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Chapter 4 Large Sample Distribution Theory and Large Sample   

Properties of the Classical Regression Model 

                       ( 5th , Appendix D & Chap.5) 

4.1 Some basic concepts 

4.1.1 σ -algebra, Probability Space and Distribution Function 

Definition 4.1 σ -algebra 

Let Ω  be a sample space. A nonempty class F  of subsets of Ω  is an 

algebra if 

    (i) A F∈  whenever A F∈ ,  

(ii) 1 2A A F∈∪  whenever ,  1, 2iA F i∈ = . 

Moreover, F  is a σ -algebra if, in addition, 

    (iii) 
1

i
i

A F
∞

=

∈∪  whenever ,  1, 2,iA F i∈ =  

Definition 4.2  Probability Space 

Three elements for a probability space: Sample Space Ω , class of subsets of 

Ω , F  and probability measure P . 

Given a σ -algebra, a probability measure ( )P A  is a real-valued set function 

defined on F , satisfying 

    (ⅰ) ( ) 1P Ω = ; 

    (ⅱ) For any jA F∈ , ( )0 1jP A≤ ≤ ; 

    (ⅲ) For any ( ) 1, 2,...jA F j∈ = , if j iA A =∅∩ , i j≠ , ( ) ( )j j
P A P Aj=∑∪ . 

The triplet { }, ,F PΩ  is a probability space.  

Definition 4.3  Random variable 

A real-valued measurable function X  on a probability space { }, ,F PΩ  is 

called a random variable if for any real number x , ( ){ }X x Fω ω < ∈ , where 

ω∈Ω . 
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Definition 4.4  Distribution Function 

Associated with any random variable X  on a probability space { }, ,F PΩ is a 

real function ( )F x  called the distribution function of the random variable 

X  and defined by 

( ) ( ){ },  ( , )F x P X x xω ω= < ∈ −∞ +∞ . 

4.1.2 Various modes of convergence 

Definition 4.5  Convergence in Probability  

Let { }nX be a sequence of random variables, if there exists a real number X  

such that for every 0ε > , { }lim 1n nP X X→∞ − < =ε  or 

{ }lim 0n nP x X→∞ − ≥ =ε , then nX  convergences in probability to X , written 

nX ⎯⎯→p X  or p lim X X=n . 

This definition of convergence in probability can be extended to a sequence of 

random vectors (or random matrices). That is, a sequence of K-dimensional 

random vectors { }nX  convergence in probability to a K-dimensional vector 

X  if  for any 0ε > , { }lim 1n nk kP X X ε→∞ − < =  for all ( )1, ,k k K= , 

where nkX  is the thk  element of nX , and kX  is the thk  element of X . 

Definition 4.6  Consistent Estimator  

An estimator n̂θ  of a parameterθ  is a consistent estimator of θ  if and only if 

n̂θ ⎯⎯→p θ  or p lim n̂θ θ= . 

Theorem 4.1  Consistency of the Sample Mean 

The mean of a random sample from any population with finite meanμ  and 

finite variance 2σ  is a consistent estimator of μ . 

Corollary 4.1  Consistency of a Mean of Functions 

In random sampling, for any function ( )g X , if ( )E g X⎡ ⎤⎣ ⎦ and ( )Var g X⎡ ⎤⎣ ⎦  are 

finite constants, then 
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( ) ( )1p lim ig X E g X
n

= ⎡ ⎤⎣ ⎦∑                                         (4.1). 

Definition 4.7  Convergence in Mean Squares 

Let { }nX be a sequence of  random variables, If ( )2lim 0n nE X X→∞ − = , then 

nX  Convergences in Mean Squares to X , Written nX .m s⎯⎯→ X . 

Definition 4.8  Almost Sure Convergence 

Let { }nX be a sequence of random variables. We say that nX  converges 

almost surely to X , written nX .a s⎯⎯→ X  if there exists a real number X  such 

that { }lim 1n nP X X→∞ = = . 

Definition 4.8’  Almost Sure Convergence 

The random variable nX  converges almost surely to the constant X  if and 

only if 

{ }lim , 0n kP X X k nε→∞ − > ∀ ≥ =  for all 0ε > . 

