electricity x_{1}, income x_{2}, and average daily temperature t. They modeled the electricity demand y as the sum of a smooth function g of monthly temperature t, and a linear function of x_{1} and x_{2}, as well as with 11 monthly dummy variables x_{3}, \cdots, x_{13}. That is, their model was

$$
y=\sum_{j=1}^{13} \beta_{j} x_{j}+g(t)+\epsilon,
$$

where g is a smooth function.

Identification:

X cannot contain a constant (i.e. β cannot contain an intercept). Otherwise, the intercept could not be identified separately from the unknown function $g(\cdot)$.

None of the components of X can be a deterministic function of Z. Otherwise, the corresponding part of this component in $X \beta$ cannot be identified separately from the unknown function $g(\cdot)$.

Generally, the identification condition is: The matrix $\Phi \equiv E\left[(X-E(X \mid Z))^{\prime}(X-\right.$ $E(X \mid Z))]>0$.

Estimation of the Parametric Part:

- Robinson's Estimator. see Robinson (1988), "Root-n consistent semiparametric regression", Econometrica 56, 931-954.

Since

$$
\begin{gathered}
Y_{i}=X_{i} \beta+g\left(Z_{i}\right)+u_{i}, \\
E\left[Y_{i} \mid Z_{i}\right]=E\left[X_{i} \mid Z_{i}\right] \beta+g\left(Z_{i}\right),
\end{gathered}
$$

we obtain

$$
Y_{i}-E\left[Y_{i} \mid Z_{i}\right]=\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right) \beta+u_{i} .
$$

Applying the least squares method, we get an infeasible estimator of β :

$$
\hat{\beta}_{\mathrm{inf}}=\left[\sum_{i=1}^{n}\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right)^{\prime}\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right)\right]^{-1} \sum_{i=1}^{n}\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right)^{\prime}\left(Y_{i}-E\left[Y_{i} \mid Z_{i}\right]\right) .
$$

By the Lindeberg-Levy CLT,

$$
\sqrt{n}\left(\hat{\beta}_{\mathrm{inf}}-\beta\right) \rightarrow N\left(0, \Phi^{-1} \Psi \Phi^{-1}\right)
$$

where

$$
\Phi \equiv E\left[(X-E(X \mid Z))^{\prime}(X-E(X \mid Z))\right]>0
$$

and

$$
\Psi \equiv E\left[\sigma^{2}\left(X_{i}, Z_{i}\right)\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right)^{\prime}\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right)\right]
$$

To present a feasible estimator, we replace the unknown conditional expectations $E\left[X_{i} \mid Z_{i}\right]$ and $E\left[Y_{i} \mid Z_{i}\right]$ in $\hat{\beta}_{\text {inf }}$ with their consistent kernel estimators

$$
\hat{X}_{i} \equiv \hat{E}\left[X_{i} \mid Z_{i}\right]=\frac{n^{-1} \sum_{j=1}^{n} X_{j} K_{h}\left(Z_{i}, Z_{j}\right)}{n^{-1} \sum_{j=1}^{n} K_{h}\left(Z_{i}, Z_{j}\right)}
$$

and

$$
\hat{Y}_{i} \equiv \hat{E}\left[Y_{i} \mid Z_{i}\right]=\frac{n^{-1} \sum_{j=1}^{n} Y_{j} K_{h}\left(Z_{i}, Z_{j}\right)}{n^{-1} \sum_{j=1}^{n} K_{h}\left(Z_{i}, Z_{j}\right)}
$$

respectively. Here $K_{h}\left(Z_{i}, Z_{j}\right)=\prod_{s=1}^{q} h_{s}^{-1} k\left(\left(Z_{s i}-Z_{s j}\right) / h_{s}\right)$. Then we obtain a feasible estimator of β :

$$
\hat{\beta}=\left[\sum_{i=1}^{n}\left(X_{i}-\hat{X}_{i}\right)^{\prime}\left(X_{i}-\hat{X}_{i}\right)\right]^{-1} \sum_{i=1}^{n}\left(X_{i}-\hat{X}_{i}\right)^{\prime}\left(Y_{i}-\hat{Y}_{i}\right) 1\left\{\hat{f}\left(Z_{i}\right) \geq b\right\}
$$

where $b \equiv b_{n}>0$ satisfies $\lim _{n \rightarrow \infty} b_{n}=0$. In application we can ignore the trimming parameter b. The feasible estimator $\hat{\beta}$ has the same asymptotic properties as its infeasible counterpart $\hat{\beta}_{\text {inf }}$, i.e.

