Chap.7 Nonspherical Disturbances (Heterocedasticity)
(5", Greene , Chap.10 & Chap.11)

7.1 Generalized Linear Model

7.1.1 Introduction

Assumption 3 of Classical Model states that the nxn matrix of conditional

second moment E(gg’|x)=02|n is spherical. Without this assumption, we

extend the multiple regression model to the generalized linear regression
model.

Y=XpB+e, E(e]X)=0, E(e|X)=0%Q (7.1)

Where Q is a positive definite matrix and Q=1 , the disturbances are
nonspherical disturbances.Two cases will consider for GR model:

E (€€’| X ) =c’Q

E(gigj\x);to, i# ] autocorrelation

E(gf‘x)zaf i=]j heteroscedasticity
7.1.2 Consequence of Relaxing Assumption 3.
1) OLS estimator,é Is unbiased and consistent.

1

(i) linearity g =(XX)" XY

(ii) unbiased  E(4]X )= B+(XX)" XE(¢[X)=p
(iii) var([}‘x)z E{(ﬁ—ﬁ)(ﬁ—ﬂ)"x}

J

=(XX) " XE[ae| X X (XX) " =0 (XX) " X'QX(XX)" (7.2)

= E[ (XX)7 X"a'X (XX )

Conventional OLS coefficient standard errors are incorrect. The correct
variance matrix for the OLS coefficient is o(XX )" X'QX (XX)". The variance

matrix may also be expressed as



n n n n

var(B‘X)ZGZEXXJ1X,QX(XXJ1 (7.3)

X'QX

Consistency requires plimﬁ and plim are both finite positive
n

definite matrices, which in general will be true if the regressors are well
behaved and the elements of Q are finite. Mean square consistency follows

since var(,é‘x) has a zero probability limit.

2) The OLS estimator &°is biased

!

&2=i
n-k
E(e_'exj_E(g’Mg Xj
n—k|” ) n-k
(- e(xoo ) |
_ n‘f_zk E(Tr(Q)-Tr((XX)*X'X))#o?

3) OLS estimator ,@ is inefficient

The Gauss-Markov Theorem no longer holds for the OLS estimator,é, the

BLUE is some other estimator. Thus the t-ratio is not distributed as the t
distribution, the t-test is no longer valid. The same comments apply to the
F-test.

4) Asymptotic Distribution
In finite sample , &~ N (0,6°Q) ,ﬁ‘ X ~ N(B,62(XX) " XX (XX)™)

For large sample ,the asymptotic distribution of OLS estimator in the GR
model will discuss in the heteroscedastic case and in the autocorrelated case
respectively. under specified conditions, both cases have Asymptotic
Normality.

7.2 Efficient Estimation by Generalized Least Squares
7.2.1 Q is known
1) GLS Estimator

Since Q is positive definite, its inverse is positive definite. Thus it is possible
to find a nonsingular matrix P such that



Q'=PP (7.4)

Pre-multiply the linear model Y =X g +¢ by a nonsingular matrix P, satisfying
(7.4), to obtain
Y'=X"p+e (7.5)

!

Where Y"=PY, X =PX,and ¢ =Ps. It follows from (7.4) that Q=P*(P™).
Then
var(&'| X )= E(Pee'P| X ) = PE (26| X ) P' = 6*PQP = PP (P ) P'= 5%l

Thus the transformed variables in (7.5) satisfy the conditions under which OLS
is BLUE. The coefficient vector from the OLS regression of Y™ on X" is the
Generalized Least Squares (GLS) estimator.

BGLS :(XHX*)AXHY*:

=(X'(PP)X)" X'(PP)Y

—(x'0x) x'Qly 76
( ) (7.6)

-1

..Var(ﬁGLS‘X*):O'Z(X*'X*)_l=O'2(X'Q‘1X) (7.7)

GLS estimator is BLUE, it is more efficient than OLS estimator in the GR
model:

o? (XX ) XX (XX) " —o? (X'QX)
:az[(xx)‘lX'—(X'Qflx)'lX'QflJQ[(xx)‘lX’—(X’Qflx)'lX'Qfl}
= AQA'
Where A:[(XX)'lX’—(X’Q‘lx)_lX’Q‘lji. Since Q is positive definite, we

have
AQA' >0

ie. var(,@GLS

X)—var(,BOLS X)SO
2) MLE

Y=XB+e &~N(0,6°Q)