Definition 4.9  Convergence in Distribution 

The random variable nX  converges in distribution to a random variable X  

with cumulative distribution function ( )F x  if ( ) ( )lim 0n nF x F x→∞ − =  at all 

continuity points of ( )F x . If nX  converges in distribution to X , where ( )nF x  

is the cumulative distribution function of nX , then ( )F x  is the limiting 

distribution of ( ){ }nF x . This is written nX d⎯⎯→ X . 

The relations among the four convergence processes 

(i) nX .a s⎯⎯→ X ⇒ nX ⎯⎯→p X ; 

(ii) nX .m s⎯⎯→ X ⇒ nX ⎯⎯→p X ; 

(iii) nX ⎯⎯→p X ⇒ nX d⎯⎯→ X . 

4.1.3 Slutsky Theorem and its applications 

Theorem 4.2  Slutsky Theorem 
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(i) Given a sequence of random variables{ }nX , such that nX ⎯⎯→p X , if ( )g ⋅ is 

a continuous function of X , then  

p lim ( ) ( )ng X g X=                                                (4.2). 

(ii) Given two sequences of random variables { }nX  and { }nY , if −n nX Y ⎯⎯→p 0 , 

and nY d⎯⎯→Y , then nX d⎯⎯→ Y . 

Theorem 4.3  Rules for Probability Limits 

If nX  and nY  are random variables with p lim 1nX c=  and p lim 2nY c= , then 

(i) p lim ( ) 1 2n nX Y c c+ = + ; 

(ii) p lim ( ) 1 2n nX Y c c= ; 

(iii) p lim ( ) 1 2n nX Y c c=  if ( )2 0c ≠ . 

If nW  is a random matrix with p lim nW = Ω , then p lim 1 1
nW − −= Ω . 

If nX  and nY  are random matrices with p lim nX A=  and p lim nY B= , then 

p lim ( )n nX Y AB= . 

Theorem 4.4  Rules for Limiting Distributions  

(i) If nX ⎯⎯→p α  and nY d⎯⎯→Y , then n nX Y+ d⎯⎯→ α+Y , d
n nX Y Yα⎯⎯→  and 

d
n nY X Y α⎯⎯→  if 0α ≠ ; 

(ii) If nX d⎯⎯→ X  and ( )ng X  is a continuous function of nX , but not depend 

on n , then ( ) ( )d
ng X g X⎯⎯→ .  

e.g., If nt
d⎯⎯→ ( )0,1N , then ( )2 2 1nt χ→ , ( ) ( )21, 1F n χ→ , ( ) ( )2,J F J n Jχ⋅ → . 

4.2 Laws of Large Numbers and Central Limit Theorems 

4.2.1 Laws of Large Numbers 

For a sequence of random variables { }iY , the sample mean nY  is defined as 

1

1 n

n i
i

Y Y
n =

= ∑ . Consider the sequence { }nY , Law of large numbers concern 



 5

conditions under which { }nY  converges either in probability or almost surely. 

An LLN is called “strong” if the convergence is almost surely and “weak” if the 

convergence is in probability. 

Theorem 4.5  Chebychev’s Weak LLN: (Chebychev’s Inequality) 

If ( )1, 2, ,iY i n=  is a sequence of random variables such that 

( )i iE Y μ= < ∞  and ( ) 2
i iVar Y σ= < ∞  such that 2

2
1

1lim 0
n

in in
σ

→∞
=

=∑ , then 

P
n nY μ⎯⎯→ , where 

1

1 n

n i
in

μ μ
=

= ∑ . 

Proof: { } ( ){ } ( ) 2
2 2 2

1

var 1 1 n
n

n n n n i
i

Y
P Y P Y E Y

n
μ ε ε σ

ε ε =

− > = − > ≤ = ∑  

{ } 2
2 2

1

1 1lim lim 0
n

n n in n i
P Y

n
μ ε σ

ε→∞ →∞
=

∴ − > ≤ =∑  

lim n np Y μ∴ = . 

Collorary 4.5 If ( )1, 2, ,iY i n=  is a sequence of random variables such that 

( )lim nn
E Y μ

→∞
=  and ( )lim var 0nn

Y
→∞

= , then P
nY μ⎯⎯→ . 

