
1 Semiparametric Partially Linear Models

Consider the semiparametric partially linear model

Yi = Xiβ + g(Zi) + ui, i = 1, 2, · · · , n,

where Xi is a 1× p vector, β is a p×1 vector of unknown parameters, and Zi ∈ Rq. The
data is i.i.d. with E[ui|Xi, Zi] = 0 and E[u2i |Xi, Zi] = σ2(Xi, Zi). The motivation is to

obtain a root-n consistent estimator of β and an estimator of g(x).

In the model, some components (i.e. Xiβ) are parametric while the remailing com-

ponents (i.e. g(·) and the distribution of u) are left unspecified.
Partially linear models have many applications. Engle, Granger, Rice and Weiss

(1986) were among the frst to consider the partially linear model. They analyzed the

relationship between temperature and electricity usage. They used data based on the

monthly electricity sales yi for four cities, the monthly price of electricity x1, income x2,

and average daily temperature t. They modeled the electricity demand y as the sum of

a smooth function g of monthly temperature t, and a linear function of x1 and x2, as

well as with 11 monthly dummy variables x3, · · · , x13. That is, their model was

y =
13X
j=1

βjxj + g(t) + ²,

where g is a smooth function.

Identification:
X cannot contain a constant (i.e. β cannot contain an intercept). Otherwise, the

intercept could not be identified separately from the unknown function g(·).
None of the components of X can be a deterministic function of Z. Otherwise, the

corresponding part of this component in Xβ cannot be identified separately from the

unknown function g(·).
Generally, the identification condition is: The matrix Φ ≡ E[(X − E(X|Z))0(X −

E(X|Z))] > 0.

Estimation of the Parametric Part:

• Robinson’s Estimator. see Robinson (1988), “Root-n consistent semiparametric
regression”, Econometrica 56, 931-954.
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Since

Yi = Xiβ + g(Zi) + ui,

E[Yi|Zi] = E[Xi|Zi]β + g(Zi),

we obtain

Yi −E[Yi|Zi] = (Xi −E[Xi|Zi])β + ui.

Applying the least squares method, we get an infeasible estimator of β :

β̂inf =

"
nX
i=1

(Xi −E[Xi|Zi])0 (Xi −E[Xi|Zi])
#−1 nX

i=1

(Xi −E[Xi|Zi])0 (Yi −E[Yi|Zi]) .

By the Lindeberg-Levy CLT,

√
n
³
β̂inf − β

´
→ N

¡
0,Φ−1ΨΦ−1

¢
,

where

Φ ≡ E[(X − E(X|Z))0(X − E(X|Z))] > 0

and

Ψ ≡ E[σ2(Xi, Zi) (Xi − E[Xi|Zi])0 (Xi −E[Xi|Zi])].

To present a feasible estimator, we replace the unknown conditional expectations

E[Xi|Zi] and E[Yi|Zi] in β̂inf with their consistent kernel estimators

X̂i ≡ Ê[Xi|Zi] =
n−1

Pn
j=1XjKh(Zi, Zj)

n−1
Pn

j=1Kh(Zi, Zj)

and

Ŷi ≡ Ê[Yi|Zi] =
n−1

Pn
j=1 YjKh(Zi, Zj)

n−1
Pn

j=1Kh(Zi, Zj)
,

respectively. Here Kh(Zi, Zj) =
Qq
s=1 h

−1
s k ((Zsi − Zsj)/hs) . Then we obtain a feasible

estimator of β :

β̂ =

"
nX
i=1

³
Xi − X̂i

´0 ³
Xi − X̂i

´#−1 nX
i=1

³
Xi − X̂i

´0 ³
Yi − Ŷi

´
1{f̂(Zi) ≥ b},

where b ≡ bn > 0 satisfies limn→∞ bn = 0. In application we can ignore the trimming

parameter b. The feasible estimator β̂ has the same asymptotic properties as its infeasible

counterpart β̂inf , i.e. √
n
³
β̂ − β

´
→ N

¡
0,Φ−1ΨΦ−1

¢
,
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under the following conditions:

(i) (Yi,Xi, Zi), i = 1, , 2, · · · , n are i.i.d. observations, Zi admits a PDF f ∈ G∞v−1,
g(·) ∈ G4v, and E[X|z] ∈ G4v. Here v > 1 is an integer and Gα

v denotes the class of

smooth functions such that if g ∈ Gα
v , then g is v times differentiable with its partial

derivative functions (up to order v(≥ 0)) satisfying some Lipschitz-type conditions:

|g(z)− g(z0)| ≤ Hg(z)|z − z0|, where Hg(z) is continuous having finite αth moment;
(ii) E[u|x, z] = 0, E[u2|x, z] = σ2(x, z) is continuous in z, both X and u have finite

fourth moments;

(iii) Kernel function k(·) is a bounded vth order kernel, and k(t) = O((1 + |t|)−v−1);
(iv) As n→∞, n(h1 · · ·hq)2b4 →∞, nb−4

Pq
s=1 h

4v
s → 0.

Notes:

1. Condition (i): smoothness and moment conditions. g(·) and E[X|z] are vth order
differentiable. This and Condition (iii) imply that the bias of the kernel estimator

is of order O(
Pq

s=1 h
v
s). Condition (iv) (ignoring b) is equivalent to

√
n

"
qX
s=1

h2vs + (nh1 · · ·hq)−1
#
→ 0 as n→∞.

We have known that O (
Pq

s=1 h
2v
s + (nh1 · · ·hq)−1) is the order of the nonpara-

metric MSE and β̂inf is a root-n consistent estimator of β. For β̂ to be a root-n

consistent estimator of β, Condition (iv) is required.