The multivariate normal density for ¢ is
LT L 1, 5, .\t
f(e)=(2r)2 ‘0' Q‘ 2 exp —5¢€ (O' Q) &

Noting that |0°Q|=0"|Q2|, we may rewrite the density as



PR | 1,
f(e)=(2r)2 (02) 202 exp{— 57 £Q 16‘}
The log-likelihood is
1

20

Ian—gIn(Zﬁ)—%Inaz—%In|Q|— (Y—Xﬁ)’Q_l(Y—Xﬂ) (7.8)

onL 1
—

op o
olnL n 1 "o
= =—202 +204(Y—X,8) Q 1(Y—X,6')=0

The ML estimator

(XQ'Y -X'Q*Xp)=0

B =(X'QX) XYY (7.9)

1

H(Y - X:&ML )’ ot (Y - XﬁAML) (7'10)

OA_I%/IL:
It is quite evident that j,, is equivalentto g, when Q is known. But &2,

differs from unbiased GLS estimator &2, by the factor ﬁ, where
n

!

(X ("X i) _[PU )] [P )]

O,
oS n-K n-K

Y _XﬁGLS ,Qil Y _X:éGLs
AEISEAREN -

7.2.2 Hypothesis Testing

1) linear restriction

Since (7.5) satisfies the conditions for the application of OLS, an exact,finite
sample test of the linear restriction

H,:RB=q

can be based on

F :(RBGLS _q)r[ROﬁéLs (X*'X*)_l R'}

-1

(Rhus 1)
(Rfs ) {R(X'Q‘lx )_1 R'T(RﬁGLS —q)/J

~2
OGLs

25 —85))3
s (712)

Having the F(J,n-K) distribution under H,.

The constrained GLS residuals & =Y - X"f, ., are based on



P '~-1 - ' r~-1 - ' N P
ﬂc,GLS:ﬂGLS_(XQ X) R[R(XQ X) R} (R:BGLS_Q)
It is just the constrained OLS estimator using the transformed data, and the

6l is defined in (7.11), where the residual vector
=Y - X*ﬁGLS
The residuals from the original model Y - X3, are GLS residuals.

2) R® for GR Model

There is no precise counterpart to R? in the GR model. The R?-like
measures in this setting are purely descriptive.

7.2.3 Estimation when Q is unknown

1) Feasible Generalized Least Squares

If we do not know the matrix Q, we must estimate its functional form Q=0Q(0)

from the sample. This method is called the Feasible Generalized Least
Squares (FGLS). Let the FGLS estimator be denoted

-1

Bros =(X'Q7X) xQMY (7.13)
Here we use ﬁ:Q(é) instead of the true Q. It would seem that if plimé=¢,

then using Q is asymptotically equivalent to using the true Q. The conditions

that imply that ,E'FGLS is asymptotically equivalent to ﬁGLS are

plim (lx 'fz-lx]—(ix 'Q-lxﬂ =0
n n

plim (1 X 'fz-lg] —(3 X 'Q‘lgﬂ =0
n n

These conditions, in principle, must be verified on a case-by-case basis.
Fortunately, in most familiar settings, they are met.

The following theorem is extremely useful.
Theorem 10.8: Efficiency of the FGLS Estimator

An asymptotically efficient FGLS estimator does not require that we have an
efficient estimator of ¢; only a consistent one is required to achieve full
efficiency for the FGLS estimator.



2) Maximum Likelihood Estimation
The iterative two-step method proposed by Oberhofer and Kmenka (1974) .

Step 1: For a given value of 6 the estimator of g would be FGLS and the

estimator of o? would be the estimator as follow:

!

. 1 2 - 2
o ZH(Y - XﬁFGLSj Q 1(Y - XﬂFGLS)

Step 2: For given values of g and o?, calculate the estimate values of ¢

straightforward.