Proof: ( ) ( )( ) ( )2 2
lim var lim lim 0n n n nn n n

Y E Y E Y E Y μ
→∞ →∞ →∞

= − = − =  

. .m s P
nY Yμ μ∴ ⎯⎯→ ⇒ ⎯⎯→ . 

Theorem 4.6  Khinchine’s Weak LLN 

If 1, , nY Y  are a random (i.i.d.) sample from a distribution with finite mean 

( )iE Y μ= , then nY
p⎯⎯→μ . 

Theorem 4.7  Kolmogorov’s Strong LLN 

① If ( 1,2, , )iY i n=  is a sequence of independent and identically distributed 

random variables such that ( )iE Y μ= < ∞ , then . .a s
nY μ⎯⎯→ . 
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② If ( 1,2, , )iY i n=  is a sequence of independently distributed random 

variables such that ( )i iE Y μ= < ∞  and ( ) 2
i iVar Y σ= < ∞  such that 

2 2

1
i

i
iσ

∞

=

< ∞∑  as n →∞ ,then . .a s
n nY μ⎯⎯→ . 

Theorem 4.8  Markov LLN 

If { }iY  is a sequence of independent random variables with ( )i iE Y μ= < ∞  

and if for some 0δ > , ( )1 1
1 i ii

E Y iδ δμ∞ + +
=

− < ∞∑ , then n nY μ−  converges 

almost surely to 0, which we denote . 0a s
n nY μ− ⎯⎯→ . 

4.2.2 Central Limit Theorems (Greene 5th, P908) 

Theorem 4.9  Lindberg-Levy CLT (Univariate) 

If 1, , nX X  are a random sample from a probability distribution with finite 

mean μ  and finite variance 2σ  and ( )
1

1
n

n i
i

X n X
=

= ∑ , then  

( ) 20,d
nn X Nμ σ⎡ ⎤− ⎯⎯→ ⎣ ⎦ . 

A proof appears in Rao(1973, P127). 
 
Theorem 4.10  Lindberg-Feller CLT (with Unequal Variances) 

Suppose that { } , 1, ,iX i n=  is a sequence of independent random variables 

with finite means iμ  and finite positive variances 2
iσ . Let 

( )1 2
1

n nn
μ μ μ μ= + + +  and ( )2 2 2 2

1 2
1

n nn
σ σ σ σ= + + + . 

If no single term dominates this average variance, which we could state as 

( ) ( )2 2lim max 0i nn
nσ σ

→∞
= , and if the average variance converges to a finite 

constants, 2 2lim nn
σ σ

→∞
= , then 

( ) 20,d
n nn X Nμ σ⎡ ⎤− ⎯⎯→ ⎣ ⎦ . 

Theorem 4.11  Multivariate Lindberg-Levy CLT 

If 1, , nX X  are a random sample from a multivariate distribution with finite 
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mean vector μ  and finite positive definite covariance matrix Q , then  

( ) [ ]0,d
nn X N Qμ− ⎯⎯→ , 

Where ( )
1

1
n

n i
i

X n X
=

= ∑ . 

Theorem 4.12  Multivariate Lindberg-Feller CLT 

Suppose that 1, , nX X  are a sample of random vectors such that ( )i iE X μ= , 

( )i iVar X Q= , and all mixed third moments of the multivariate distribution are 

finite. Let 

1

1

1 ,

1 .

n

n i
i
n

n i
i

n

Q Q
n

μ μ
=

=

=

=

∑

∑
 

We assume that lim nn
Q Q

→∞
= . 

 where Q  is a finite, positive definite matrix, and that for every i , 

( )
1

1

1
lim lim 0

n

n i i in n i
nQ Q Q Q

−
−

→∞ →∞
=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ . 

We allow the means of the random vectors to differ, although in the cases that 
we will analyze, they will generally be identical. The second assumption states 
that individual components of the sum must be finite and diminish in 
significance. There is also an implicit assumption that the sum of matrices is 
nonsingular. Since the limiting matrix is nonsingular, the assumption must hold 
for large enough n , which is all that concerns us here. With these in place, the 
result is  

( ) [ ]0,d
n nn X N Qμ− ⎯⎯→ .. 