2. Assume that v = 2 and hs = h. Condition (iv) becomes

√
n

"
qX
s=1

h4s + (nh1 · · ·hq)−1
#
∼
√
n
£
h4 + (nhq)−1

¤
= o(1),

which requires that q < 4 (or that q ≤ 3 since q is a positive integer). Therefore,
one need to use a higher kernel if q ≥ 4.

3. One undesirable feature of the Robinson’s semiparametric estimator is the use of

a trimming function which requires one to choose a nuisance parameter b.

• Density-weighted Estimator: avoid a random denominator in the kernel esti-

mator.
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Denote fi = f(Zi). Since

Yi −E[Yi|Zi] = (Xi −E[Xi|Zi])β + ui,
(Yi − E[Yi|Zi]) fi = (Xi −E[Xi|Zi])βfi + uifi,

one can give an infeasible estimator β̂inf,f of β using the least squares method by re-

gressing (Yi −E[Yi|Zi]) fi on (Xi −E[Xi|Zi]) fi.Then

√
n
³
β̂inf,f − β

´
→ N

¡
0,Φ−1f ΨfΦ

−1
f

¢
,

where

Φf ≡ E[(Xi −E(Xi|Zi))0(Xi − E(Xi|Zi))f2i ] > 0

and

Ψf ≡ E[σ2(Xi, Zi) (Xi −E[Xi|Zi])0 (Xi − E[Xi|Zi]) f4i ].

An feasible estimator β̂f of β is obtained by replacing E[Xi|Zi], E[Yi|Zi] and fi in β̂inf,f
with their consistent kernel estimators, respectively. Since there does not exist a random

denominator fi, Condition (iv) is replaced by those without the nuisance parameter b,

that is,

As n→∞, n(h1 · · ·hq)2 →∞ and
qX
s=1

h4vs → 0.

Then we have √
n
³
β̂f − β

´
→ N

¡
0,Φ−1f ΨfΦ

−1
f

¢
.

Estimation of Nonparametric Component

After obtaining a root-n consistent estimator of β (β̂ or β̂f), since g(Zi) = E[Yi −
Xiβ|Zi], a consistent estimator of g(z) is given by

ĝ(z) =

Pn
i=1(Yi −Xiβ̂)Kh(z, Zi)Pn

i=1Kh(z, Zi)
(1)

or

ĝ(z) =

Pn
i=1(Yi −Xiβ̂f)Kh(z, Zi)Pn

i=1Kh(z, Zi)
.

Asymptotically, ĝ(z) is equivalent to the following infeasible estimator

g̃(z) =

Pn
i=1(Yi −Xiβ)Kh(z, Zj)Pn

i=1Kh(z, Zj)
.
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ĝ(z) and g̃(z) have the same convergence rate and asymptotic distribution.

Note: The choice of hs’s for estimating g(·) can be quite different from those for

estimation β. To obtain a root-n consistent estimator of β, a higher order kernel function

is needed if q ≥ 4. However, there is no need to use a higher order kernel when estimating
g(·), regardless of the value of q. A nonnegative second order kernel is good enough to
estimate g(z), and the bandwidths can be chosen by least squares cross-validation by

minimizing
nX
i=1

h
Yi −Xiβ̂ − ĝ−i(Zi, h)

i2
,

where

ĝ−i(Zi, h) =

Pn
j 6=i(Yj −Xjβ̂)Kh(Zi, Zj)Pn

j 6=iKh(Zi, Zj)

is the leave-one-out estimator in (1).

Since the LSCV bandwidth h is of order Op(n−1/(q+4)), condition (iv) is satisfied if

q ≤ 3. In this case, β̂ and ĥ can be chosen simultaneously by solving the minimization
problem:

min
β,h

nX
i=1

[Yi −Xiβ − ĝ−i(Zi, h)]2 .

An Empirical Study: see Blundell, Duncan and Pendakur (1998), “Semiparamet-
ric estimation and consumer demand”, Journal of Applied Econometrics 13, 435-462.

Study the Engle curve, i.e. the relationship between budget shares and total expen-

diture, which is modelled as

wij = ziαj + gj(lnxi) + uij

where wij is the budget share of the jth good for individual i, zi is a finite vector of

observable exogenous regressors, lnxi is the log of total expenditure, the unobservable

uij satisfy that E[uij| lnxi, zi] = 0, E[u2ij| lnxi, zi] = σ2(lnxi, zi).

Example 5 (Semiparametric Partially Linear Model, see ex5) The data generating
processes are:

Design 1: Yi = 1 +Xi + sin(8Zi + 5) + ui, i = 1, 2, · · · , n, where Xi ∼ N(0, 1) and
Zi ∼ U [0, 1], ui ∼ N(0, 0.16Zi);
Design 2: Yi = 1+Xi + sin(8Zi +5) + ui, i = 1, 2, · · · , n, where Xi = 2Z1/2i +1 and

Zi ∼ U [0, 1], ui ∼ N(0, 0.16Zi).
Design 3: Yi = 1 + Xi + sin(8Zi + 5) + ui, i = 1, 2, · · · , n, where Xi = λiZ

1/2
i + 1

with λi ∼ N(0, 1), Zi ∼ U [0, 1], and ui ∼ N(0, 0.16Zi).
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In each of the three designs, β = 1 and g(z) = 1 + sin(8z + 5).The sample size is

n = 400. The sample are independent. In the estimation, the bandwidths for X and Z

are chosen according to the reference normal rule-of-thumb.

What the difference between the estimation results in the Designs 1, 2 and 3? Why

the difference?

6