Oberhofer and Kmenka showed that under some fairly weak requirements,
iterating back and forth between step 1 and step 2 until convergence would
produce the maximum likelihood estimator. The most important requirement is

that ¢ not involve o° or any of the parameters in g; If@ and g have no

parameter in common, the information matrix for the ML estimator of g, &°

and ¢ will be block diagonal of the form:

iz(xnflx) 0 0
(o2
e o*InL _ 0 n4 5
B 20
o|c”|a(p o o) 0 5 ¢
0

7.3 Reasons for Heteroscedasticity (leave out)

7.4 Tests for Heteroscedasticity
7.4.1 White's General Test

Hy:io?=0® (i=1--,n)

H, : otherwise
Suppose SO=EZeinX{ Where ¢ =y-X/3, and B is the OLS estimator.
Nz

Under H,, White verified that

%zn“efxix;—f%i X, X! =%zn:(ef -s*) X, X{—>0 (7.14)
i=1 i=1

i=1



n n
Where s’ %Z X; X{—"mZ%z E(X,X/)—2>0"Qy
i=1 i=1

n

%Ze‘zx‘x"_p’iiE(eizxixi'):%;E[E(ef\ X)xixi':|

2 ZE XX —>0'2QXX

n i=1

Let ¥, be a vector collecting unique and nonconstant elements of the K xK
symmetric matrix X,X/. Then (7.14) implies

I e P
Cn_niZ:l:(ei s*)¥, —0

This Cn is a sample mean converging to zero. Under some conditions
appropriate for CLT to be applicable, we would expect +/nCn to converge to a

normal distribution with mean zero and some asymptotic variance TI'. so for
any consistent estimator ' of I', we have

n-CnT'Cn—% 4*(p-1)
Where (p-1) is the dimension of ¥,.

r= asy.E_(\/ﬁCn)(\/ﬁCn)l =asy-E{%i(ei2 —32)‘4_%2”:

* =)
-eel - won el [T v

e 2]

i=1

I PR |
Taking F_{nZ(ei s?) }[ Z\P'\P‘}’ thus

i=1 n i=1

=1

i(ef —32)2

i=1

e nLl(eﬁ —sz)wg}{iqli\y;}_ [anl(ef —sz)wi )

This statistic can be computed as nR> from the regression e* on a constant

and ¥, Then we have

NRZ 0 2 (P = 1) et (7.16)



The construction of ¥, from X, X/, for example, is illustrated as follow:
X =(1 Xiz Xi3)l

2 2
i2 Xi3 XiZXiB)

The power of this test approach unity as n—o , against most

heteroscedasticity alternatives but may require a fairly large sample to have
power close to unity.

\Pi:(xiz Xz X

7.4.2 Goldfeld-Quandt Test

Assume that the observations can be divided into two groups, o/ and o7
are variances of disturbances of the two settings separately.

H,:0f =0

H,:0’ # 0o}
Suppose o/ =o’x; for some variable x, (i=1--,nk=1---K). The test
procedure is:

i) Reorder the observations by the value of x, .

i)  Omit c central observations.
iii) Fit separate regressions by OLS to the two sets of observations.
Then, we have the test statistic

_e/M =K kon k) (7.17)
elel/nl_K
When n,=n,=2-%.
2
er%e2~F(n—c_K,n—c_Kj (7.18)
ee 2 2

This test requires
i) ¢ follows normal distribution.

i) That % exceeds the number of parameter.

The power of the test will depend, among other things, on the number of
central observations excluded. The power will be low if ¢ is too small or if c is

too large. A rough guide is the set ¢ =%~%.

7.4.3 The Breusch-Pagan / Godfrey LM Test

Consider the model:



fi(a)=f (o) =constant, setting f (o, )=1.

By assuming normally distributed disturbances:

f(e)= 1 exp—gi2
i \27o? 207

1 &7

n 13
InL=—In(27)-= 4—— —
nL=-Zin(2r)->>In

i=1 2|10'
The information matrix 1(4,«) is block diagonal. Thus we need only

olnL
oa

concentrate on

2
and the submatrix 1, =-E ”InL :
oada'

8InL 1 : g_,_ 7
U da 247 0'
d%InL 18 &
g NSy
dada’ Z;Giz i

Taking expectations, we have

l. =—E (22'8“} Zz (E(¢7]z,)=07 foralli)

i=1

Rewrite aénL at the restricted estimates:
(04
n 2
dlnL z 9,Z, , where giz(i—‘z—l.
oa |, ) o




n ! n -1 n
LM = lZgizi EZziz; lZgizi =133R~12(p—1) (7.19)
23 23 243 2
This statistic measure one-half the regression sum of squares from

regression of g, on Z,, where e is the residual from the OLS regression of

y, on X, and &°=ee/n.