4.2.3 The Delta Method 

Suppose { }nX  is a sequence of k-dimensional random vectors such that 

P
nX μ⎯⎯→ , and ( ) d

nn X Xμ− ⎯⎯→ , where ( )0,X N Σ∼ , and suppose 

( )nc X  is a set of J continuous functions of nX  not involving n, ( )nc X  has 

continuous first derivatives evaluated at μ : 
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( ) ( )

. .

1 1

1

1

K

J J

K evaluated at

c c
X X

c
C

c c
X X

μ

μ
μ

μ

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟∂
⎜ ⎟= =

′∂ ⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂⎝ ⎠

, ( )
( )

( )

1 n

n

J n

c X
c X

c X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Then ( ) ( ) ( ) ( )0,d
nn c X c N C Cμ μ μ⎡ ⎤′− ⎯⎯→ Σ⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

                     (4.3) 

Proof: By the mean-value theorem from calculus, there exists a k-dimensional 

vector nY  between nX  and μ  such that 

( ) ( ) ( )( )n n nc X c C Y Xμ μ− = −  

Multiplying both sides by n , we obtain 

( ) ( ) ( ) ( )n n nn c X c C Y n Xμ μ− = −⎡ ⎤⎣ ⎦  

Since nY  is between nX  and μ , and P
nX μ⎯⎯→ , we have P

nY μ⎯⎯→ , so by 

Slutsky theorem, we have 

( ) ( )P
nC Y C μ⎯⎯→ ,  ( ) ( ) ( )d

n nC Y n X C Xμ μ− ⎯⎯→  

( ) ( ) ( )0,C X N C Cμ μ μ⎡ ⎤′Σ⎢ ⎥⎣ ⎦
∼  

So, 

( ) ( ) ( ) ( )0,d
nn c X c N C Cμ μ μ⎡ ⎤′− ⎯⎯→ Σ⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

In particular, if { }nX  is a sequence of random variables and 

( ) ( )20,d
nn X Nμ σ− ⎯⎯→ , then  

( ) ( ) ( ){ }2 20,d
nn g X g N gμ μ σ⎡ ⎤′− ⎯⎯→⎡ ⎤⎣ ⎦ ⎣ ⎦

. 

Where ( )ng X  is a continuous function not involving n.  

Notice that the mean and variance of the limiting distribution are the mean and 
variance of the linear Taylor series approximation: 

( ) ( ) ( )( )n ng X g g Xμ μ μ′+ − .                                    (4.4) 
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Chapter 4 Large Sample Distribution Theory and Large Sample   

Properties of the Classical Regression Model （part 2） 

                       ( 5th , Appendix D & Chap.5) 

4.3 Asymptotic Distributions 

4.3.1 Asymptotic Distribution 

Definition 4.10 Asymptotic Distribution 
An asymptotic distribution is a distribution that is used to approximate the true 
finite sample distribution of a random variable. 

e.g., If ( ) [ ]0,1d
nn x Nμ σ− ⎯⎯→⎡ ⎤⎣ ⎦ , then approximately, or asymptotically, 

( )2,nX N nμ σ∼ , which we write as ( )2,
a

nX N nμ σ∼ . 

Large-Sample Properties of the Estimator 
Definition 4.11  Consistency 

An estimator n̂θ  of a parameter θ  is a consistent estimator of θ  if and only 

if ˆlim nP θ θ= . 

Definition 4.12  Consistent and Asymptotic Normal Estimator 

For an unknown parameter θ , if an estimator n̂θ  satisfies 

( ) ( )ˆ 0,
a

nn N Vθ θ− ∼ , then n̂θ  is the CAN estimator of θ . The asymptotic 

covariance matrix of n̂θ  is V
n

. Written ( )ˆ.var n
VAsy
n

θ =  or ( )ˆvar n
VA
n

θ = . 

Definition 4.13  Asymptotic Efficiency 

The estimator is asymptotically efficient if it is consistent and has an 
asymptotic covariance matrix that is not larger than the asymptotic covariance 
matrix of any other consistent estimator. 