$$
\sqrt{n}(\hat{\beta}-\beta) \rightarrow N\left(0, \Phi^{-1} \Psi \Phi^{-1}\right),
$$

under the following conditions:
(i) $\left(Y_{i}, X_{i}, Z_{i}\right), i=1,2, \cdots, n$ are i.i.d. observations, Z_{i} admits a PDF $f \in G_{v-1}^{\infty}$, $g(\cdot) \in G_{v}^{4}$, and $E[X \mid z] \in G_{v}^{4}$. Here $v>1$ is an integer and G_{v}^{α} denotes the class of smooth functions such that if $g \in G_{v}^{\alpha}$, then g is v times differentiable with its partial derivative functions (up to order $v(\geq 0)$) satisfying some Lipschitz-type conditions: $\left|g(z)-g\left(z^{\prime}\right)\right| \leq H_{g}(z)\left|z-z^{\prime}\right|$, where $H_{g}(z)$ is continuous having finite α th moment;
(ii) $E[u \mid x, z]=0, E\left[u^{2} \mid x, z\right]=\sigma^{2}(x, z)$ is continuous in z, both X and u have finite fourth moments;
(iii) Kernel function $k(\cdot)$ is a bounded v th order kernel, and $k(t)=O\left((1+|t|)^{-v-1}\right)$;
(iv) As $n \rightarrow \infty, n\left(h_{1} \cdots h_{q}\right)^{2} b^{4} \rightarrow \infty, n b^{-4} \sum_{s=1}^{q} h_{s}^{4 v} \rightarrow 0$.

Notes:

1. Condition (i): smoothness and moment conditions. $g(\cdot)$ and $E[X \mid z]$ are v th order differentiable. This and Condition (iii) imply that the bias of the kernel estimator is of order $O\left(\sum_{s=1}^{q} h_{s}^{v}\right)$. Condition (iv) (ignoring b) is equivalent to

$$
\sqrt{n}\left[\sum_{s=1}^{q} h_{s}^{2 v}+\left(n h_{1} \cdots h_{q}\right)^{-1}\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

We have known that $O\left(\sum_{s=1}^{q} h_{s}^{2 v}+\left(n h_{1} \cdots h_{q}\right)^{-1}\right)$ is the order of the nonparametric MSE and $\hat{\beta}_{\text {inf }}$ is a root-n consistent estimator of β. For $\hat{\beta}$ to be a root-n consistent estimator of β, Condition (iv) is required.
2. Assume that $v=2$ and $h_{s}=h$. Condition (iv) becomes

$$
\sqrt{n}\left[\sum_{s=1}^{q} h_{s}^{4}+\left(n h_{1} \cdots h_{q}\right)^{-1}\right] \sim \sqrt{n}\left[h^{4}+\left(n h^{q}\right)^{-1}\right]=o(1)
$$

which requires that $q<4$ (or that $q \leq 3$ since q is a positive integer). Therefore, one need to use a higher kernel if $q \geq 4$.
3. One undesirable feature of the Robinson's semiparametric estimator is the use of a trimming function which requires one to choose a nuisance parameter b.

- Density-weighted Estimator: avoid a random denominator in the kernel estimator.

Denote $f_{i}=f\left(Z_{i}\right)$. Since

$$
\begin{aligned}
Y_{i}-E\left[Y_{i} \mid Z_{i}\right] & =\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right) \beta+u_{i}, \\
\left(Y_{i}-E\left[Y_{i} \mid Z_{i}\right]\right) f_{i} & =\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right) \beta f_{i}+u_{i} f_{i},
\end{aligned}
$$

one can give an infeasible estimator $\hat{\beta}_{\text {inf }, f}$ of β using the least squares method by regressing $\left(Y_{i}-E\left[Y_{i} \mid Z_{i}\right]\right) f_{i}$ on $\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right) f_{i}$.Then

$$
\sqrt{n}\left(\hat{\beta}_{\mathrm{inf}, f}-\beta\right) \rightarrow N\left(0, \Phi_{f}^{-1} \Psi_{f} \Phi_{f}^{-1}\right)
$$

where

$$
\Phi_{f} \equiv E\left[\left(X_{i}-E\left(X_{i} \mid Z_{i}\right)\right)^{\prime}\left(X_{i}-E\left(X_{i} \mid Z_{i}\right)\right) f_{i}^{2}\right]>0
$$

and

$$
\Psi_{f} \equiv E\left[\sigma^{2}\left(X_{i}, Z_{i}\right)\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right)^{\prime}\left(X_{i}-E\left[X_{i} \mid Z_{i}\right]\right) f_{i}^{4}\right] .
$$

An feasible estimator $\hat{\beta}_{f}$ of β is obtained by replacing $E\left[X_{i} \mid Z_{i}\right], E\left[Y_{i} \mid Z_{i}\right]$ and f_{i} in $\hat{\beta}_{\text {inf }, f}$ with their consistent kernel estimators, respectively. Since there does not exist a random denominator f_{i}, Condition (iv) is replaced by those without the nuisance parameter b, that is,

$$
\text { As } n \rightarrow \infty, \quad n\left(h_{1} \cdots h_{q}\right)^{2} \rightarrow \infty \text { and } \sum_{s=1}^{q} h_{s}^{4 v} \rightarrow 0
$$

Then we have

$$
\sqrt{n}\left(\hat{\beta}_{f}-\beta\right) \rightarrow N\left(0, \Phi_{f}^{-1} \Psi_{f} \Phi_{f}^{-1}\right) .
$$