This statistic is the LM test for multiplicative heteroscedasticity. It also can be
written as:

LM =%SSR=nR2 (7.20)
where R’ is the coefficient of determination of the regression of g, on Z..
Return to the regression of g, on Z,, the g, variable has zero mean thus

SSR=R*> g7, and

i=1

Where m, and m, denote the second and fourth sample moments about the

mean of the OLS residuals. For a normally distributed variable the

corresponding population moments obey the relation p, =342. Replacing the

sample moments by the population equivalents gives » g’ =2n. Thus (7.20)
i=1

holds.

7.4.4 Modified LM Statistic

The Breusch-Pagan / Godfrey LM test is sensitive to the assumption of
normality. Koenker (1981) and Koenker and Bassett (1984) proposed a
modified version for this test:

Vv =1i(ef —ﬁjz (7.21)

N3 n

The variance of ¢’ is not necessary equal to 2c6* if ¢ is not normally

distributed.

10



Modified LM =Vl(u ~ai) z(zZ)" Z'(u-Ti) (7.22)

Where u=(ei2,---,en2)' i=(1--1), T="°_1If & is not normal, there is some
n

evidence that it provides a more powerful test.
7.4.5 Glesjer’s Tests

Glesjer suggested some specific formulations of the disturbance variance. In
particular:

) of =var(s|X)=0"(a2)
i) of =var(s|X)=0"(a'Z,)

iii) o7 =var(s|X)=0c’exp(a'z,)

For the three cases, testing the hypothesis that all the coefficients except the
constant term are zero constitutes a test of the homoscedasticity assumption
in the context of the specific formulation. The tests are carried out by the
following regressions:

e =a'Z +V, (7.23)

e =a'Z +v, (7.24)

log(e’)=a'Z, +v; (7.25)
Hyta, = =a, =0

Then, the Wald statistic is computed by

[EstAvar(a')] &~ z2(p-1) (7.26)

A

W=«

Where & =(0,1,,)a.

However, each of these regressions is heteroscedasticity, we would discuss
the problem in detail in next section. On the other hand, their power is a
function of the specified alternative. If the heteroscedasticity form is incorrect,
the tests are like to have limited or no power at all to reveal an incorrect
hypothesis of homoscedasticity.

11



7.5 Estimation under Heteroscedasticity
7.5.1 WLS with Known €

If Q is known, i.e.

ol - 0
o’Q=
0 - O—ﬁ
Jo,
Taking P=| : . i |forthe transformed model y =X g+¢" ,we have:
0o ),
Y1 T/ % X
/ |72 72 %1
y* = P * = P :

%) %//

It is equivalent to dividing both sides of the original equation vy, =X/8+¢& by

the square root of &7, to obtain

Oi O O;
and then apply OLS. The GLS reduces to a simple application of weighted
least squares.

n

M/}in[(Y*—X*,bA’)'(Y*—X*ﬁ)} Mln{zal( -B- ﬂzxiz—---—ﬂKXiK)z}

i=1

For example, suppose o’ =o°x, , we minimized the weighted sum of squares

Z _Z X :82 i2 "'_ﬂKXiK)2

1C7X e

It then follows that

Xix 0
c’Q=0c :
0 XnK
no1 roa 1
Bovs :(X'Q_l)()i1 X'Qly :|:ZX_ Xixi’:| |:z_xi,yi:| (7'27)
i=1 ANk i=1 K

Another example is the heteroscedasticity caused by different grouping

1



frequencies. The model is

V,=X,8+%, g¢g=1--G

2
— o O
var(gg‘xg)z—
ng

var(E|)?) = o*diag (ii]

n Ng

So we have ¢°Q=c*diag [liJ

n Ng

Q™ =diag(n,---,ng ), P=diag(\/n_1,---,\/I).
5 S 7 ! B & Al
ﬂGLS Z[anxgxgj [anxg VQJ

g=1 g=1

7.5.2 WLS with Estimated €2: Two-Step Estimation

When Q is unknown, we must first find consistent estimator of the unknown
parameters in Q, that is to shed light on the function form of the
heteroscedasticity.