Discussion  about  Asymptotic Expectation 

Suppose that the estimator n̂θ  satisfies ( ) ( )ˆ 0,
a

nn N Vθ θ− ∼ , then asymptotic 

expectation of n̂θ  is θ . Written as ( )n̂AE θ θ= . 

There are at least three possible definitions of asymptotic unbiasedness: 

(A) ( )ˆlim nn
E θ θ

→∞
= ;   
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(B) ( )n̂AE θ θ= ;   

(C) ˆlim np θ θ= . 

In most cases encountered in practice, the estimator in hand will have all three 
properties, so there is no ambiguity. It is not difficult to construct cases in which 
the left-hand sides of all three definitions are different, however. 

4.4 Asymptotic Distribution of the LS Estimator 

4.4.1 Assumptions 

A.1 linear model ( )1, ,i i iy x i nβ ε′= + =  

A.2 X  is an n K×  matrix, ( ){ } 1P rank X K= =  

A.3 ( ) 0iE Xε =  

A.4 ( ) 2E X Iεε σ′ =  

A.5 ( ) ( ), 1, ,i ix i nε =  is a sequence of independent observations. 

1limp X X Q
n

′ = , (Q is a finite positive matrix) 

4.4.2 Asymptotic properties of the LS Estimators 

1) Consistency of β̂  

( )
1

1ˆ X X XX X X
n n

εβ β ε β
−

− ′ ′⎛ ⎞′ ′= + = + ⎜ ⎟
⎝ ⎠

 

1

ˆlim lim limX X Xp p p
n n

εβ β
−′ ′⎛ ⎞= + ⋅⎜ ⎟

⎝ ⎠
 

Where 
1 1

1 1n n

i i i n
i i

X x w w
n n n
ε ε

= =

′
= = =∑ ∑ , 1

1

i
i

iK

x
x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

( ) ( ) ( ) ( ) 0i X i X i i X i iE w E E w X E E x X E x E Xε ε⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ……………….(4.5) 

Thus  from ( ) 0iE Xε = ,we can get ( ) 0iE w X = , ( ) 0nE w X = , ( ) 0nE w =  
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( ) ( ) ( ) ( )

( )

( )
2

.............

.............

var var var var

1 1

1 1 ...................................................(4.

n X n n X n

X n n X

X

w E w X E w X E w X

E E w w X E E X X X
n n

X XE X E X X E
n n n n

εε

σεε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞⎡ ⎤′ ′ ′= = ⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦

′⎡ ⎤ ⎛ ⎞′ ′= = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
6)

 
The variance will collapse to zero if the expectation in parentheses is (or 
converges to) a constant matrix, so that the leading scalar will dominate the 
product as n increases. Assumption A.5 should be sufficient. It then follows 

that ( )lim var 0 0nn
w Q

→∞
= ⋅ = . 

By Chebychev’s weak LLN, lim 0Xp
n
ε′
= ………………………………… ..(4.7) 

1ˆlim 0p Qβ β β−∴ = + ⋅ = ………………………………………………………(4.8) 

2) Consistency of 2s  

1
2 2ˆ e e M n X X X Xs

n K n K n K n n n n
ε ε ε ε ε εσ

−⎡ ⎤′ ′ ′ ′ ′ ′⎛ ⎞= = = = −⎢ ⎥⎜ ⎟− − − ⎝ ⎠⎢ ⎥⎣ ⎦
 

1
2lim lim limn X X X Xp s p

n K n n n n
ε ε ε ε−⎡ ⎤′ ′ ′ ′⎛ ⎞= ⋅ −⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦

 

2 2 2

1

1lim lim lim lim
n

i
i

p s p p p
n n
ε ε ε ε

=

′
⇒ = = =∑ . 