Estimation of Nonparametric Component

After obtaining a root-n consistent estimator of $\beta\left(\hat{\beta}\right.$ or $\left.\hat{\beta}_{f}\right)$, since $g\left(Z_{i}\right)=E\left[Y_{i}-\right.$ $\left.X_{i} \beta \mid Z_{i}\right]$, a consistent estimator of $g(z)$ is given by

$$
\begin{equation*}
\hat{g}(z)=\frac{\sum_{i=1}^{n}\left(Y_{i}-X_{i} \hat{\beta}\right) K_{h}\left(z, Z_{i}\right)}{\sum_{i=1}^{n} K_{h}\left(z, Z_{i}\right)} \tag{1}
\end{equation*}
$$

or

$$
\hat{g}(z)=\frac{\sum_{i=1}^{n}\left(Y_{i}-X_{i} \hat{\beta}_{f}\right) K_{h}\left(z, Z_{i}\right)}{\sum_{i=1}^{n} K_{h}\left(z, Z_{i}\right)}
$$

Asymptotically, $\hat{g}(z)$ is equivalent to the following infeasible estimator

$$
\tilde{g}(z)=\frac{\sum_{i=1}^{n}\left(Y_{i}-X_{i} \beta\right) K_{h}\left(z, Z_{j}\right)}{\sum_{i=1}^{n} K_{h}\left(z, Z_{j}\right)} .
$$

$\hat{g}(z)$ and $\tilde{g}(z)$ have the same convergence rate and asymptotic distribution.
Note: The choice of h_{s} 's for estimating $g(\cdot)$ can be quite different from those for estimation β. To obtain a root-n consistent estimator of β, a higher order kernel function is needed if $q \geq 4$. However, there is no need to use a higher order kernel when estimating $g(\cdot)$, regardless of the value of q. A nonnegative second order kernel is good enough to estimate $g(z)$, and the bandwidths can be chosen by least squares cross-validation by minimizing

$$
\sum_{i=1}^{n}\left[Y_{i}-X_{i} \hat{\beta}-\hat{g}_{-i}\left(Z_{i}, h\right)\right]^{2}
$$

where

$$
\hat{g}_{-i}\left(Z_{i}, h\right)=\frac{\sum_{j \neq i}^{n}\left(Y_{j}-X_{j} \hat{\beta}\right) K_{h}\left(Z_{i}, Z_{j}\right)}{\sum_{j \neq i}^{n} K_{h}\left(Z_{i}, Z_{j}\right)}
$$

is the leave-one-out estimator in (1).
Since the LSCV bandwidth h is of order $O_{p}\left(n^{-1 /(q+4)}\right)$, condition (iv) is satisfied if $q \leq 3$. In this case, $\hat{\beta}$ and \hat{h} can be chosen simultaneously by solving the minimization problem:

$$
\min _{\beta, h} \sum_{i=1}^{n}\left[Y_{i}-X_{i} \beta-\hat{g}_{-i}\left(Z_{i}, h\right)\right]^{2}
$$

An Empirical Study: see Blundell, Duncan and Pendakur (1998), "Semiparametric estimation and consumer demand", Journal of Applied Econometrics 13, 435-462.

Study the Engle curve, i.e. the relationship between budget shares and total expenditure, which is modelled as

$$
w_{i j}=z_{i} \alpha_{j}+g_{j}\left(\ln x_{i}\right)+u_{i j}
$$

where $w_{i j}$ is the budget share of the j th good for individual i, z_{i} is a finite vector of observable exogenous regressors, $\ln x_{i}$ is the \log of total expenditure, the unobservable $u_{i j}$ satisfy that $E\left[u_{i j} \mid \ln x_{i}, z_{i}\right]=0, E\left[u_{i j}^{2} \mid \ln x_{i}, z_{i}\right]=\sigma^{2}\left(\ln x_{i}, z_{i}\right)$.

Example 5 (Semiparametric Partially Linear Model, see ex5) The data generating processes are:

Design 1: $Y_{i}=1+X_{i}+\sin \left(8 Z_{i}+5\right)+u_{i}, i=1,2, \cdots, n$, where $X_{i} \sim N(0,1)$ and $Z_{i} \sim U[0,1], u_{i} \sim N\left(0,0.16 Z_{i}\right) ;$

Design 2: $Y_{i}=1+X_{i}+\sin \left(8 Z_{i}+5\right)+u_{i}, i=1,2, \cdots, n$, where $X_{i}=2 Z_{i}^{1 / 2}+1$ and $Z_{i} \sim U[0,1], u_{i} \sim N\left(0,0.16 Z_{i}\right)$.

Design 3: $Y_{i}=1+X_{i}+\sin \left(8 Z_{i}+5\right)+u_{i}, i=1,2, \cdots, n$, where $X_{i}=\lambda_{i} Z_{i}^{1 / 2}+1$ with $\lambda_{i} \sim N(0,1), Z_{i} \sim U[0,1]$, and $u_{i} \sim N\left(0,0.16 Z_{i}\right)$.

In each of the three designs, $\beta=1$ and $g(z)=1+\sin (8 z+5)$. The sample size is $n=400$. The sample are independent. In the estimation, the bandwidths for X and Z are chosen according to the reference normal rule-of-thumb.

What the difference between the estimation results in the Designs 1, 2 and 3? Why the difference?