Suppose the heteroscedasticity pattern o’ =a'Z,, where Z, may or may not
include the variable in X

E(|2))=07

g =o’+v,, where v, is the difference between &* and its conditional

expectation.

Since ¢ is unobservable, we would use the OLS residuals
&=y - Xi’BOLS =Y - Xirﬁ_ Xi’(ﬁOLS _ﬂ) =&+
e’ =g”+u’ +2¢u,

As j..—>p, the terms in u_ will become negligible, we have the “model”

about variance function

e =a'Z +V, (7.28)

The operational implication for the WLS estimation of the model y, = X, 8 +¢,

is called two-step estimation:



Step 1: Estimate the equation y, =X,f+¢ by OLS and compute the OLS

residuals e ; Regress e* on Z to obtain the OLS coefficient estimate a.

Step 2: Re-estimate the equation y, = XB+¢, by WLS, using }/ ——— asthe
Ja'Z,

weight for observation i.

In model (7.28), v, is both heteroscedastic and autocorrelated. So « is

consistent but inefficient. But, consistency is all that is required for asymptotic

efficient estimation of g using Q(&). And we may use White’s estimator for

the covariance matrix in the regression of ¢’ on z,.

For the both case of WLS estimation: Q is known and Q is unknown, the
standard t- and F-ratios can be used to do statistical inference.

7.5.3 Testing and Estimating for Groupwise Heteroscedasticity

Susuppose the model

Y1 X, &

X
= s (7:29)
Yo Xs &g

G
With n, observations in the g™ group, and > 'n, =n. Within the g™ group:
g=1

E(s|Xig) =0, var(sy|Xg)=07, i=1-n;g=1,G
The null hypothesis of homoscedasticity is
Ho:afzazzz---zaézaz (7.30)
The log-likelihood for restricted model is

In L:—Dln(Zﬁ)—lln‘azln
2 2

—%e’(azln)_le

n n 1 ,
=—E|n(27r)—5|n02 - 20—2 Ee&
Concentrated log-likelihood is:
n n ~
InL,, =——|1+In(27) |-=In&? 7.31
Under the alternative hypothesis of heteroscadasticity across G groups, the

covariance matrix of &=(g,--z,) is



2
0 - ol

Ne

And the log-likelihood function is

n 13 1&& (¢
Inle—EIn(Zz)—EZ;nglno-gz—Ez (%gj

2

g= g=1i=1
=—Eln(2ﬂ)—lin Inoz—ii(y - X 'ﬁ)'(y - X 'ﬂ)
2 29:1 9 g g:lzo_g2 g 9 g 9

The concentrated log-likelihood function is:
n 18 >
InL, :_E[l+ |n(27z)]—52 n,InG; (7.32)
g=1

The LR statistic is

G
LR=-2(InLy, —InL )=nIné*-> n InG: (7.33)
g=1
OA_ZZe_'e, O"_Zzegeg, (gzl,---,G) (7.34)
n oo,
Where &Zze—ne, &gze?]eg, (9=1---.G) are MLE of o* and o]

respectively, the degree of freedom of this LR statistic is G-1.
If the variances are known, then the GLS estimator is

B=(XVIX) XV

- iwg'ég (7.35)

Where j, is the OLS estimator in the g™ group, V, =var(Bg). Thusthe 8 is

a matrix weighted average of G least estimators, the weighted matrices are:

1

N
wgz(zvgj v,
g=



If X, is same in every group, wgz(llag)/Z(llaj).lf the variances are
unknown, we have FGLS estimator:
frows =(XV X)XV Y
G 1 - G 1
.= — XX — X! 7.36
;O"_QZ 9779 ;&92 gyg ( )

One might consider iterating the estimator with two-step FGLS estimator.
Under the assumption of normally distributed disturbances, so long as (7.34) is
used without a degrees of freedom correction, and if the iterating does
converge, then it will converge to MLE.