( ) ( )2 2 2
i X iE E E Xε ε σ⎡ ⎤= =⎣ ⎦ ……………………………………………………..(4.9) 

This is a narrow case in which the random variables 2
iε  are independent with 

the same finite mean 2σ , so not is required to get the mean to converge 

almost surely to ( )2 2
iEσ ε= . By the Markov Theorem (Th 4.8), what is need is 

for 
12

iE
δ

ε
+⎡ ⎤

⎢ ⎥⎣ ⎦
 to be finite, so the minimal assumption thus far is that iε  have 

finite moments up to slightly greater than 2. Indeed, if we further assume that 

every iε  has the same distribution, then by Khinchine Theorem (Th 4.6), finite 

moments (of iε ) up to 2 is sufficient. So, under fairly weak condition, the first 

term in brackets converges to 2σ , which gives our result, 
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2 2limp s σ= ……………………………………………………………………(4.10) 

4.4.3 Asymptotic Normality of the LS Estimator 

( ) ( )
1

1ˆ X X Xn n X X X
n n

εβ β ε
−

− ′ ′⎛ ⎞⎡ ⎤′ ′− = = ⎜ ⎟⎣ ⎦ ⎝ ⎠
……………………………….(4.11) 

We must establish the limiting distribution of 1 X
n

ε′ ,since 
1

1 n

n i i
i

w x
n

ε
=

= ∑ , 

from(4.5),we have  

( ) ( ) ( ) 0i i X i i X i iE x E E x X E x E Xε ε ε⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ……………………………..(4.12) 

( ) 0n
XE E nw

n
ε′⎛ ⎞∴ = =⎜ ⎟

⎝ ⎠
 

( ) ( ) ( )2 2var i i X i i ii i i ix E E x x X E x x Qε ε ε σ σ⎡ ⎤′ ′ ′= = =⎣ ⎦ ………………………….(4.13) 

By A.5, { }i ix ε  is a sequence of independent vectors. 

( ) ( )
2

1 1 1

1 1var var var
n n n

n i i i i i
i i i

nw n x x Q
n n n

σε ε
= = =

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑ ……………….(4.14)  

As long as the sum is not dominated by any particular term and the regressors 
are well behaved, which in this case means that A.5 holds, 

( ) 2 2lim var limn nn n
nw Q Qσ σ

→∞ →∞
= = ……………………………………………….(4.15)  

So, according to Lindberg-Feller CLT (multivariate), we have 

( )20,d
n

Xnw N Q
n
ε σ
′

= ⎯⎯→ …………………………………………………..(4.16) 

1
1lim X Xp Q

n

−
−′⎛ ⎞ =⎜ ⎟

⎝ ⎠
, 

( ) ( )2 1ˆ 0,dn N Qβ β σ −∴ − ⎯⎯→ ……………………………………………..(4.17) 

i.e., 
2

1ˆ ,
a

N Q
n
σβ β −⎛ ⎞

⎜ ⎟
⎝ ⎠

∼ ………………………………………………………...(4.18) 

The appropriate estimator of the asymptotic covariance matrix of β̂  is  

( ) ( ) ( )
2

12 1ˆ ˆ. var varPEst A s X X Q A
n
σβ β− −′= ⎯⎯→ = . 
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4.4.4 Asymptotic Behavior of the Standard Test Statistics 

0 :H R qβ =  

1) When R is a 1 K×  matrix, we have 
( )
( )

( )
12

ˆ
0,1d

R
N

s R X X R

β β
−

−
⎯⎯→

′ ′
. 

Proof:  

( )
( )

( )
1 12

2

ˆ ˆR R n

s R X X R X Xs R R
n

β β β β
− −

− −
=

′ ′ ′⎛ ⎞ ′⎜ ⎟
⎝ ⎠

∵  

( ) ( )2 1ˆ 0,dR n N RQ Rβ β σ − ′− ⎯⎯→  

2 2Ps σ⎯⎯→  

1
2 2 1PX Xs R R RQ R

n
σ

−
−′⎛ ⎞ ′ ′⎯⎯→⎜ ⎟

⎝ ⎠
 

( )
( )

( )
12

ˆ
0,1d

R
N

s R X X R

β β
−

−
∴ ⎯⎯→=

′ ′
……………………………………………(4.19) 

As a particular case, 
( )

( ) ( )
1

2

ˆ
0,1 1, ,

k k d
k

kk

n
t N k K

X Xs
n

β β
−

−
= ⎯⎯→ =

′⎛ ⎞
⎜ ⎟
⎝ ⎠

………..(4.20) 