7.6 White’s Heteroscedasticity Consistent Covariance Estimator.

7.6.1 White Heteroscedasticity Consistent Covariance Estimator

!

In the GRM, If Q:plim(ﬁj and pIim(ﬂj are both finite positive
n n

1
definite matrices, we have Jﬁ(,@’—ﬂ) :(%j %X'g
n

Where ,@ is the OLS estimator. In the heteroscedastic case, if the variance of

g are not dominated by any single term, so that the conditions of the

Lindberg-Feller central limit theorem can be applied to

1 1
V. =Q'—=X"e=Q0"—"=) Xe
n,ls Q \/ﬁ Q \/ﬁ ; i“i

Then the least squares estimator is asymptotically normally distributed with
covariance matrix

AVar(,@) =O-T2Q‘lp |im(%xnij-l

:%Q‘lp |im(%x'(02gz) X )Q‘l (7.37)

ZEQflp Iim(%zn:afxix;jcgl

n
White(1980) had shown that under very general conditions, the estimator

So =£zeizxixil
)

has plim S, =plimQ~, where Q° =120i2xix;
[



In order to obtain the consistent estimator of Q, we need two assumptions as

following:

Assumption 1. (X&) is independent but not identical distribution for i, and

its fourth-moment exists, and satisfies E(X,g)=0.

Assumption 2: For some finite positive scalar § and A, we have
21+(>‘ 2 21+(>‘

E ‘xij‘ <A and E ‘gixij <A.

To indicated why the fourth-moment assumption is need for the regressors, we

provide a sketch of the proof for the special case of k=1. So, both x, and xe;

are scalars, we have
et =(vi—%B)
=(gi —(,é—ﬁ)xi)2 (7.38)
=g’ —Z(ﬁ—ﬂ)gixi +(ﬂA—ﬂ)2 x?
Where ,3 is the OLS estimator, plim,ézﬂ, by multiplying both sides of (7.38)

by x* and summing over i, we obtain

%izl“eizxiz _%Z:“gi?xiz Z_Z(ﬁ_ﬂ)%gﬂx? +(ﬁ_ﬂ)2%gxi4
s\;@—ﬁ\%g(gizxiz +x{‘)+(,5’—ﬂ)2%iznl:xi4 (7.39)

If the fourth-moment E(xi“) is finite number, then lZx,“ converges in
n
.y .. - 2 1 4 p .
probability to some finite number, and (ﬁ—ﬂ) HZXi ——>0. And since
E(gfxf) is finite, EZngf converges in probability to some finite number,
n

then (ﬁ—ﬂ)%z(sfxf —2 0.

From Assumption 2, use Markov’s Strong LLN, we can have



iznlg.Zx_Z —EZn:E((‘?-ZX?) sy
n& i N n& i N >

So, Plim= Ze, X' =Plim= ZEXX—th ZE(g XX/)

Defining so is the n*n diagonal matrix whose i-th element ise’, then the

Est.Av ar( ,3) can be rewritten as

Est.Avar(,é)z N(XX) " Sy (XX)"
e’ 0

Syl ey (7.40)

0 e

n

7.6.2 Theimprovement on the white estimator:

The white heteros-consistent covariance estimator tends to underestimate the
squares of the true disturbances. Davidson and Mackinnon(1993) report that
at least for the Monte Carlo simulations they have seen, the robust t-ratio

based on SO:%ZeinX{ rejects the null too often, and that simply

i=1
multiplying S, by Lk mitigates the problem of over-rejected. They also
n_

report that the robust t-ration based on the following adjustment on S, reform

over better

5,213 & X X! d=tor2 7.41
0 =5 LT or (7.41)
Where P, =X/(XX)" X, ( ZXXJ i

The estimated asymptotic variance

Est.Avar ()= [ Zxxj (HZefxix;]&inx;jl

= (XX) (XX )(xX)" (7.42)

Which is consistent of Avar(,@') ,where Q= diag(¢/,...... e’).



	chapter7.(part1).doc
	chapter7.(part2).doc