2) When R is a J K×  matrix, we have 

( ) ( ) ( )
( ) ( )

11

2
ˆ ˆ 1d

R q R X X R R q J
J

e e n K J

β β
χ

−−′ ⎡ ⎤′ ′− −⎣ ⎦ ⎯⎯→
′ −

……………………….. (4.21) 

Proof: 

( ) ( )2 1ˆ 0,dR n N RQ Rβ β σ − ′− ⎯⎯→∵ , 

Let ( )ˆZ R n β β= − , 2 1P RQ Rσ − ′= , 

( )0,dZ N P∴ ⎯⎯→ , P  is a J J×  symmetry matrix with ( )rank P J= . 

( ) ( )1/ 2 1/ 2 1/ 20, 0,dP Z N P P P N I− − −⎛ ⎞′⎯⎯→ =⎜ ⎟
⎝ ⎠

………………………………… (4.22) 
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( ) ( )Rank I Rank P J= = , 

( ) ( ) ( )1/ 2 1/ 2 2dP Z P Z Jχ− −′∴ ⎯⎯→  

i.e. ( ) ( ) ( )11 2 1 2ˆ ˆ dZ P Z nR R Q R nR Jβ β σ β β χ
−− −′⎡ ⎤ ⎡ ⎤′ ′⎡ ⎤= − − ⎯⎯→⎣ ⎦⎣ ⎦ ⎣ ⎦  

11
12 2 1PX Xs R R R Q R

n
σ

−−
−−

⎡ ⎤′⎛ ⎞ ′ ′⎡ ⎤⎯⎯→⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
 

( ) ( ) ( )
11

2 2ˆ ˆ dX XnR s R R nR J
n

β β β β χ
−−⎡ ⎤′′ ⎛ ⎞⎡ ⎤ ⎡ ⎤′∴ − − ⎯⎯→⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

 

( ) ( )
( )

( ) ( ) ( )
( )

( )

11

11
2

ˆ ˆ

ˆ ˆ
..............................................(4.23)d

X XnR R R nR J
n

e e n K

R q R X X R R q J J
e e n K J

β β β β

β β χ

−−

−−

⎡ ⎤′′ ⎛ ⎞⎡ ⎤ ⎡ ⎤′− −⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
′ −

′ ⎡ ⎤′ ′− −⎣ ⎦= ⎯⎯→
′ −

( )2 ..............................................................................................(4.24)dWald JF Jχ= ⎯⎯→

For the more general cases, the asymptotic behavior of test statistics under 
conditional heteroskedasticity and autocoerelation , we will discuss in Chap.11 
and Chap.12. 
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4.5 Sequences and the Order of a Sequence 

An important characteristic of a sequence is the rate at which it converges (or 
diverges). We will define the rate at which a sequence converges or diverges 
in terms of the order of the sequence. 
 

Definition 4.14 Order nλ  

A sequence { }nb  is at most of order nλ  in probability, denoted ( )n pb O nλ= , 

If for every 0ε >  there exist a finite 0εΔ >  and Nε ∈ , such that 

{ }nP n bλ ε ε− > Δ <  for all n Nε≥ . 

When ( )1n pb O= , we say { }nb  is bounded in probability. 

Definition 4.15: Order Less than nλ  

A sequence { }nb  is of order smaller than nλ  in probability, denoted 

( )n pb o nλ= , if ( )lim 0np n bλ− = . 

When ( )1n pb o= , we have 0P
nb ⎯⎯→ . 

Theorem 4.13 

1) If ( )n pa O nλ=  and ( )n pb O nδ= , then ( )n n pa b O nλ δ+=  and 

( )k
n n pa b O n+ = , where ( )max ,k λ δ= . 

2) If ( )n pa o nλ= and ( )n pb o nδ= , then ( )n n pa b o nλ δ+= and ( )k
n n pa b o n+ = , 

where ( )max ,k λ δ= . 

3) If ( )n pa O nλ= , ( )n pb o nδ= , then ( )n n pa b o nλ δ+= , ( )k
n n pa b O n+ = , where 

( )max ,k λ δ= . 
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